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Two-phase bubbly flows are found in many industrial applications. These flows involve
complex local phenomena that are still poorly understood. For instance, two-phase
turbulence modelling is still commonly based on single-phase flow analyses. A direct
numerical simulation (DNS) database is described here to improve the understanding
of two-phase turbulent channel flow at a parietal Reynolds number of 127. Based
on DNS results, a physical interpretation of the Reynolds stress and momentum
budgets is proposed. First, surface tension is found to be the strongest force in the
direction of migration so that budgets of the momentum equations suggest a significant
impact of surface tension in the migration process, whereas most modelling used in
industrial application does not include it. Besides, the suitability of the design of
our cases to study the interaction between bubble-induced fluctuations (BIF) and
single-phase turbulence (SPT) is shown. Budgets of the Reynolds stress transport
equation computed from DNS reveal an interaction between SPT and BIF, revealing
weaknesses in the classical way in which pseudoturbulence and perturbations to
standard single-phase turbulence are modelled. An SPT reduction is shown due
to changes in the diffusion because of the presence of bubbles. An increase of
the redistribution leading to a more isotropic SPT has been observed as well. BIF
is comprised of a turbulent (wake-induced turbulence, WIT) and a non-turbulent
(wake-induced fluctuations, WIF) part which are statistically independent. WIF is
related to averaged wake and potential flow, whereas WIT appears when wakes
become unstable or interact with each other for high-velocity bubbles. In the present
low gravity conditions, BIF is reduced to WIF only. A thorough analysis of the
transport equations of the Reynolds stresses is performed in order to propose an
algebraic closure for the WIF towards an innovative two-phase turbulence model.

Key words: gas/liquid flows, turbulence modelling, turbulence simulation

1. Introduction
Two-phase bubbly flows are found in many engineering applications. They involve a

wide range of scales, from the Kolmogorov scale to the macroscopic flow structures

† Email addresses for correspondence: antoine.ducluzeau@cea.fr, guillaume.bois@cea.fr
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and, in between, the bubble diameter. For industrial applications such as nuclear
reactor safety analysis, it is essential to correctly model the main characteristics of
such flows. The wide range of flow regimes as well as the diversity of turbulence
regimes require detailed information mostly related to local phenomena such as
wake development, interfacial forces, bubble break-up and coalescence. Several
experiments have provided useful information allowing the development of models
for the interfacial forces (e.g. through the work of Tomiyama et al. (2002)) or the
turbulence (Riboux & Legendre 2013; Amoura, Besnaci & Risso 2017). However,
restrictions imposed by limitations of experimental methods prevent the access
to bubbly flow characteristics. Thus, the only tool currently available to provide
further information is direct numerical simulation (DNS) as a ‘numerical experiment’.
Although several DNS studies have already been performed, none of them has yet
provided the maximum amount of information that is potentially extractable from
such local calculations. Following the work by Kim, Moin & Moser (1987) and
Vreman & Kuerten (2014) on single-phase flows, a database of statistical results
for bubbly channel up-flow obtained using the computational fluid dynamics code
TrioCFD is proposed here. The statistical data are available for further analysis
(see http://triocfd.cea.fr/recherche/modelisation-physique/). Although several two-phase
DNS calculations have already been performed (Lu & Tryggvason 2008; Santarelli &
Fröhlich 2016; Bois et al. 2017; Feng et al. 2018), there is still no database available
like those of Kim et al. (1987) or Vreman & Kuerten (2014) for single-phase flows.
The aim of this article is to deepen our physical understanding of interfacial forces
and velocity fluctuations in channel flow.

As suggested by Ilic (2006), Hosokawa, Suzuki & Tomiyama (2012), Santarelli,
Roussel & Fröhlich (2016), budgets of averaged equations can be used in order to
understand the physics of two-phase flows and to bring to light first-order phenomena.
Whether we are considering the one-fluid or the two-fluid formulation, the budget of
the momentum equation provides information on the relative importance of interfacial
forces, buoyancy, turbulence, surface tension and viscosity. Then, the phenomenology
of such flows is clearer and can be analysed. Interfacial forces such as drag, lift and
turbulent dispersion forces have been extensively studied in the literature but mostly
on isolated bubbles in a liquid at rest or in simple linear shear flow (Tomiyama
et al. 2002). However, there is still a lack of knowledge about the effect of surface
tension which is classically reduced to its impact on the bubble shape. Indeed, in a
point-size particle approach, the averaged surface tension source term is zero whereas
in the case of resolved finite-size particles, other effects may exist. For second-order
quantities, the kinetic energy budget originally proposed by Kataoka & Serizawa
(1989) has been generalized into a tensorial transport equation (Morel 2015). In
addition to the classical terms of production, dissipation, redistribution and diffusion,
this equation also contains interfacial transfer related to the kinetic energy exchanged
at bubble interfaces. Many studies have already addressed these terms, numerically or
experimentally, in order to propose an improved modelling of turbulence based on the
kinetic energy equation. Even with optical methods, the measurement of several terms
of these equations involving interfacial pressure or interfacial velocity is complicated
at least, if not impossible with the state-of-the-art measuring techniques (Fujiwara,
Minato & Hishida 2004; Shawkat & Ching 2011). These limitations complicate the
analysis of the results whose experimental uncertainty is also difficult to estimate. On
the other hand, the careful treatment with numerical tools of the interfacial quantities
can lead to smaller errors (Santarelli et al. 2016); the assessment of the kinetic
energy budget is then simpler. Previous studies have already succeeded in measuring
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FIGURE 1. Schematic decomposition of the fluctuations in two-phase bubbly flows in
different parts.

the terms of the kinetic energy equation, leading to an improvement of turbulence
model (Ilic 2006; Hosokawa et al. 2012; Santarelli et al. 2016).

Turbulent fluctuations in two-phase flows are divided into bubble-induced fluctua-
tions (BIF) and single-phase turbulence (SPT). Following this idea, the Reynolds
stresses can be written as:

Rij = RSPT
ij + RBIF

ij . (1.1)

SPT arises from the local shear not produced directly by the wakes. It is frequently
seen as ‘turbulence in the absence of bubbles’ whereas BIF represents the contribution
added by the bubbles (Lance & Bataille 1991). Nowadays, this vision is questionable
because it neglects the interaction between SPT and BIF which has been observed
for instance through the phenomenon of turbulence reduction (Mazzitelli, Lohse &
Toschi 2003; Colin, Fabre & Kamp 2012; Cisse et al. 2015; Alméras et al. 2017). In
most cases, the total kinetic energy is increased by BIF in regard to the single-phase
equivalent. If so, the added part of turbulence is always considered as BIF without
considering the possibility of SPT reduction. In order to perform the analysis of this
possible interaction, SPT and BIF have to be separated. In the present study, different
cases are specifically designed for such a decomposition.

Concerning the BIF, Risso et al. (2008) have proposed a splitting of the BIF into
a turbulent and a non-turbulent part. The non-turbulent part (coined wake-induced
fluctuations, WIF), is related to coherent structures around the bubbles such as the
averaged wake or the potential flow. These fluctuations do not possess the chaotic
features of turbulence leading to a dissipation process and to an energy cascade. The
turbulent part (coined wake-induced turbulence, WIT), is related to wake instabilities
(such as von Kármán alleys) and wake interactions. The BIF part of the Reynolds
stresses is split into two contributions:

RBIF
ij = RWIT

ij + RWIF
ij . (1.2)

Moreover, different studies have shown that WIF and WIT are statistically independent,
meaning that there is no interaction between them (Riboux, Risso & Legendre 2010;
Riboux & Legendre 2013; Risso 2016; Amoura et al. 2017; Risso 2018). A schematic
view of those different parts of turbulence is sketched in figure 1. These works
brought clarity to two-phase turbulence phenomenology, but additional studies are
mandatory for an improvement of turbulence modelling. The classical way to model
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Analysis of Reynolds stresses in turbulent bubbly flows from DNS 135

two-phase turbulence involves only the splitting of turbulence into SPT and BIF.
In order to adapt single-phase turbulence models to two-phase flows, many authors
have implicitly assumed that WIF and WIT may be modelled together (Hosokawa
& Tomiyama 2013; Colombo & Fairweather 2015; Vaidheeswaran & Hibiki 2017).
Although there have been several attempts to use other decompositions based on
physical considerations (Risso 2018), to the best of our knowledge all turbulence
models are still based on a coarse vision of two-phase flow (except for the work
of Chahed, Roig & Masbernat (2003) who proposed distinguishing between the
dissipative and the non-dissipative parts of BIF). The separate study of WIT and
WIF is complicated because it often relies on calculations in the reference frame
of the bubbles (see Riboux & Legendre (2013) or Amoura et al. (2017) for more
details). Alternatives works such as Bouche, Roig & Risso (2012) and Bouche, Roig
& Risso (2014) succeeded in studying WIF alone in a Hele-Shaw cell by preventing
the appearance of WIT with the strong containment. Amoura et al. (2017) also
observed that the nonlinear interactions leading to WIT production do not occur
for a bubble Reynolds number less than 200. Thus, for the small bubble Reynolds
numbers encountered for instance in low gravity conditions, BIF is expected to be
comprised of WIF exclusively, which allows the study of WIF through the analysis
of the Reynolds stress transport equations. The article is organized as follows. Our
simulations are described in § 2. In order to validate the front-tracking algorithm of
TrioCFD briefly described in § 2, a comparison of averaged statistical quantities with
the results of Lu & Tryggvason (2008) is performed along with a mesh convergence
study. Section 3 focuses on physical interpretations of the momentum budget in order
to study the impact of the surface tension source term. Sections 4 and 5 deal with
two-phase turbulence phenomenology and modelling. In § 4, an in-depth analysis
of BIT and SPT interactions is performed. Section 5 presents an analysis of the
second-order statistics of two-phase turbulence, a discussion on numerical issues for
a better estimation of the Reynolds stress budget and modelling of WIF.

2. Direct numerical simulations
The physical interpretation presented in this article is based on the ‘numerical

experiments’ described in this section. Section 2.1 introduces the algorithm of
TrioCFD and the numerical set-up of the different cases. Then, § 2.2 presents a
code verification (benchmark) by comparing the results given by TrioCFD with the
work of Lu & Tryggvason (2008). A mesh convergence study is also performed on
isolated bubbles. Finally, a general description of the results in § 2.3 gives the main
mechanisms of turbulent two-phase channel flows.

2.1. Definition of simulations
The computational domain is a hπ × 2h × hπ/2 channel at Reτ = 127 (see table 1)
between two vertical walls perpendicular to the direction 2 (y). The distance between
the walls is 2h = 2 where h is the characteristic length of the channel. There are
periodic conditions in direction 1 (x, streamwise) and direction 3 (z, spanwise). The
flow is driven upward by a mean pressure gradient calculated to satisfy an imposed
velocity gradient at the wall, while the acceleration due to gravity acts downwards
(along the x-axis). Different populations of bubbles travel in this domain (as listed in
table 1). For the smallest bubbles, the cell size of the mesh is decreased to maintain
a bubble resolution at approximately 30 cells per bubble diameter in the wall-normal
direction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

om
m

is
sa

ri
at

 à
 l'

én
er

gi
e 

at
om

iq
ue

, o
n 

07
 Ja

n 
20

20
 a

t 0
8:

17
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.100
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


136 A. du Cluzeau, G. Bois and A. Toutant

C
as

es
Sp

he
ri

ca
l

Sp
he

ri
ca

l
D

ef
or

m
ab

le
B

id
is

pe
rs

e
Si

ng
le

ph
as

e
d b
=

0.
3

d b
=

0.
16

5
N

om
en

cl
at

ur
e

Sb
(b

ig
)

Ss
(s

m
al

l)
D

B
SP

R
es

ol
ut

io
n

25
6
×

19
2
×

12
8

25
6
×

38
4
×

12
8

25
6
×

19
2
×

12
8

25
6
×

38
4
×

12
8

25
6
×

19
2
×

12
8

1
x+
,

y+
,

z+
1.

5
×

1.
3
×

1.
5

1.
5
×

0.
66
×

1.
5

1.
5
×

1.
3
×

1.
5

1.
5
×

0.
66
×

1.
5

1.
5
×

1.
3
×

1.
5

1
t a
v

e[
h/
〈
u〉
]

16
5

13
8

29
8

11
9

22
8

1
tτ av

e[
h/

u τ
]

21
23

21
19

15
1

tν av
e[

h2 /
ν

l]
0.

17
0.

18
0.

17
0.

15
0.

11
D

om
ai

n
π

h
×

2h
×

π
h/

2
E

öt
vö

s
0.

45
1.

36
4.

5
4.

5/
1.

36
—

α
3

%
3

%
3

%
3

%
/
3

%
—

d b
0.

3
0.

16
5

0.
3

0.
3/

0.
16

5
—

N
b

21
12

6
21

21
/
12

6
—

σ
(N

m
−

1 )
0.

02
0.

00
2

0.
00

2
0.

00
2

—
µ

l
(k

g
m
−

1
s−

1 )
0.

00
03

3
0.

00
03

3
ρ

l
(k

g
m
−

3 )
1

1
ρ

l/
ρ
v

10
µ

l/
µ
v

1
g

0.
1

0.
1

R
e c

40
08

30
58

72
35

32
08

77
00

R
e b

26
3

50
13

6
50
/
13

6

TA
B

L
E

1.
N

um
er

ic
al

an
d

ph
ys

ic
al

pa
ra

m
et

er
s

fo
r

ca
lc

ul
at

io
ns

at
R

e τ
=

12
7

fo
r

h
=

1
(t

he
ch

ar
ac

te
ri

st
ic

le
ng

th
sc

al
e

of
th

e
ch

an
ne

l)
.

T
he

bu
bb

le
di

am
et

er
is

d b
,

N
b

is
th

e
nu

m
be

r
of

bu
bb

le
s,

L x
an

d
N

x
ar

e
re

sp
ec

tiv
el

y
th

e
le

ng
th

an
d

th
e

nu
m

be
r

of
ce

lls
in

x
di

re
ct

io
n

an
d
1

x+
=

(L
x/

N
x)

R
e τ
/
h.

T
he

E
öt

vö
s

nu
m

be
r

is
E

o
=
ρ

lg
d2 b
/
σ

.
T

he
pa

ri
et

al
R

ey
no

ld
s

nu
m

be
r

is
de

fin
ed

as
R

e τ
=

hu
τ
/
ν

l,
w

ith
u τ
=
√ (µ

l/
ρ

l)
(∂

u/
∂

y|
y=

0)
.

R
e c
=

D
h〈

u〉
/
ν

l
is

th
e

ch
an

ne
l

R
ey

no
ld

s
nu

m
be

r,
w

ith
th

e
hy

dr
au

lic
di

am
et

er
D

h
=

4h
.

R
e b
=

d b
〈
u r
〉
/
ν

l
is

th
e

bu
bb

le
R

ey
no

ld
s

nu
m

be
r,

w
ith

u r
=

u v
v
−

u l
l ,

th
e

m
ea

n
up

st
re

am
re

la
tiv

e
ve

lo
ci

ty
of

th
e

bu
bb

le
s.
1

t a
v

e,
1

tτ av
e,
1

tν av
e

ar
e

th
e

tim
e

in
te

rv
al

s
w

ith
in

w
hi

ch
st

at
is

tic
al

re
su

lts
ha

ve
be

en
m

ea
su

re
d.

T
he

y
ar

e
ex

pr
es

se
d

re
sp

ec
tiv

el
y

in
tim

e
un

its
t.u
.
=

h/
〈
u〉

,
t.u
.τ
=

h/
u τ

,
t.u
.ν
=

h2 /
ν

.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

om
m

is
sa

ri
at

 à
 l'

én
er

gi
e 

at
om

iq
ue

, o
n 

07
 Ja

n 
20

20
 a

t 0
8:

17
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.100
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Analysis of Reynolds stresses in turbulent bubbly flows from DNS 137

TrioCFD resolves the one-fluid equations of Kataoka (1986) as written for channel
up-flow by Lu & Tryggvason (2008):

∇ · u= 0, (2.1)

∂ρu
∂t
+∇ · (ρu⊗ u) = −∇P′ + (ρ − 〈ρ〉)g− βex

+∇ · [µ(∇u+∇Tu)] + σκnvδi, (2.2)

where each of the one-fluid variables is defined as a mixture of phase variables:
φ =

∑
k χkφk where φk can be uk, ρk, µk or Pk, respectively the velocity, the density,

the viscosity and the pressure in phase k. Here χk is the phase indicator function,
which is equal to 1 in phase k and 0 otherwise. The transport equation is then
∂χv/∂t + ui · ∇χv = 0, where ui is the interfacial velocity of the front. Here, in the
absence of phase change, the velocity is continuous across the interface and ui = u.
Following the proposal of Lu & Tryggvason (2008), the pressure gradient ∇P is split
into mean ∇〈P〉 and fluctuating ∇P′ parts (〈φ〉 is the space average of φ over the
whole domain); β is a constant source term containing the spatially averaged weight of
the mixture and the driving pressure gradient so that β =∇〈P〉 − 〈ρ〉g. It corresponds
to an imposed shear stress at the wall. The surface tension is σ , κ =−∇ · nv is the
local curvature and nv is the interface normal defined by ∇χv = −nvδi, where δi is
the Dirac impulse at the interface i.

Following the proposal of Tryggvason et al. (2003), a front-tracking method is used
to solve this set of equations in the whole computational domain, including both the
gas and liquid phases. The interface is followed by connected marker points (see
figure 2). The Lagrangian markers are advected by the velocity field interpolated from
the Eulerian grid. In order to preserve the mesh quality and to limit the need for
a smoothing algorithm, only the normal component of the velocity field is used in
the marker transport. After transport, the front is used to update the phase indicator
function, the density and the viscosity at each Eulerian grid point. The Navier–Stokes
equations are then solved by a projection method (Puckett et al. 1997) using fourth-
order central differentiation for evaluation of the convective and diffusive terms on a
fixed, staggered Cartesian grid. Fractional time stepping leads to a third-order Runge–
Kutta scheme (Williamson 1980). In the two-step prediction–correction algorithm, a
surface tension source is added to the main flow source term and to the evaluation of
the convection and diffusion operators in order to obtain the predicted velocity (see
Mathieu (2003) for further information). Then, an elliptic pressure equation is solved
by an algebraic multigrid method to impose a divergence-free velocity field. TrioCFD
has already been used for two-phase (Toutant et al. 2008, 2009a,b; Toutant, Mathieu
& Lebaigue 2012; Bois, Fauchet & Toutant 2016; Bois 2017; Bois et al. 2017) and
single-phase (Chandesris & Jamet 2006; Dupuy, Toutant & Bataille 2018) flow studies.

The flow is governed by dimensionless numbers (see table 1) such as the
Eötvös number Eo = ρlgd2

b/σ and the parietal Reynolds number Reτ = huτ/νl. Five
cases are studied; Sb and Ss refer to spherical cases with big and small bubbles
respectively; D denotes the deformable case and B corresponds to the bidisperse case.
Finally, SP is the single-phase case. The Eötvös number takes different values in
the simulations with quasi-spherical bubbles (Eo = 0.45 for case Sb, Eo = 1.36 for
case Ss) or with strongly deformable bubbles (case D, Eo= 4.5). The bidisperse case
(case B) combines bubbles from cases D and Ss. Cases D and Sb are identical to
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g

x

z y

FIGURE 2. Illustration of part of the computational domain with Eulerian and Lagrangian
meshes for case B.

those of Lu & Tryggvason (2008) in order to perform the following code verification.
Cases Ss and B have been especially designed to study separately SPT and BIF.
Continuity of the viscosity at the interface and incompressibility of the flow allow
us to neglect the transposed velocity gradient in the viscous operator. The density
ratio of 10 with a dynamic viscosity ratio of 1 is in agreement with a kinematic
viscosity ratio of 1/10 between liquid and gas, as encountered in air/water flows. The
viscosity ratio is taken as unity for convenience. The low void fraction of 3 % for
monodisperse cases (6 % for case B) justifies us not considering bubble coalescence
and the Eötvös numbers have been chosen such that break-up is not encountered (Lu
& Tryggvason 2008).

2.2. Validation
The validation is carried out by comparing statistical profiles from the DNS to
single-phase (Vreman & Kuerten 2014) and two-phase (Lu & Tryggvason 2008)
flow references in the literature. In order to study statistical profiles, the ensemble
averaging is defined as a temporal averaging, particularized to a space and time
average by application of the ergodicity hypothesis to the periodic directions of the
flow:

φ(y)=
1

1taveLxLz

∫ t+1tave/2

t−1tave/2

∫ Lx

0

∫ Lz

0
φ(x, y, z, τ ) dx dz dτ , (2.3)

where Lx and Lz are respectively the length and depth of the channel and 1tave

is the time interval of the average expressed in time units t.u. = h/〈u〉. For a
single-phase case at Reτ = 180, the results of TrioCFD are very close to those
of Vreman & Kuerten (2014). Reynolds stress tensor components are presented to
illustrate this validation in figure 3. For two-phase validation, the void fraction and
the Reynolds stress tensor components are compared with the reference from Lu &
Tryggvason (2008) in figure 4. The results are in good agreement and the differences
can probably be explained mainly by the time interval used for averages. Lu &
Tryggvason (2008) have averaged over a time interval of 1tave = 150 t.u. for the
spherical case and 1tave = 120 t.u. for the deformable one. The results presented
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FIGURE 3. (Colour online) Single-phase validation: comparison between TrioCFD results
and the Vreman database (Vreman & Kuerten 2014) for single-phase channel flow at
Reτ = 180.

here have been averaged over a time interval of 140 t.u. for the spherical case and
300 t.u. for the deformable case. Indeed, our statistics are sufficiently converged to
present higher-order statistics such as those of the transport equation of the Reynolds
stress tensor (see § 5). However, this explanation does not clarify the presence of
the second peak in figure 4(c). As in Lu & Tryggvason (2008), in the deformable
case, some break-up has been artificially removed. In the averaging time interval,
only one break-up occurs for the deformable case and none for the spherical cases.
The bidisperse case does not exhibit any break-up because of the slight decrease in
turbulence. Thus, it can be concluded that the small amount of break-up does not
disturb the statistics.

Initially, the mesh resolution has been chosen in order to be compatible with the
assessment of the Kolmogorov length scale. For the SPT, the y+ criterion is used.
For the BIF, an assessment of the Kolmogorov length scale is given by Risso (2018):
η= (ν3/ε)1/4 where ε is approximated by the work of buoyancy forces estimated
by ε = αvg〈ur〉. Considering the relative homogeneity of bubble repartition in the
domain, a uniform mesh is preferred (figure 2). Confidence in this resolution has
also been strengthened by additional mesh convergence study on an isolated bubble
in a periodic box of 20db × 5db × 5db. Because the wake undergoes transition to
turbulence, the resolution of the domain has to increase with the bubble Reynolds
number (Reb = db〈ur〉/νl where 〈ur〉 is the relative velocity between bubbles and
liquid). Cases in table 1 correspond to low gravity conditions so that the bubble
Reynolds number is approximately 140 for cases D and B, and even smaller for case
Ss. The mesh convergence study has been performed comparing DNS of isolated
bubbles with the experimental results obtained by Bertakis et al. (2010) at different
bubble Reynolds numbers. The results are presented in table 2. A strong convergence
criterion based on the accurate prediction of the terminal velocity is chosen. Indeed,
the terminal velocity is more difficult to capture than the Reynolds stresses or other
second-order quantities. Table 2 shows that for bubble Reynolds numbers from 20
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FIGURE 4. (Colour online) Two-phase validation: comparison of standard quantities versus
wall-normal coordinate between TrioCFD and the reference results of Lu & Tryggvason
(2008) as well as the results from our calculations (SP, Ss, Sb, D and B) at Reτ = 127:
(a) void fraction; (b) u′u′/u2

τ ; (c) v′v′/u2
τ ; (d) −u′v′/u2

τ .

to 128, an error including numerical convergence and experimental uncertainty below
10 % is reached for a resolution of 25 cells per diameter and it weakly depends on
further mesh refinement. Further refinement is not necessary because DNS values
converge towards slightly different values than experiments (∞ is the exponential
extrapolation as proposed by Richardson (1911) for an infinitely refined mesh). It
may be due to containment effects in our calculations or to interface contamination
by surfactant in the experiment (Alves, Orvalho & Vasconcelos 2005). Finally, the
criterion of 25 cells per diameter has been used for the DNS of table 1 (28.8
cells/diameter for cases Sb and D; 31.7 cells/diameter for cases Ss and B). This
mesh convergence study is performed for Reb < 130. It gives confidence in the
following results concerning cases Ss, D and B which are included in this range
of bubble Reynolds numbers. The mesh convergence study is not extended further
to case Sb (Reb = 263) because this case is used solely as a validation tool for the
benchmark with Lu & Tryggvason (2008).
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Reb Cells/diameter ur DNS ur EXP Error versus Error versus
(mm s−1) (mm s−1) EXP (%) ∞ (%)

20 6.4 23.4 27.6 15.2 11.0
— 12.8 25.2 — 8.6 4.2
— 25.6 25.9 — 6.1 1.5
— ∞ 26.3 — 4.7 0

47 6.4 38.4 44 12.7 7.0
— 12.8 40.4 — 8.2 2.2
— 25.6 41.1 — 6.5 0.5
— ∞ 41.3 — 6.1 0

81 6.4 49.1 57 13.9 6.3
— 12.8 51.5 — 9.6 1.7
— 25.6 52.2 — 8.4 0.4
— ∞ 52.4 — 8.0 0

128 6.4 55.9 60 6.8 2.4
— 12.8 57.1 — 4.8 0.3
— 25.6 57.2 — 4.8 0.2
— ∞ 57.3 — 4.5 0

TABLE 2. Mesh convergence tests on isolated bubble for Reb from 20 to 128 compared to
experimental data of Bertakis et al. (2010); ∞ is the exponential extrapolation as proposed
by Richardson (1911) for an infinitely refined mesh.

2.3. General remarks
Figure 5 shows the instantaneous fields for cases B, D, Ss and SP. Turbulent streaks
and wakes are materialized by values near zero of the λ2 criterion (Jeong & Hussain
1995). These results are in accordance with those of Lu & Tryggvason (2008) and
explain the differences in bulk Reynolds number between cases (see table 1). The
strongest effect of an increasing Eötvös number is the reversal of the lift force starting
from a critical value Eoc(Reτ = 127) ≈ 2.5 (Tryggvason et al. 2013). The two cases
Eo = 0.45 and Eo = 1.36 do not present significant differences, because they are
both below Eoc. For bubbly flows, the preservation of a parietal Reynolds number
Reτ = huτ/νl corresponds to very different channel Reynolds numbers Rec =Dh〈u〉/νl
depending on the bubble distribution (see table 1). For case D, the channel Reynolds
number Rec ≈ 7200 is rather close to the reference single-phase flow (at Rec ≈ 7700)
whereas it is strongly reduced to Rec ≈ 3000 for case Ss. In the case of bigger
spherical bubbles (case Sb), it has an intermediate value of Rec ≈ 4000. Lastly, the
bidisperse case (B) is strongly influenced by the smallest bubbles at the wall, but
a small increase in flow rate is created by the large bubbles in the core region of
the flow hence leading to a slightly higher value than case Ss, Rec ≈ 3200 (averaged
liquid velocity profiles are also shown in figure 12b). From figure 5, the length of the
domain is satisfactory with respect to the size of turbulent structures. Indeed, bubble
disturbance usually tends to a decrease of the length of the turbulent structures, so that
a two-phase periodic channel can be slightly shorter than the single-phase equivalent.
This is indeed the case for simulations B and Ss. However, for a typical core-peaking
flow (case D), the boundary layer is free of bubbles; turbulent structures are not
disturbed by bubbles and the channel length is comparable to the largest turbulent
structure developing. Lu & Tryggvason (2008) show from (2.2) that the shear stresses
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D SP
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FIGURE 5. (Colour online) Instantaneous illustrations of the flows. Interfaces are coloured
to indicate the local curvature and the blue scale represents isovalues of the λ2 criterion
(Jeong & Hussain 1995).

are balanced in a statistical steady state by the local-to-average difference in mixture
weight and the mean pressure gradient β:

d(τµ + τturb)

dy
− β − (ρ(y)− 〈ρ〉)g= 0, (2.4)

where τµ = µl∂u/∂y and τturb = −ρu′v′. For case Ss, the bubble distribution is in
agreement with the hydrostatic model proposed in Lu, Biswas & Tryggvason (2006)
(not shown here); the shear-induced lift force creates bubble clustering at the wall
by a kind of Magnus effect until the average weight of the mixture in the core
flow compensates for the pressure gradient. Then, the bubble distribution reaches
hydrostatic equilibrium. When the averaged mixture weight compensates for the
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pressure gradient (as in cases Ss and Sb), Lu & Tryggvason (2008) as well as Dabiri
& Bhuvankar (2016) observed an overall reduction in turbulent structures because of
the shear-stress balance in a statistical steady state (dτturb/dy ≈ 0). In that case, all
the flow complexity is restricted to the thin layer between the wall and the bubbles
where dissipation is the greatest. The proximity between wall and bubbles combined
with the relative velocity caused by buoyancy create strong local shear at the wall
easily satisfying the criterion Reτ = 127, thus explaining the equilibrium between
mixture weight and pressure gradient in the bulk.

The core-peaked profile of the void fraction for case D in figure 4(a) shows the
reversal of the lift force caused by bubble deformability. Ervin & Tryggvason (1997)
explain this phenomenon by a reversal of the total vorticity inside the bubble caused
by the flattened shapes of deformable bubbles. Thus, the mean void fraction reveals a
typical core-peaking distribution. In order to reach Reτ = 127, the turbulent boundary
layer then freely develops in the absence of bubbles (figure 5 shows that the classical
streaks of the wall-induced turbulence in case D are similar to the streaks of case SP).

3. Surface tension effect
This section presents an analysis of two complementary formulations of the

momentum balance in two-phase flows. With the first, which employs a one-fluid
averaged momentum equation, study of the surface tension source term is possible
because it appears directly in the equations (§ 3.1). The second formulation, which
employs two-fluid averaged momentum equations, links the interfacial forces to the
surface tension source term (§ 3.2).

3.1. One-fluid averaged momentum equation
Integrating the averaged equation (2.2) at statistical equilibrium gives the averaged
stress equation:

0 = −
∫ y

0
∇P′ dy︸ ︷︷ ︸

DP

+

∫ y

0
[(ρ − 〈ρ〉)g− βex] dy︸ ︷︷ ︸

S

+

∫ y

0
∇ · τ dy︸ ︷︷ ︸

Dτ

−

∫ y

0
∇ · (ρu′ ⊗ u′) dy︸ ︷︷ ︸

DRij

+

∫ y

0
σκnvδi dy︸ ︷︷ ︸

Mσ

. (3.1)

Each term of (3.1) is plotted in figure 6 for the four comparable cases (namely SP,
Ss, D and B). In the interest of readability, the results are presented as stresses instead
of forces since they allow ranking of the different terms. Obviously, for single-phase
flow (SP), the term Mσ and the first term of S are removed from (3.1) and one-fluid
variables become classical variables. Figure 6(a) confirms the observations in § 2.3 that
the typical impact of bubble wall clustering in the case Ss is a balance between the
averaged weight of the mixture and the pressure gradient source term in the bulk of
the channel (S≈ cte for y/h> 0.2); thus, this flow is almost laminar (DRij≈ 0). Case
B presents a similar behaviour with a slight increase of turbulence in the bulk due
to the presence of deformable bubbles. In contrast, the turbulent term DRij is bigger
for case D, slightly above the SP value, due to the core-peaking process described
in § 2.3 which does not disturb the turbulent boundary layer development and adds
additional fluctuations due to the presence of bubbles in the bulk.
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FIGURE 6. (Colour online) Contributions to the one-fluid equation (3.1) versus the wall-
normal coordinate: (a) streamwise momentum budget; (b) wall-normal momentum budget
for cases D and SP; (c) wall-normal momentum budget for cases Ss and B. The first parts
of the legends identify the terms of the momentum equation by a colour and/or a line style
(dashed or solid line). The second part (in black) identifies the case by a specific marker
(only the case SP is plotted without marker).

3.1.1. Surface tension and wall repulsion
At the wall, the interpretation of the forces changes. For instance, in figure 4(a),

the void-fraction peak at y/h ≈ 0.15 for case Sb can easily be interpreted as the
expression of a repulsive force from the wall (see, e.g. Antal, Lahey & Flaherty
1991). However, this type of interpretation leads to a misunderstanding of the wall
effect. Actually, the position of the void-fraction peak is determined by the finite
size of the bubbles and corresponds here to the location of the centre of gravity of
wall-peaking bubbles. Thus, the apparent repulsive effect is not a hydrodynamic force
but a manifestation of the surface tension force coming from the averaging operator
and the use of a particle approach. In order to quantify the bubble size-induced
repulsive force, Lubchenko et al. (2017) have proposed a new closure that is relevant
to further investigations based on DNS data. This sort of consideration arises for
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FIGURE 7. Wall-normal positions of the 21 large bubbles in case D (a); and in case B
(b); on a time interval of 100 s.

any variable linked to interfacial position. In particular, the surface tension source
term Mσ presents similar features with void fraction profiles in figure 6(c). Further
investigations are required to understand the consequences of this non-Eulerian effect.

3.1.2. Surface tension and dispersion
From the interaction forces point of view, the dispersion of bubbles in the

wall-normal direction is usually assumed to be proportional to the turbulent kinetic
energy (Reeks 1991). This force is called turbulent dispersion (Lopez de Bertodano
1998; Laviéville et al. 2015). Figure 4(c) shows that cases D and B have very
different levels of root-mean-square (r.m.s.) velocity in the wall-normal component,
which is a direct consequence of the lower flow rate for case B. Thus, most models
will predict a large increase in the dispersion phenomenon in case D whereas
figure 4(a) shows that the averaged void fractions are equally spread for both cases
for y/h > db, hence suggesting similar levels of dispersion. Additionally, figure 7
shows the individual wall-normal positions of large bubbles over time in cases D and
B. The bubbles present very similar oscillations of the trajectory in both cases with
similar frequencies and magnitudes. Considering the wide difference of surrounding
turbulence from the liquid phase between cases B and D, this oscillating trajectory
can be associated with an inherent feature of the collective swarm of bubbles. Here,
the oscillating trajectory of bubbles makes clear the presence of bubble interactions.
For instance, a bubble located in the wake of another bubble is subjected to the
local shear induced by the wake. The reaction of the bubble then depends on its
deformation. For Eo < Eoc, the bubble is expelled from the wake and Ervin &
Tryggvason (1997) have shown that a horizontal alignment of bubbles is expected in
this case. For the present case where Eo> Eoc, the bubbles preferentially stay in the
wake and a verticalalignment is expected for a pair of bubbles in quiescent liquid.
However, neither of the two configurations is observed here. Consequently, a more
complicated interaction of the collective swarm leads to the dispersion of bubbles.
Hence, it is necessary to analyse thoroughly the momentum equation in order to
understand the interfacial forces responsible for dispersion.
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In the streamwise direction, the momentum budget for deformable bubbles in
figure 6(a) shows similar trends to those seen in single-phase channel flow where the
pressure gradient source term is compensated by only viscous and turbulent shear. In
the two-phase case, the modified source term (S) is also compensated for by these
two contributions. In the axial direction, the surface tension term is negligible but
the transverse component (figure 6b) brings other observations. Even if the surface
tension energy is a particle-size effect, the averaged surface tension source term in
the wall-normal direction is directly correlated with the averaged void fraction

Mσ · ey =

∫ y

0
σκnvδi · ey =−

∫ y

0
σκ∂yχv = σκ i

[αv(y)− αv(0)︸ ︷︷ ︸
=0

] +Cn
κ,

≈ σκ iαv(y), (3.2)

where φ
i
= φδi/δi is the interfacial average; Cn

κ is the cross-correlation term between
the curvature and the normal to the interface. At first order, Cn

κ can be neglected
because Mσ · ey is proportional to αv (see the shapes of the void-fraction profile of
case D in figure 4a and of Mσ in figure 6b). Even though the mean contribution of the
surface tension source term on a bubble is zero, equation (3.2) shows that the surface
tension source term of a swarm is not cancelled at the bubble scale and becomes
significant in the wall-normal component of the momentum budget. Consequently, the
question arises about the impact of the surface tension term (figure 6b) on bubble
migration. Indeed, in the wall-normal component, the momentum equation is related to
the migration phenomenon. The statistical equilibrium of the wall-normal component
is a balance between surface tension, pressure and turbulence. For the single-phase
case, turbulence DRij and pressure DP are opposed in figure 6(b), but the surface
tension source term Mσ adds an imbalance for two-phase flow. For less turbulent cases
Ss and B (figure 6c), the pressure term DP balances the surface tension Mσ close to
the wall, thus reflecting a strong increase of the pressure in the vapour phase related
to the local Laplace law at the interfaces. For case D and in the bulk for case B,
the balance deviates from the case SP to compensate for the surface tension term.
Our results indicate that surface tension should be taken into account. This analysis
is consistent with discussions on other mechanisms that may be implicated in the
dispersion process.

3.2. Two-fluid averaged momentum equation
Multiplying the Navier–Stokes equation in phase k∈ [l, v] by the indicator function χk

and averaging leads, at statistical equilibrium, to the integrated version of the phase
momentum balance:

−

∫ y

0
P′i∇χk − τi · ∇χk dy︸ ︷︷ ︸

Mk

= −

∫ y

0
∇(αkP′k

k
) dy︸ ︷︷ ︸

DPk

+

∫ y

0
[αk(ρk − 〈ρ〉)g− αkβez] dy︸ ︷︷ ︸

Sk

+

∫ y

0
∇ · αkτk

k dy︸ ︷︷ ︸
Dτk

−

∫ y

0
∇ · (αkρku′k ⊗ u′k

k
) dy︸ ︷︷ ︸

DRk
ij

, (3.3)

Ml +Mv =Mσ . (3.4)
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FIGURE 8. (Colour online) Streamwise components of the two-fluid interfacial terms
in (3.4) versus the wall-normal coordinate. The first three items of the legend identify
the interfacial term by a colour and/or a line style (dashed or solid line). The second part
(in black) identifies the case by a specific marker.

In this equation, φk
k

is the phase average defined as φk
k
= χkφk/χk. This formulation

reveals the term Mk corresponding to the averaged force exerted by the interface
on phase k. This formulation is linked to the one-fluid formulation by the jump
conditions at the interfaces, at the origin of the relation Ml + Mv = Mσ ; Mk is
classically modelled by the sum of different forces such as drag, lift and turbulent
dispersion forces. From DNS, it is calculated as the residue of the right-hand side of
(3.3), because its direct evaluation would rely on locally discontinuous fields evaluated
at the interface and this would lead to significant interpolation errors.

Figures 8 and 9 show the results obtained for interfacial forces in the axial and
wall-normal directions. The consistency of our results is verified because Mv + Ml

fits with the surface tension source term Mσ according to (3.4). In the streamwise
direction, interfacial forces are compensated for by buoyancy. The one-fluid surface
tension source term Mσ is negligible compared with Mk (the drag force) in figure 8.
Thus, the surface tension contribution does not play a significant role in the prediction
of the terminal bubble velocity in the x direction and the action/reaction principle is
applicable (Ml =−Mv).

In the wall-normal direction, interfacial forces are responsible for bubble migration.
Figures 9(a) and 9(b) show these forces for cases D, Ss and B. Both Ml and Mv have
positive values for case D, Ss and B. This is allowed by the role of surface tension
energy. However, giving a physical interpretation for the impact of surface tension on
bubble migration is difficult; its importance in the momentum budget in the direction
of migration is clearly demonstrated and should exhort the research in this direction.
Further complementary studies are necessary. They should involve the analysis of local
instantaneous fields around the bubbles.
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FIGURE 9. Wall-normal components of the two-fluid interfacial terms in (3.4) versus the
wall-normal coordinate: (a) case D; (b) cases Ss and B. The first parts of the legends
identify the interfacial term by a colour and/or a line style (dashed or solid line). The
second part (in black) identifies the case by a specific marker.

4. Analysis of SPT and BIF
As already mentioned in the introduction, the total fluctuations of the flow are

comprised of SPT and BIF (1.1), but to the best of our knowledge, there is no
methodology that allows us to identify properly SPT and BIF. In this section, a
procedure to achieve this distinction is proposed; then, we begin to analyse the
interaction between SPT and BIF from the comparison of the different Reynolds
stress profiles. Further understanding of the mechanisms involved are presented with
the analysis of the Reynolds stress equation in § 5. The methodology used for case
comparisons is presented first and then applied to the Reynolds stresses. Further
discussions are added at the end of this section. The same methodology is also
applied in § 5 to the Reynolds stress transport equation. Based on the classical
decomposition of the Reynolds stresses into SPT and BIF, we introduce the following
notations for the total Reynolds stress tensor in cases B, Ss and D:

Rij,B = RSPT
ij,B + RBIF

ij,B + Rbif
ij,B, (4.1)

Rij,Ss = RSPT
ij,Ss + Rbif

ij,Ss, (4.2)

Rij,D = RSPT
ij,D + RBIF

ij,D, (4.3)

where the subscripts refer to the case considered. The exponent bif denotes the impact
of small bubbles whereas BIF refers to big bubble contributions hence the bidisperse
case B has one contribution of bubble-induced fluctuations for each population of
bubbles (bif+BIF).

4.1. Methodology to identify SPT and BIF
From cases B, Ss, D and SP, the study of interactions between SPT and BIF is
allowed. A three step analysis pictured in figure 10 is proposed in order to quantify
the impact of the deformable bubbles on the SPT. The methodology is the following:
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FIGURE 10. (Colour online) Sketch of the methodology for the study of interaction
between SPT and BIF from cases B, Ss, D and SP.

(i) Extract from cases Ss and B the BIF induced by deformable bubbles RBIF
ij,B

(figure 10a).
(ii) Justify the assumption of equality between BIF induced by deformable bubbles in

case D (RBIF
ij,D) and in case B (RBIF

ij,B ) (transition between (a) and (b) in figure 10).
(iii) Extract RSPT

ij,D in case D (figure 10b) and compare it to SPT in the reference single-
phase flow (figure 10c).

The results of this approach are presented in figure 13 and discussed in § 4.2.

(i) Extract from cases Ss and B the BIF induced by deformable bubbles RBIF
ij,B :

BIF increases with bubble spreading and with increasing relative velocity.
Figures 4(b), 4(c) and 4(d) show that case Ss is less turbulent than case Sb
and strongly less turbulent than case SP. The decrease of the Reynolds stresses
in comparison with the case SP is in agreement with the flow-rate reduction.
Thus, it cannot be interpreted as a turbulence reduction phenomenon, because
the cases have very different flow rates. Concerning the difference between Ss
and Sb, an increased amount of wall surface is lined with bubbles in case Ss,
so the transmission of turbulence between the wall and the bulk is even more
complicated than for case Sb. Eventually, case Ss is almost laminar in the centre
of the channel (see § 3.1), and thus case B is almost purely BIF; indeed, the
bulk is then a kind of bubble swarm without any impact of the wall, because
spherical bubbles act as a shield (RSPT

ij,Ss ≈ 0). Then, case B allows the study of
BIF in the core region without the influence of SPT, which is suppressed by
the layer of small bubbles at the wall. Figure 4(a) shows that the migrations
of spherical and deformable bubbles are rather independent (αD + αSs ≈ αB)
justifying the separation of their independent contribution to the BIF in (4.1).
Thus, spherical bubbles move toward the wall and case B (bidisperse) is similar
to case Ss (small spherical bubbles) with deformable bubbles added to the
bulk. This interpretation is reinforced by figure 12(b) where the liquid velocity
profiles close to the wall (y/h < 0.3) of cases B and Ss are almost identical.
For y/h > 0.3, a slight increase of the liquid velocity (compared to case Ss) is
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FIGURE 11. (Colour online) Probability density function of the axial velocity obtained for
cases B, D and SP in the centre of the channel (0.9< y/h< 1.1). (b) Instantaneous axial
velocity field of case B.

observed due to the presence of the deformable bubbles in case B. This increase
is small because of the low gravity conditions (ur < ul

l) combined with moderate
void fraction. In such configurations, the mean liquid velocity is not sensitive
to the evolution of the relative velocity or of the void fraction. Other cases (Ss,
Sb and B) show rather similar and flat profiles in the centre of the channel. A
sharp increase in the relative velocity of case Sb is observed in figure 12(a) at
y/h = 0.3 (corresponding to the diameter of the bigger bubbles). It is due to
the sudden transition between the large majority of bubbles sliding against the
wall and the few others which rise faster, further away from the wall (the same
non-Eulerian effect is seen for instance in figure 15). Formally, we can identify:

RSPT
ij,Ss = RSPT

ij,B , (4.4)

Rbif
ij,Ss = Rbif

ij,B. (4.5)

Bringing together (4.1), (4.2), (4.4) and (4.5), the fluctuations induced by
deformable bubbles in case B are:

RBIF
ij,B = Rij,B − Rij,Ss. (4.6)

This equation is illustrated by figure 10(a) where RBIF
ij,B is shown by the purple

area.
(ii) Justify the assumption of equality between BIF induced by deformable bubbles

in case D (RBIF
ij,D) and in case B (RBIF

ij,B ): in order to discuss this assumption,
the physical nature of BIF in cases B and D has to be understood. Additional
knowledge is provided by the probability density function (pdf) of the axial
velocity fluctuations plotted in figure 11(a). These pdfs have been calculated on
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cells in the centre of the channel (0.9< y/h< 1.1) for the three cases SP, B and
D at a random time step of the steady state. As expected, the distribution of the
velocity fluctuations in case SP follows a Gaussian distribution. In contrast, pdfs
of cases B and D present an offset towards positive values. This behaviour of the
pdf has been widely studied by Risso (2016) and corresponds to the impact of
WIF due to the liquid dragged in the bubble path. The shape of the pdf in cases
B and D indicates that BIF is almost entirely comprised of WIF. As said in the
introduction, in the present low gravity conditions, the WIF is expected to be the
biggest contribution in BIF Reynolds stresses. This interpretation is confirmed in
figure 11(b) where velocity fluctuations in case B are mostly related to the wake
behind each bubble. Then, the following conclusions can be drawn:

(1) The repartitions of deformable bubbles are similar between cases B and D
(see figure 4a). In case B, small bubbles are mainly located at the wall and
deformable bubbles mainly in the bulk. Then, the probability of interaction
between the two kinds of wakes is low.

(2) For a given Eötvös number, the WIF magnitude is only related to the
bubble Reynolds number and therefore to the relative velocity of bubbles.
Figure 12(a) shows that cases D and B have the same relative velocity in
the bulk of the channel (y/h > 0.5), so that the r.m.s. velocities related to
WIF are expected to be equal in that part of the flow.

(3) The only difference between deformable bubbles in cases B and D is the
surrounding SPT. In case B, as was already stated, the SPT is missing
because of the small bubbles at the wall. At this point, the only convincing
reason for WIF in case D to be different from WIF in case B would be
a modulation of the WIF by the SPT but the hypothesis of a modulation
of the SPT by the bubbles is far more convincing. Indeed, the fact that
cases D and B have exactly the same level of turbulence in the bulk of the
channel could suggest that all the SPT has disappeared for y/h> 0.8. The
SPT would have had an impact on the averaged wake of the bubbles and
on the potential flow around them. Then the physical interpretation of the
turbulence reduction could have come from a reduction of the wake length
due to turbulent structures crossing them or to a stronger exponential decay
of the wake. But such a phenomenon is not observed in our simulations
nor in the literature whereas modulation of SPT by the presence of bubbles
is a known phenomenon (Colin et al. 2012; Alméras et al. 2017). In
figure 11(a), the right tails of the pdfs, linked to the decrease of the wakes,
almost perfectly overlap between cases B and D. This suggests that the
exponential decay of the wake is not impacted by the surrounding SPT and
is then very similar in both cases, hence leading to the same amount of
WIF in both cases.

Based on these statements, there is no reason for WIF in case D to be different
from WIF in case B. Thus, with the (4.6), one gets an estimate for the BIF
generated by deformable bubbles in cases D and B:

RBIF
ij,D = RBIF

ij,B = Rij,B − Rij,Ss. (4.7)

(iii) Extract the SPT in the presence of deformable bubbles in case D and compare
it to SPT without bubbles (case SP): the SPT Reynolds stresses of case D
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FIGURE 12. (a) Relative and (b) liquid velocity versus wall-normal coordinate.

are estimated by removing the BIF contribution given by (4.7) from the total
Reynolds stresses:

RSPT
ij,D = Rij,D − RBIF

ij,D,

= Rij,D − (Rij,B − Rij,Ss). (4.8)

This equation is illustrated in figure 10(c). RSPT
ij,D is shown by the red area. Then,

the comparison between RSPT
ij,D and the SPT from case SP gives a quantitative

assessment of the interaction between SPT and BIF (i.e. the turbulence
modulation due to the presence of bubbles).

As previously mentioned in the introduction, the interaction between SPT and BIF
is classically neglected (Lance & Bataille 1991) even if several phenomena, such
as the turbulence reduction, are in contradiction with this hypothesis. In the case of
turbulence increase, to the best of our knowledge, no methodology before this one
has been proposed to assess the impact of a possible interaction. If SPT and BIF do
not have interactions, finding RSPT

ij,D equal to the total Reynolds stresses of case SP is
expected.

4.2. Discussion
Figures 13(a)–13(c) present the comparison between (4.8) and case SP. For the
streamwise component in figure 13(a), it is shown that close to the wall, the
shear-induced turbulence is freely developed and the two curves are rather similar.
However, a slight decrease of the Reynolds stresses is noticeable at the peak. For the
wall-normal component in figure 13(b), the opposite effect is visible. Close to the
wall, the Reynolds stresses are increased by the presence of bubbles and the same
trend is shown for the cross-correlation u′v′ in figure 13(c) and for the spanwise
component w′w′ (not shown here). This effect comes from the enhancement of the
redistribution process which helps SPT to become more isotropic under the influence
of bubbles, taking energy from the streamwise direction and giving it to transverse
components. This effect has already been observed by Lance, Marie & Bataille
(1991). They show that bubbles reinforce the tendency towards SPT isotropy because
the liquid eddies are stretched by the bubbles.
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FIGURE 13. SPT Reynolds stresses versus wall-normal coordinate (a) u′u′/u2
τ ; (b) v′v′/u2

τ ;
(c) u′v′/u2

τ . D−B+Ss denotes the reconstructed SPT Reynolds stresses for case D.

For the streamwise component in figure 13(a), moving from the wall to the bulk
of the channel, a reduction of the Reynolds stresses from 10 % to total destruction is
observed. Indeed, case SP reaches a finite value at the centre of the channel whereas
the SPT in the presence of bubbles reaches zero for case D–B–Ss. A relatively similar
process happens in figure 13(b) where the reduction of the wall-normal component
of SPT in the bulk is clearly apparent for v′v′ (the same trend is observed for
w′w′). This strong reduction of the Reynolds stresses in the bulk can be interpreted
as a modulation of the diffusion process by bubbles acting as a shield. However,
this hypothesis requires a deeper analysis of turbulent statistics (see § 5) in order
to adjudicate on the modulation of SPT. On the other hand, the cross-correlation
shown in figure 13(c) behaves differently from diagonal components with almost
identical profiles for y/h> 0.4 indicating that the cross-correlation is not affected by
the presence of bubbles.

5. Analysis and modelling of the Reynolds stress transport equation
In § 4, we saw that our cases are especially suitable to study BIF and SPT. After the

forces, turbulence is the second model required to accurately predict momentum and
velocities in two-phase flows. Turbulence predictions are highly empirical because of
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the lack of knowledge about BIF. Many authors use single-phase modelling extended
to two-phase flows by the addition of a specific source term for turbulent kinetic
energy and/or dissipation, suggesting that BIF and SPT are statistically independent
and that WIF and WIT have features similar to SPT itself (Hosokawa & Tomiyama
2013; Colombo & Fairweather 2015; Vaidheeswaran & Hibiki 2017). Besides, there
is no consensus about the modelling of these additional terms. As more applications
have appeared, a greater variety of models has emerged (see table 5 in the review
by Vaidheeswaran & Hibiki (2017)). Thanks to bubble swarm studies (Riboux &
Legendre 2013; Amoura et al. 2017; Risso 2018), the features of BIF are better
understood so that one of the most important questions remaining is the interaction
between BIF and SPT. In this section, in addition to the observations made in § 4, the
impact of SPT on BIF is investigated. Moreover, in agreement with the demonstration
of § 4, BIF in our cases is exclusively comprised of WIF. Several features of WIF
are then studied for the purpose of turbulence modelling.

5.1. Transport equation for the Reynolds stress tensor
5.1.1. Physical meaning of the equations

One important characteristic of BIF is the strong anisotropy of the phenomenon.
Then, the study of the transport equation for the Reynolds stress tensor is essential
and standard k–ε models, linear eddy viscosity or Boussinesq approximations are not
enough to model two-phase flows. At statistical equilibrium, this transport equation is
(Morel 2015):

αlRl,ib
∂ul,j

l

∂xb
+ αlRl,jb

∂ul,i
l

∂xb︸ ︷︷ ︸
−Pij

= αl
P′l
ρl

(
∂u′l,i
∂xj
+
∂u′l,j
∂xi

)l

︸ ︷︷ ︸
φij

−2αl
µl

ρl

∂u′l,i
∂xb

∂u′l,j
∂xb

l

︸ ︷︷ ︸
εij

−
∂

∂xb
(αlu′l,iu

′

l,ju
′

l,b
l
− νl

∂αlRl,ij

∂xb
+
αl

ρl
(P′lu

′

l,i
l
δbj + P′lu

′

l,b
l
δib))︸ ︷︷ ︸

Dij

−
1
ρl
(P′lu

′

l,jni + P′lu
′

l,inj)δil + νl

[
∂

∂xb
(u′l,iu

′

l,jnbδil)+
∂u′l,iu

′

l,j

∂xb
nbδi

l]
︸ ︷︷ ︸

Πij

. (5.1)

Previously, Ilic (2006) and Santarelli et al. (2016) have conducted studies for the
kinetic energy transport equation. On the basis of their works, the present study is,
to the best of our knowledge, the first attempt to leverage DNS data of two-phase
flow in order to access the transport equation of the full Reynolds stresses. The
production term P ij corresponds to an energy transfer between the mean kinetic
energy and the turbulent kinetic energy. In the context of single-phase channel flows,
it is the energy injected at large scales owing to local shear. In two-phase flows, it
is expected to exhibit a behaviour similar to that of single-phase flows even if the
presence of bubbles can lead to a stronger shear due to the flattening effect (see Colin
et al. 2012). Dij is a conservative operator known to diffuse the energy in the flow.
Classically, it is split into turbulent, pressure and molecular diffusions. The impact of
bubbles on these terms is still unknown by the community. The redistribution term
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φij corresponds to a turbulent energy transfer which redistributes energy between
the components through fluctuations in pressure. Lance et al. (1991) show that the
redistribution is impacted by the bubbles which reinforce the tendency towards SPT
isotropy by stretching the liquid eddies. The dissipation εij corresponds to an energy
transfer from turbulent kinetic energy to internal energy. This mechanism is also
affected by the presence of bubbles, because of the wake structure. Indeed, close
to the interface, dissipation strongly increases. Lastly, the interfacial production Πij

(which does not exist in single-phase flow) corresponds to an energy transfer between
the liquid turbulent kinetic energy and interfacial energy. Classically, it is interpreted
as the energy injected at the bubble scale due to the work of the drag force (see
Morel 2015). It is responsible for the strong anisotropy of two-phase flow turbulence.
All these physical mechanisms require a detailed analysis. The aim of this section is
to show the complexity of BIF and its interaction with the classical SPT. Except for
Πij, all the terms of (5.1) are directly measured numerically. As already argued for the
interfacial forces, the interfacial production Πij is also linked to interfacial quantities
so that its direct evaluation would lead to significant numerical errors. Instead, Πij is
evaluated as the residue of (5.1). Validation of the numerical evaluation of the other
terms is achieved by computing the residual of (5.1) on the reference single-phase
flow simulation. The numerical residue is below 2 % of the maximal production.

5.1.2. Analysis of the total Reynolds stress transport equation
The terms of (5.1) are shown in figure 14 for cases D and SP and in figure 15 for

cases B and Ss. First of all, the zero residue of case SP validates the implementation
of statistical measurement. The comparison of cases D and SP in figure 14(a) for the
streamwise component shows remarkably well two different areas in the flow. Close
to the wall, production P ij, dissipation εij and diffusion Dij (but not redistribution φij)
are rather similar between the two cases so that physical mechanisms are essentially
similar to SPT. On the contrary, in the bulk of the channel, single-phase operators
tend to zero while interfacial production increases to reach a plateau. At y/h= 1, the
interfacial production is balanced solely by dissipation and redistribution. On the other
components of the Reynolds stress tensor, differences are more pronounced. Even
close to the wall, terms in case D are larger than for SP. Indeed, a larger amount of
turbulent fluctuation is redistributed from component (x, x) to other components (as
shown by the negative value of φij in figure 14(a) and its positive value in figure 14b
or 14d). Even though the magnitude of φij or εij is different between SP and D in
figures 14(b)–14(d), tendencies across the channel are similar.

For cases B and Ss, only the axial component has been plotted in figures 15(a)
and 15(b) because the other components behave similarly. The very strong variations
observed around y/h = 0.165 located at the end of the small bubble layer are due
to the very sharp transition between the two regimes. To the left of this transition,
figures 15(a) and 15(b) are very similar, confirming almost identical flow properties.
For case B whose fluctuations are purely due to BIF, figure 15(a) confirms that the
interfacial production of turbulent kinetic energy and the redistribution process play
important roles in determining the magnitude of Rij whereas the diffusion is negligible.

5.2. Interaction between SPT and BIF
In § 4, an interaction between SPT and BIF has been brought to light. Furthermore, an
innovative methodology has been proposed in § 4.1 for an analysis of this interaction
based on cases Ss (small spherical bubbles), B (bidisperse), D (deformable bubbles)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

om
m

is
sa

ri
at

 à
 l'

én
er

gi
e 

at
om

iq
ue

, o
n 

07
 Ja

n 
20

20
 a

t 0
8:

17
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.100
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


156 A. du Cluzeau, G. Bois and A. Toutant

0
y/h

0.2 0.4 0.6 0.8 1.0 0
y/h

0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6
(x, x) (y, y)

(x, y) (z, z)

0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

1.0
(÷ 10-3)

(÷ 10-3)(a) (b)

(c) (d)

(÷ 10-3)

0.5

0

-0.5

(m
2  s-

3 )
(m

2  s-
3 )

-1.0

6
(÷ 10-4)

2

4

0

-2

-4

-3

-2

-1

0

1

2

3

4

5 0.6

0.4

0.2

-0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Dij ƒij

SP
D

Ôij

Pij

´ij

FIGURE 14. (Colour online) Contributions to the Reynolds stress budget (5.1) for cases D
and SP versus the wall-normal coordinate. The colour identifies the terms of the Reynolds
stress transport equation (see electronic version). Solid line refers to the single-phase case
and markers corresponds to the deformable case.

and SP (single phase). This process allows to compare the case SP with the SPT
part of case D (4.8) and a reduction of the turbulent kinetic energy has been found.
The goal of the section is to use this methodology to understand the governing
mechanisms involved in this reduction through the analysis of the Reynolds stress
transport equation. The decomposition of the Reynolds stresses into SPT and BIF
implies the decomposition of the Reynolds stress transport equation such as, at the
statistical steady state

0= φSPT
ij + ε

SPT
ij + DSPT

ij + PSPT
ij +Π

SPT
ij , (5.2)

0= φBIF
ij + ε

BIF
ij + DBIF

ij + PBIF
ij +Π

BIF
ij , (5.3)

where ψSPT
+ψBIF

=ψ with ψ ∈ [φ, ε,D, P, Π]. The methodology presented in § 4.1
has been formulated for the Reynolds stresses but it is applicable to each term of (5.1).
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FIGURE 15. (Colour online) Averaged terms of (5.1) projected onto the (x, x) component:
(a) case B; (b) case Ss. The colour identifies the terms of the Reynolds stress transport
equation (see electronic version). Empty circles refer to case B whereas small discs
correspond to case Ss.

Thus, the equivalent of (4.7) and (4.8) for ψ ∈ [φ, ε,D, P, Π ] is:

ψBIF
D =ψB −ψSs, (5.4)

ψSPT
D =ψD − (ψB −ψSs). (5.5)

Some of these terms are negligible. For instance, no interfacial production of SPT
Π SPT

ij and no classical production of BIF PBIF
ij are expected. In figure 16, the terms

of (5.2) and (5.3) are plotted and the deviation from zero of PBIF
ij and Π SPT

ij gives
an estimate of the error of this methodology, which appears to be really satisfactory.
In figure 16(a), the comparison between ψSPT

D given by (5.5) and ψSP is shown
in order to understand the impact of bubbles on SPT. Owing to the remarkable
similarity between the production terms (P ij) in this figure, the difference in turbulent
kinetic energy cannot be linked to the flattening effect of the velocity profile due
to bubbles (as identified in some experiments by Colin et al. (2012)) because mean
velocity gradients are essential in the construction of the production term. In addition,
dissipation (εij) is rather similar in both cases hence showing no significant modulation
by the bubbles even though some effect could be expected due to an increased
dissipation in the wakes as in any boundary layer. On the other hand, diffusion
presents substantial differences. Both turbulent (Dij turb) and molecular (Dij mol)
diffusion are stronger in the SP case (pressure diffusion is negligible). This means
that the bubbles act as a screen on turbulence streaks and prevent the diffusion of the
turbulent structures to the bulk of the channel. This interpretation is aligned with the
results presented in § 4 where differences between the two cases have been found to
be smaller close to the wall. Indeed, the turbulence in the wall boundary layer is ruled
by the balance between production and dissipation whereas in the bulk, the diffusion
impact becomes significant. Bubbles also act for an increase of the redistribution
(φij) leading to a more isotropic SPT. This result explains the SPT increase with the
presence of bubbles in the wall region for the wall-normal component in figure 13(b).
As previously mentioned, this effect has already been observed by Lance et al. (1991).
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They show that bubbles reinforce the tendency of SPT towards isotropy because the
liquid eddies are stretched by the bubbles. This physical coherence between several
analyses presented in this paper gives a good confidence in these results. For future
work, based on DNS data and theoretical aspects, diffusion and redistribution models
for single-phase turbulence will be investigated to take into account the presence of
bubbles. For the redistribution, Lance et al. (1991) have already proposed a model
to take into account this effect, but to the best of our knowledge, no study has been
performed on the modulation of the diffusion.

5.3. WIF modelling
The previous section focused on the analysis of the SPT reduction based on
(5.2) and (5.5). This section proposes to study BIF through (5.3) and (5.4). The
interpretation of (5.3) is not straightforward. In the present case, BIF is comprised of
WIF only, which corresponds to non-turbulent fluctuations due to coherent structures
around bubbles. WIF does not present the chaotic features leading to an energy
cascade and thus the interpretation of terms such as dissipation or redistribution
should be undertaken carefully and the understanding of these notions should evolve
in order to break free from the single-phase paradigm. The Reynolds stress transport
equation for case B (figure 15a) shows that WIF proceeds from the balance between
interfacial production, redistribution and dissipation. Even for locations where ∇αv 6=0,
the diffusion does not occur (see figure 16b). This observation is in agreement with
WIF features. Indeed, a wake does not ‘diffuse’ into the flow; it always remains
located behind a bubble because the dissipation acts quickly so that fluctuations do
not have time to diffuse. As long as bubbles are distributed rather homogeneously
(∇αv ≈ 0), the gradient of the mean liquid velocity remains small (∇ul ≈ 0) and the
classical production term is then negligible. Eventually, the transport (5.3) for WIF
reduces to (see figure 16b):

0=ΠWIF
ij + φ

WIF
ij + ε

WIF
ij . (5.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

om
m

is
sa

ri
at

 à
 l'

én
er

gi
e 

at
om

iq
ue

, o
n 

07
 Ja

n 
20

20
 a

t 0
8:

17
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.100
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Analysis of Reynolds stresses in turbulent bubbly flows from DNS 159

The following sections provide some insight into the contributions to this equation and
propose models for them.

5.3.1. Interfacial production
In figures 14(b) and 14(d), negative interfacial production terms are found. This

result is unexpected. Indeed, turbulence modulation usually manifests itself through
dissipation or diffusion terms but a negative interfacial production was not expected.
Moreover, the interfacial production is often related to the work of the drag force
which is zero in the cross-flow directions so that:

Πij =Π11δ1iδ1j. (5.7)

However, one may wonder whether the difference between the direct evaluation of Πij
and this classical assumption comes from the assumption itself or from a numerical
error. Indeed, as mentioned previously, the interfacial production is estimated as
the residue of (5.1) excluding Πij but measurement of the redistribution term leads
to an error which is propagated to the residue. Redistribution is calculated on all
cells weighted by the liquid indicator function. The pressure on interfacial cells
is an average between liquid and vapour pressures weighted by the phase indicator
function. Because of the pressure jump at the interface, the measurement of interfacial
terms involving pressure is biased. Thus, the same error can happen on the pressure
diffusion term, but in the present case, its global contribution is negligible. A specific
procedure could be investigated in future work to prevent numerical errors due to the
estimation of redistribution (see Santarelli et al. 2016). Meanwhile, the separation of
numerical and modelling errors in the estimate of Πij is impossible. As a consequence,
(5.7) will be admitted in the following sections as a modelling hypothesis. Then, it is
necessary to identify the interfacial production Πij and the redistribution φij without
resorting to their definitions. The redistribution will not be estimated directly for the
following results but a theoretical reconstruction will be used. The sum of interfacial
production and redistribution is estimated at the statistical steady state by:

φij +Πij = −P ij − Dij − εij. (5.8)

Then, φkk = 0 (Einstein summation convention) because redistribution does not create
nor destroy energy. Thus we have:

Πkk =−Pkk − Dkk − εkk. (5.9)

Following the idea of (5.7), Π11 can be estimated as Πkk so that:

Πij = (−Pkk − Dkk − εkk)δ1iδ1j. (5.10)

Finally, with (5.8), the redistribution is given by:

φij =−P ij − Dij − εij+(Pkk+Dkk+εkk)δ1iδ1j. (5.11)

Thus, Π and φ are modelled from P, D and ε. The comparison between the direct
evaluation of redistribution and interfacial production to the model proposed in (5.10)
and (5.11) is shown in figure 17 for the three diagonal components of the operators
and for the cross-correlation (12). There is no major differences to notice but this
model is more convenient for the following physical analysis.
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FIGURE 17. (Colour online) Comparison between the direct evaluation of redistribution
and interfacial production to the correction proposed in (5.10) and (5.11) (a) redistribution
(b) interfacial production.

Consensus has been reached in the literature concerning the interfacial production.
It is often taken as the work of the drag force such that:

Πij =
3

4db
αlCD|ur|

2urδ1iδ1j. (5.12)

Based on this idea, several variations exist (Pfleger & Becker 2001; Olmos, Gentric
& Midoux 2003). The drag coefficient CD depends on the flow regime but an exact
expression is given by the balance of drag with the buoyancy force:

CD =
4
3
αvdb(ρv − ρl)g

ρlu2
r

. (5.13)

In figure 18(b), this model is compared to DNS results. It slightly underpredicts the
interfacial production with an error inferior to 10 %. The differences between the work
of the drag force and the DNS interfacial source term is caused by (5.12) which
derives from (5.1) under several hypotheses (see Morel 2015).

5.3.2. Redistribution
WIF is known for being strongly anisotropic because of the averaged contribution of

wakes which occurs principally in the longitudinal direction (Amoura et al. 2017). The
bubble velocity is not purely axial because bubbles are disturbed by transverse forces
so that the instantaneous wakes show a slight inclination with respect to the x axis
(see wakes in figure 11b). However, this inclination is so small that a huge anisotropy
of the flow is expected. The redistribution process is the phenomenon responsible
for the energy repartition between components. Basically, the energy is created by
the interfacial production on the (x, x) component and then a part of this energy is
equally redistributed to other directions (see figures 14b and 14d for instance). This
observation led Hosokawa & Tomiyama (2013) and Colombo & Fairweather (2015)
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FIGURE 18. (Colour online) Assessment of models in the purely WIF case (B–Ss): (a)
redistribution model (5.14), (b) interfacial production model (5.12) where the statistical
quantities αl, αv and ur are computed with case D results.

to propose a modelling of the redistribution such as:

φBIF
ij +Π

BIF
ij =

 1
2 0 0
0 1

4 0
0 0 1

4

Π11. (5.14)

This expression has been proposed for BIF in a general sense. For reasons
developed previously, a generic model cannot exist for both WIF and WIT together.
Based on a purely WIF case, the model is tested in figure 18(a). This figure shows
that the redistribution model is satisfactory even if it slightly underpredicts the
anisotropy of WIF. Actually, this model has been fitted on cases with additional
WIT, expected to be less anisotropic than WIF. This could be part of the reasons for
the slight differences. Eventually, for purely WIF conditions, our DNS suggests the
following model:

φWIF
ij +Π

WIF
ij =

 3
5 0 0
0 1

5 0
0 0 1

5

Π11. (5.15)

For a case entirely comprised of WIF, a larger amount of energy is carried by
the streamwise component (3/5Π11 against 1/2Π11). In the model of Colombo &
Fairweather (2015), the addition of WIT is responsible for a more isotropic repartition
of energy. The variation of the redistribution (matrix (5.15)) in the region where there
is a gradient of void fraction (0.2< y/h< 0.5) suggests an impact of the void-fraction
gradient not included in the model. Nevertheless, the variation of this redistribution
matrix with the void fraction is weak (from 0.5 to 0.6 for a void fraction increasing
from 0 % to 4 %). This observation is in agreement with the literature where the
redistribution matrix is often taken as a constant.
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FIGURE 19. Assessment of dissipation relaxation time model in the purely WIF case
(B–Ss) (5.16).

5.3.3. Dissipation
The most challenging part for the modelling of WIF is the dissipation term. The

most popular method is to define a relaxation time τ :

τ =
Rij

εij
. (5.16)

The ratio Rij/εij is rather independent from the component ij (see figure 19) so that
τ can be regarded as a scalar. Rzehak & Krepper (2013) define the relaxation time
as the lifetime of turbulent structures (see also Wilcox 1993). Thus, in the context
of pure WIF, the relaxation time can be seen as the time needed to cross the wake.
In Rzehak & Krepper (2013), several definitions are proposed based on different
quantities of the flow for BIF in a general sense. They argued that relaxation time
can be linked to averaged quantities of bubbles (τ = db/ur) or to averaged quantities
of the liquid phase (τ = k/ε). Cross-definitions have also been proposed but the
appropriate relaxation time is still an open question. More definitions are found
in Troshko & Hassan (2001) or Pakhomov & Terekhov (2015) for instance. The
profusion of models for the relaxation time comes from the fact that a generic model
cannot exist for both WIF and WIT together. WIF and WIT are subject to two
different relaxation times because of their different natures. Therefore, the model
must be adapted, depending on the ratio between WIF and WIT. However, based on
the definition of ‘time needed to go through the wake’, the relaxation time for a pure
WIF case can be defined as

τ =
Lw

ur
, (5.17)

where ur is the relative velocity of the bubbles and Lw is the length of the wake
taken as a function of the bubble diameter. In figure 19, diagonal components of
the normalized dissipation are plotted and compared to this relaxation time with
different values of the wake length from 2db to 4db. First of all, it confirms that
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the normalization component per component presents rather similar relaxation times
for all the components. No physical explanation could be gathered from our results.
Then, a good agreement is found for Lw = 3 or 4db. In figure 11(b), instantaneous
structures of wakes in case B are shown. The length of 3db is found to be aligned
with the observations. Indeed, in figure 11(b), wakes of large bubbles disappear
(transition between green and blue) after approximately 3db. Nevertheless, the wake
length depends on dimensionless numbers such as the bubble Reynolds number; thus
the present value is illustrative but is not expected to be generic. This length should
also depend on the void fraction. Indeed, Risso & Ellingsen (2002) have shown
that the decrease of a wake is faster for bubbles in a collective swarm than for an
isolated bubble (see also Amoura et al. 2010). It has to be noticed that the present
wake length does not fit with the classical scaling Lw = db/Cd (Risso et al. 2008).
Thus, this wake length estimate is a shortcoming of the present analysis. It should
be alleviated by future work dedicated to the quest for a more generic closure.

5.3.4. Algebraic models for WIF
Bringing together (5.6), (5.12), (5.13), (5.15), (5.16) and (5.17), an algebraic closure

for the WIF Reynolds stresses is found:

RWIF
ij =

 3
5 0 0
0 1

5 0
0 0 1

5

 αlαv
1ρ

ρl
gLw. (5.18)

Another algebraic closure has been proposed by Risso (2016). The reasoning of
Risso (2016) is not based on the budget of turbulent kinetic energy but on the wake
structure and potential flow around the bubbles. Performing the integration of the
velocity field induced by the averaged wake in an infinite domain, he shows that the
corresponding Reynolds stress is:

Rwake
ij = αv

3u2
r Lwe2

16r3
b

1 0 0
0 0 0
0 0 0

 , (5.19)

where e is the semi-width of the wake (e ≈ 0.2 = 1.3rb in our cases). Then, using
the results of Biesheuvel & Wijngaarden (1984), he shows that the Reynolds stress
induced by the potential flow around a spherical bubble is:

Rpotential
ij = αvu2

r

 1
5 0 0
0 3

20 0
0 0 3

20

 . (5.20)

The total Reynolds stress RRisso
ij = Rwake

ij + Rpotential
ij (5.19) + (5.20) is expected

to be applicable for bubbles with a purely vertical trajectory. To compare to our
case where bubbles are also disturbed by transverse forces, only turbulent kinetic
energies (k = tr(Rij)) are compared. The trace of RRisso

ij is called kRisso. The trace of
(5.18) is called kbudget and both are compared to the WIF kinetic energy produced
by the deformable bubbles (case B–Ss) in figure 20. Both models underpredict the
same kinetic energy for a given Lw. This is due to the modelling of the interfacial
production based on the work of the drag force (see figure 18b). For y < 0.2,
the model shows a peculiar behaviour due to the void-fraction reconstruction as
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FIGURE 20. (Colour online) Test of algebraic closure (5.18) for the total kinetic energy
(TKE) of BIF for deformable bubbles (case B–Ss) in purely WIF conditions.

αD = αB − αSs which should not be included in the discussion. Further away from
the wall, the two models give reasonable results. Besides, the validity of this new
model is currently limited to specific physical configurations (drag–buoyancy-driven
flow, small gravity conditions). It has been developed only for y/h> 0.2 so there is
no evaluation of its capabilities in the near-wall region where the wakes could be
disturbed by the no-slip boundary condition or by the large amount of SPT. More
importantly, the model depends on a wake length Lw which in turn possibly evolves
with the Eötvös number, the bubble Reynolds number and the void fraction. Finally,
further analyses are needed in different conditions to extend the closure validity.
Explicit testing and validation of the model against experimental or numerical data
are also necessary.

5.3.5. Discussion on two-phase turbulence modelling
After carrying out these analyses on SPT modulation and on the WIF transport

equation, a thorough analysis of the turbulence has been completed and the first
proposal for an innovative two-phase turbulence model can be sketched as follows:

Rij = RSPT
ij + RWIT

ij + RWIF
ij , (5.21)

DRSPT
ij

Dt
= PSPT

ij + φ
SPT
ij + ε

SPT
ij + DSPT

ij , (5.22)

DRWIT
ij

Dt
=ΠWIT

ij + φ
WIT
ij + ε

WIT
ij + DWIT

ij , (5.23)

RWIF
ij =

 3
5 0 0
0 1

5 0
0 0 1

5

 αlαv
1ρ

ρl
gLw, (5.24)

where RSPT
ij is the single-phase turbulence classically modelled with a Reynolds stress

model (Launder, Reece & Rodi 1975; Speziale, Sarkar & Gatski 1991). The present
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study has shown that the redistribution tensor φSPT
ij is disturbed by the presence of

bubbles in accordance with the study of Lance et al. (1991). Additionally, diffusion
is reduced by the near-wall bubble layer. In the long term, the characteristic scale in
the modelling of DSPT

ij should also be modified in order to take into account the impact
of bubbles. Concerning the bubble-induced fluctuations, the present study was focused
on finding an algebraic closure for the WIF as proposed in (5.24). The next step is
to develop a transport equation dedicated to the WIT related to wake instabilities and
interactions.

6. Conclusion and prospects
Five DNS calculations have been performed for a vertical bubbly flow at Reτ = 127

and analysed through budget equations of the momentum or Reynolds stresses in
order to improve our understanding of such flows. These cases have been compared
with both single-phase flow (Vreman & Kuerten 2014) and two-phase flow (Lu &
Tryggvason 2008) references and confidence in the results has been reinforced by
additional mesh convergence tests on isolated bubbles. Cases have been studied in
low gravity conditions such that bubble-induced fluctuations (BIF) are related only
to wake-induced fluctuations (WIF). The momentum budget brings into light the
influence of surface tension on wall-normal interfacial forces and thus on bubble
dispersion. However, further work is necessary to enable a physical interpretation
of the impact of surface tension on bubble migration even if its importance in the
momentum budget in the direction of migration is demonstrated. Concerning the
budget of the Reynolds stresses, the four complementary cases (small spherical
bubbles, large deformable bubbles, bidisperse and single-phase cases) are well suited
to studying the modulation of SPT (single-phase turbulence) and WIF mechanisms. A
statistical dependence between BIF and SPT has been observed, revealing weaknesses
in the classical way in which pseudoturbulence and perturbations to standard
single-phase turbulence are modelled. Moreover, it has been shown that this SPT
reduction is due to an alteration of the diffusion from the wall to the bulk of the
channel because of the presence of bubbles. An increase of the redistribution leading
to a more isotropic SPT has been observed as well. In the future, SPT modelling
should take into account these phenomena. Finally, a physical interpretation of the
WIF transport equation has been proposed through the investigation of interfacial
production, redistribution and dissipation. The relaxation time responsible for the
dissipation was found to be related to the wake length. Two algebraic closures
based on physical assertions for the Reynolds stresses have then been tested. The
results are encouraging, further analyses are needed at different bubbles Reynolds
numbers or void fractions to extend the closure validity (in particular to assess the
possible dependency of the characteristic length scale of the wake); further efforts are
required to actually estimate the capabilities of the model. In addition, investigations
of mechanisms in the near-wall region would be valuable to improve the applicability
of the model. Otherwise, the DNS database is now available for further analysis. (See
http://triocfd.cea.fr/recherche/modelisation-physique/.)
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