
Monte Carlo particle transport in random media: the effects of mixing statistics

Coline Larmiera, Andrea Zoiaa,∗, Fausto Malvagia, Eric Dumonteilb, Alain Mazzoloa
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Abstract

Particle transport in random media obeying a given mixing statistics is key in several applications in nuclear reactor physics and
more generally in diffusion phenomena emerging in optics and life sciences. Exact solutions for the ensemble-averaged physical
observables are hardly available, and several approximate models have been thus developed, providing a compromise between the
accurate treatment of the disorder-induced spatial correlations and the computational time. In order to validate these models, it is
mandatory to resort to reference solutions in benchmark configurations, typically obtained by explicitly generating by Monte Carlo
methods several realizations of random media, simulating particle transport in each realization, and finally taking the ensemble
averages for the quantities of interest. In this context, intense research efforts have been devoted to Poisson (Markov) mixing
statistics, where benchmark solutions have been derived for transport in one-dimensional geometries. In a recent work, we have
generalized these solutions to two and three-dimensional configurations, and shown how dimension affects the simulation results. In
this paper we will examine the impact of mixing statistics: to this aim, we will compare the reflection and transmission probabilities,
as well as the particle flux, for three-dimensional random media obtained by resorting to Poisson, Voronoi and Box stochastic
tessellations. For each tessellation, we will furthermore discuss the effects of varying the fragmentation of the stochastic geometry,
the material compositions, and the cross sections of the transported particles.
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1. Introduction

Linear transport in heterogeneous and random media
emerges in several applications in nuclear reactor physics, rang-
ing from the analysis of the effects of the grain size distri-
bution in burnable poisons (especially Gadolinium) and of Pu5

agglomerates in MOX fuel pellets, the quantification of water
density variations in concrete structures and in the moderator
fluid during operation (e.g., steam flow in BWRs) or accidents
(e.g., local boiling in PWRs), the assessment of the probabil-
ity of a re-criticality accident in a reactor core after melt-down10

(corium), or the investigation of neutron diffusion in pebble-bed
reactors (1; 2; 3). The spectrum of applications of stochastic
media is actually far reaching (4; 5; 6; 7), and concerns also
inertial-confinement fusion (8), light propagation through en-
gineered optical materials (9; 10; 11), atmospheric radiation15

transport (12; 13; 14), tracer diffusion in biological tissues (15),
and radiation trapping in hot atomic vapours (16), only to name
a few.

The stochastic nature of particle transport stems from the ma-
terials composing the traversed medium being randomly dis-20

tributed according to some statistical law: thus, the total cross
section, the scattering kernel and the source are in principle ran-
dom fields. Particle transport theory in random media is there-
fore aimed at providing a description of the ensemble-averaged
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angular particle flux 〈ϕ(r, v)〉 and related functionals. For the25

sake of simplicity, in the following we will focus on mono-
energetic transport in non-fissile media, in stationary (i.e., time-
independent) conditions. However, these hypotheses are not re-
strictive, as described in (1).

A widely adopted model of random media is the so-called30

binary stochastic mixing, where only two immiscible mate-
rials are present (1). In principle, it is possible to formally
write down a set of coupled linear Boltzmann equations de-
scribing the evolution of the particle flux in each immiscible
phase. Nonetheless, it has been shown that these equations35

form generally speaking an infinite hierarchy (exact solutions
can be exceptionally found, such as for purely absorbing me-
dia), so that in most cases it is necessary to truncate the infinite
set of equations with some appropriate closure formulas, de-
pending on the underlying mixing statistics. Perhaps the best-40

known of such closure formulas goes under the name of the
Levermore-Pomraning model, initially developed for homoge-
neous Markov mixing statistics (1; 17). Several generalisations
of this model have been later proposed, including higher-order
closure schemes (1; 18). Along the development of determin-45

istic equations for the ensemble-averaged flux, Monte Carlo
methods have been also proposed, such as the celebrated Chord
Length Sampling (3; 19; 20; 21). The common feature of these
approaches is that they allow a simpler, albeit approximate,
treatment of transport in stochastic mixtures, which might be50

convenient in practical applications where a trade-off between
computational time and precision is needed.
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In order to assess the accuracy of the various approximate
models it is therefore mandatory to compute reference solutions
for linear transport in random media. Such solutions can be ob-55

tained in the following way: first, a realization of the medium
is sampled from the underlying mixing statistics (a stochastic
tessellation model); then, the linear transport equations corre-
sponding to this realization are solved by either deterministic
or Monte Carlo methods, and the physical observables of inter-60

est are determined; this procedure is repeated many times so as
to create a sufficiently large collection of realizations, and en-
semble averages are finally taken for the physical observables.

For this purpose, a number of benchmark problems for
Markov mixing have been proposed in the literature so far (22;65

23; 24; 25; 26; 27). In a previous work (28), we have revisited
the benchmark problem originally proposed by Adams, Larsen
and Pomraning for transport in binary stochastic media with
Markov mixing (22), and later extended in (24; 25; 26; 27). In
particular, while these authors had exclusively considered 1d70

slab or rod geometries, we have provided reference solutions
obtained by Monte Carlo particle transport simulations through
2d extruded and 3d Markov tessellations, and discussed the ef-
fects of dimension on the physical observables.

In this work, we further generalize these findings by prob-75

ing the impact of the underlying mixing statistics on particle
transport. The nature of the microscopic disorder is known
to subtly affect the path of the travelling particles, so that the
observables will eventually depend on the statistical laws de-
scribing the shape and the material compositions of the random80

media (6; 7; 12; 23). This is especially true in the presence of
distributed absorbing traps (7). We will consider three different
stochastic 3d tessellations and compute the ensemble-averaged
reflection and transmission probabilities, as well as the particle
flux. Two distinct benchmark configurations will be considered,85

the former including purely scattering materials and voids, and
the latter containing scattering and absorbing materials. This
paper is organized as follows: in Sec. 2 we will introduce the
mixing statistics that we have chosen, namely homogeneous
and isotropic Poisson (Markov) tessellations, Poisson-Voronoi90

tessellations, and Poisson Box tessellations, and we will show
how the free parameters governing the mixing statistics can be
chosen in order for the resulting stochastic media to be com-
parable. In Sec. 3 we will illustrate the statistical features of
such tessellations, which is key to understanding the effects95

on particle transport. In Sec. 4 we will propose two bench-
mark problems, provide reference solutions by resorting to the
Tripoli-4 R© Monte Carlo code, and discuss how mixing statis-
tics affects ensemble-averaged observables. Conclusions will
be finally drawn in Sec. 5.100

2. Description of the mixing statistics

In this section, we introduce three mixing statistics leading
to random media with distinct features. The subscript or super-
script m will denote the class of the stochastic mixing: m = P

for Poisson tessellations, m = V for Voronoi tessellations, and105

m = B for Box tessellations. For each stochastic model, we
describe the strategy for the construction of three-dimensional

tessellations, spatially restricted to a cubic box of side L. With-
out loss of generality, we assume that the cubes are centered at
the origin.110

2.1. Isotropic Poisson tessellations

Markovian mixing is generated by resorting to isotropic Pois-
son geometries, which form a prototype process of stochastic
tessellations: a domain included in a d-dimensional space is
partitioned by randomly generated (d − 1)-dimensional hyper-115

planes drawn from an underlying Poisson process (4). In or-
der to construct three-dimensional homogeneous and isotropic
Poisson tessellations restricted to a cubic box, we use an al-
gorithm recently proposed for finite d-dimensional geome-
tries (29; 30). For the sake of completeness, here we briefly120

recall the algorithm for the construction of these geometries
(further details are provided in (31)).

We start by sampling a random number of hyper-planes NH

from a Poisson distribution of intensity 4ρPR, where R is the ra-
dius of the sphere circumscribed to the cube and ρP is the (arbi-
trary) density of the tessellation, carrying the units of an inverse
length. This normalization of the density ρP corresponds to the
convention used in (4), and is such that ρP yields the mean num-
ber of (d-1)-hyperplanes intersected by an arbitrary segment of
unit length. Then, we generate the planes that will cut the cube.
We choose a radius r uniformly in the interval [0,R] and then
sample two additional parameters, namely, ξ1 and ξ2, from two
independent uniform distributions in the interval [0, 1]. A unit
vector n = (n1, n2, n3)T with components

n1 = 1 − 2ξ1

n2 =

√
1 − n2

1 cos (2πξ2)

n3 =

√
1 − n2

1 sin (2πξ2)

is generated. Denoting by M the point such that OM = rn, the
random plane will finally obey n1x + n2y + n3z = r, passing
trough M and having normal vector n. By construction, this125

plane does intersect the circumscribed sphere of radius R but
not necessarily the cube. The procedure is iterated until NH ran-
dom planes have been generated. The polyhedra defined by the
intersection of such random planes are convex. Some examples
of homogeneous isotropic Poisson tessellations are provided in130

Fig. 1.

2.2. Poisson-Voronoi tessellations

Voronoi tessellations refer to another prototype process for
isotropic random division of space (4). A portion of a space
is decomposed into polyhedral cells by a partitioning process135

based on a set of random points, called ‘seeds’. From this set of
seeds, the Voronoi decomposition is obtained by applying the
following deterministic procedure: each seed is associated with
a Voronoi cell, defined as the set of points which are nearer to
this seed than to any other seed. Such a cell is convex, because140

obtained from the intersection of half-spaces.
In this paper, we will exclusively focus on Poisson-Voronoi

tessellations, which form a subclass of Voronoi geometries (32;
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〈Λ〉∞ = 1

〈Λ〉∞ = 0.5

〈Λ〉∞ = 0.1

Figure 1: Examples of realizations of homogeneous isotropic Poisson tessel-
lations corresponding to the benchmark specifications, before (left) and after
(right) attributing the material label, with probability p = 0.3 of assigning the
label α. Red corresponds to the label α and blue to the label β. The size of the
cube is L = 10.

33; 34). The specificity of Poisson-Voronoi tessellations con-
cerns the sampling of the seeds. In order to construct Poisson-145

Voronoi tessellations restricted to a cubic box of side L, we re-
sort to the algorithm proposed in (34). First, we choose the
random number of seeds NS from a Poisson distribution of pa-
rameter (ρVL)3, where ρV characterizes the density of the tes-
sellation. Then, NS seeds are uniformly sampled in the box150

[−L/2, L/2]3. For each seed, we compute the corresponding
Voronoi cell as the intersection of half-spaces bounded by the
mid-planes between the selected seed and any other seed. In or-
der to avoid confusion with the Poisson tessellations described
above, we will mostly refer to Poisson-Voronoi geometries sim-155

ply as Voronoi tessellations in the following. Some examples of
Voronoi tessellations are provided in Fig. 2.

2.3. Poisson Box tessellations

Box tessellations form a class of anisotropic stochastic ge-
ometries, composed of rectangular boxes with random sides.160

〈Λ〉∞ = 1

〈Λ〉∞ = 0.5

〈Λ〉∞ = 0.1

Figure 2: Examples of realizations of Voronoi tessellations corresponding to the
benchmark specifications, before (left) and after (right) attributing the material
label, with probability p = 0.3 of assigning the label α. Red corresponds to the
label α and blue to the label β.The size of the cube is L = 10.

For the special case of Poisson Box tessellations (as proposed
by (34)), a domain is partitioned by i) randomly generated
planes orthogonal to the x-axis, through a Poisson process of
intensity ρx; ii) randomly generated planes orthogonal to the y-
axis, through a Poisson process of intensity ρy; iii) randomly165

generated planes orthogonal to the z-axis, through a Poisson
process of intensity ρz. In the following, we will assume that
the three parameters are equal, namely, ρx = ρy = ρz = ρB.

In order to tessellate a cube of side L, the construction algo-
rithm is the following: we begin by sampling a random number170

Nx from a Poisson distribution of intensity ρBL. Then, we sam-
ple Nx points uniformly on the segment [−L/2, L/2]. For each
point of this set, we cut the geometry with the plane orthogonal
to the x-axis and passing through this point. We repeat this pro-
cess for the y-axis and the z-axis. For the sake of conciseness,175

we will denote by Box tessellations these Poisson Box tessel-
lations. Some examples of Box tessellations are provided in
Fig. 3.
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〈Λ〉∞ = 1

〈Λ〉∞ = 0.5

〈Λ〉∞ = 0.1

Figure 3: Examples of realizations of Box tessellations corresponding to the
benchmark specifications, before (left) and after (right) attributing the material
label, with probability p = 0.3 of assigning the label α. Red corresponds to the
label α and blue to the label β.The size of the cube is L = 10.

2.4. Statistical properties of infinite tessellations

The observables of interest associated to the stochastic ge-180

ometries, such as for instance the volume of a polyhedron, its
surface, the number of faces, and so on, are random variables.
With a few remarkable exceptions, their exact distributions are
unfortunately unknown (4). Nevertheless, exact results have
been established for some low-order moments of the observ-185

ables, in the limit case of domains having an infinite exten-
sion (4; 5; 35).

In this respect, Poisson tessellations have been shown to pos-
sess a remarkable property: in the limit of infinite domains,
an arbitrary line will be cut by the hyperplanes of the tessel-
lation into chords whose lengths are exponentially distributed
with parameter ρP (whence the identification with Markovian
mixing). Thus, in this case, the average chord length 〈Λ〉∞ sat-
isfies 〈Λ〉∞ = ρ−1

P
, and its probability density ΠP(Λ) is given

by

ΠP(Λ) =
1
〈Λ〉∞

e−Λ/〈Λ〉∞ . (1)

m 〈V〉∞ 〈S 〉∞ 〈Λ〉∞ = 4 〈V〉∞
〈S 〉∞

P (6/π)ρ−3
P

(24/π)ρP−2 ρP
−1

V ρV
−3 (256π/3)

1
3 Γ

(
5
3

)
ρV
−2 0.6872ρV−1

B ρB
−3 6ρB−2 (2/3)ρB−1

Table 1: Exact formulas for the average volume 〈V〉∞, the average total surface
〈S 〉∞ and the average chord length 〈Λ〉∞ in infinite tessellations, for different
mixing statistics m. Expressions are taken from (4; 34).

To the best of our knowledge, the exact distribution of the chord
length for Voronoi and Box tessellations is not known. How-
ever, when lines are drawn uniformly and isotropically (for-
mally, with a µ-randomness (4; 36)), it is possible to apply the
Cauchy’s formula

〈Λ〉∞ = 4
〈V〉∞
〈S 〉∞

, (2)

which relates the average chord length to purely geometrical
quantities, namely, the average volume 〈V〉∞ of a random poly-
hedron and its average surface 〈S 〉∞ (4). This leads to exact ex-
pressions for the first moment of the chord length for Voronoi
and Box tessellations, which are recalled in Tab. 1. As dis-
cussed in the following sections, Monte Carlo simulations show
that the chord length distribution for the Box tessellations is ac-
tually very close to that of Poisson tessellations. Nevertheless,
it is easy to rule out the possibility of a complete equivalence. If
Box tessellations were exactly Markovian, with an exponential
distribution for Λ, then the fourth moment of the chord length
should satisfy

〈Λ4〉∞ = 4!〈Λ〉4∞, (3)

which for m = B would yield

〈Λ4〉∞ =
128

27ρ4
B

. (4)

However, under the hypothesis of a µ-randomness for the sam-
pled lines, a remarkable formula from stochastic geometry
holds for convex volumes, namely,

〈Λ4〉∞ =
12
π

〈V2〉∞

〈S 〉∞
(5)

which again depends only on purely geometrical quanti-
ties (34). Now, since 〈Vk〉∞ = k!(ρB)−3k for m = B (34), Eq. 5
can be simplified to

〈Λ4〉∞ =
16
πρ4
B

, (6)

by resorting to the expressions given in Tab. 1. This clearly con-
tradicts Eq. 4: the chord length for Box tessellations is not ex-
ponential. The same argument applies also for Voronoi tessella-190

tions, since we have 〈Λ4〉∞ = 0.774ρ−4
V

and 4!〈Λ〉4∞ ≈ 5.352ρ−4
V

.

2.5. Assigning material properties: colored geometries
For the benchmark problems of transport in random media

that will be discussed in this work, we will only consider binary
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Figure 4: The normalized average chord length 〈Λ∗ |L∗〉, as a function of the
normalized size L∗ of the domain and of the mixing statistics m. Symbols
correspond to the Monte Carlo simulation results, with dotted lines added to
guide the eye: blue squares denote m = P, green circles m = V, and red
triangles m = B. The asymptotical value Λ∗ = 1 is displayed for reference with
a black dashed line.

stochastic mixtures, which are realized by resorting to the fol-195

lowing procedure. First, Poisson, Voronoi or Box tessellations
are constructed as described above. Then, each polyhedron of
the geometry is assigned a material composition by formally
attributing a distinct ‘label’ (also called ‘color’), say ‘α’ or ‘β’,
with associated complementary probabilities. In the following,200

we will denote by p the probability of assigning the label α.
We will define a ‘cluster’ the collection of adjacent polyhedra
sharing the same label.

When assigning colours to stochastic geometries, additional
properties must be introduced, such as the average chord length
through clusters with label α, denoted by 〈Λα〉∞. For infinite
tessellations, it can be shown that 〈Λα〉∞ is related to the aver-
age chord length 〈Λ〉∞ of the geometry via

〈Λ〉∞ = (1 − p)〈Λα〉∞, (7)

and for 〈Λβ〉∞ we similarly have

〈Λ〉∞ = p〈Λβ〉∞. (8)

These properties of the average chord length through clusters
with composition α or β stems from the binomial distribution
of the colouring procedure (8; 31), and hold true for each tes-
sellation m. Additionally, the corresponding probability density
ΠP(Λα) is still exponential for infinite Poisson geometries, i.e.,

ΠP(Λα) =
1

〈Λα〉∞
e−Λα/〈Λα〉∞ (9)

For Voronoi and Box tessellations, the full probability densities
ΠV(Λα) and ΠB(Λα) are not known.205

2.6. Setting the model parameters
In order to compare the effects of the underlying mixing

statistics m = P,V or B on particle transport in random media,

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

〈
Λ

α
|L

〉

p

Figure 5: The average chord length 〈Λα |L〉 through clusters of composition α,
as a function of the probability p, of the mixing statistics m, and of the average
chord length 〈Λ〉∞, for a domain of linear size L = 10. Symbols correspond to
the Monte Carlo simulation results: blue symbols are chosen for m = P, green
for m = V, and red for m = B. Circles denote 〈Λ〉∞ = 1, crosses 〈Λ〉∞ =

0.5, and triangles 〈Λ〉∞ = 0.1. In order to provide a reference, the asymptotic
function 〈Λα〉∞(p) = 〈Λ〉∞/(1 − p) is displayed for 〈Λ〉∞ = 1 (dashed line),
〈Λ〉∞ = 0.5 (continuous line) and 〈Λ〉∞ = 0.1 (dotted line).

a mandatory requirement is to determine a criterion on whose
basis the tessellations can be considered statistically ‘equiva-210

lent’ with respect to some physical property. An important
point is that the three models examined here depend on a sin-
gle free parameter, namely the average chord length 〈Λ〉∞ of
the tessellation, plus the colouring probability p. In the Marko-
vian binary mixtures, the average chord length of the Poisson215

tessellation and the colouring probability are chosen so that the
resulting average chord lengths in the coloured clusters, 〈Λα〉∞
and 〈Λβ〉∞, intuitively represent the typical scale of the disorder
in the random media, to be compared with the average mean
free paths of the particles traversing the geometry (1).220

By analogy with the Markovian binary mixing, we choose
therefore to set 〈Λα〉∞ and 〈Λβ〉∞ to be equal for the two other
mixing statistics m = V or B. According to Eqs. 7 and 8, this
can be achieved by choosing the same parameters 〈Λ〉∞ and p
for any tessellation. Correspondingly, we have a constraint on
the densities ρP, ρV and ρB of the tessellations, which must now
satisfy

1
〈Λ〉∞

= ρP = 0.6872ρV =
2
3
ρB. (10)

In practice, one is often lead to simulate tessellations restricted
to some bounded regions of linear size L: finite-size effects typ-
ically emerge, and the relation (10) would not be strictly valid.
Indeed, in finite geometries the average chord length 〈Λ|L〉 dif-
fers from the corresponding 〈Λ〉∞ (see also Sec. 3). However,225

although a large L is typically required in order for 〈Λ|L〉 to
converge to the asymptotic value 〈Λ〉∞, the variability of 〈Λ|L〉
between tessellations vanishes for comparatively smaller L, as
illustrated in Fig. 4. The same remark applies to 〈Λα|L〉 and
〈Λβ|L〉, as shown in Fig. 5. For the sake of simplicity, we will230

thus neglect such finite-size effects and use Eq. (10) to calibrate
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Figure 6: The average number 〈N|L∗〉 of polyhedra composing the tessellation,
as a function of the normalized size L∗ of the domain and of the mixing statistics
m. Symbols correspond to the Monte Carlo simulation results, with dashed lines
added to guide the eye: blue squares denote m = P, green circles m = V, and
red triangles m = B. The inset displays the same data in log-log scale.

the model parameters.

3. Statistical properties and finite-size effects

In the following, we will focus on tessellations restricted to a
cubic box of linear size L, and investigate the impact of finite-235

size effects on the statistical properties of such random media.
By generating a large number of random tessellations by Monte
Carlo simulation via the algorithms described above, we can
assess the convergence of the moments and distributions of ar-
bitrary physical observables to their limit behaviour for infi-240

nite domains. A Monte Carlo code capable of generating Pois-
son, Voronoi and Box tessellations with arbitrary average chord
length 〈Λ〉∞ has been developed to this aim.

3.1. Number of polyhedra

The number N of polyhedra composing a tessellation pro-245

vides a measure of the complexity of the resulting geome-
tries. We will analyse the growth of this quantity in Poisson,
Voronoi or Box tessellations as a function of the normalized
size L∗ = L/〈Λ〉∞ of the domain (with both L and 〈Λ〉∞ ex-
pressed in arbitrary units). The simulation findings for the250

average number 〈N |L∗〉 of polyhedra are illustrated in Fig. 6,
whereas Fig. 7 displays results concerning the standard devia-
tion σ[N |L∗] of N. To begin with, we observe that 〈N |L∗〉 is
smaller in Voronoi and Box tessellations than in Poisson tes-
sellations. However, for large L, we find a common asymp-255

totic scaling law 〈N |L∗〉 ∼ (L∗)3. The growth of the dispersion
σ[N |L∗] differs considerably between Voronoi tessellations and
the two other models. In the case of Voronoi mixing statis-
tics, we asymptotically find σ[N |L∗] ∼ (L∗)

3
2 : this is not sur-

prising, since by construction N coincides with the number of260

seeds NS (unless NS = 0) and is assumed to follow a Pois-
son distribution of intensity proportional to (L∗)3, according

10-1
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Figure 7: The standard deviation σ[N|L∗] of the number of polyhedra compos-
ing the tessellation, as a function of the normalized size L∗ of the domain and
of the mixing statistics m. Symbols correspond to the Monte Carlo simulation
results: blue squares denote m = P, green circles m = V, and red triangles
m = B. The scaling law (L∗)5/2 is displayed for reference with dashed or dotted
lines; the scaling law (L∗)3/2 is displayed with a continuous line.

to Eq. 10. For Poisson and Box tessellations, the dispersion
is significantly larger and the asymptotic scaling law becomes
σ[N|L∗] ∼ (L∗)

5
2 . Therefore, the distribution of N is peaked265

around its average value in Voronoi tessellations, whereas it is
more dispersed in Poisson and Box geometries.

3.2. Connectivity
The number of faces NF of each polyhedron intuitively rep-

resents the connectivity degree of the tessellation. For this270

observable, Voronoi geometries are expected to have a pecu-
liar behaviour, since the average number of faces amounts to
〈NF〉∞ ' 15.54 (for infinite domains), which is much larger
than the value 〈NF〉∞ = 6 for Poisson and Box geometries (see,
e.g., (4; 34) and references therein). In order to verify this be-275

haviour in finite geometries, we have numerically computed by
Monte Carlo simulation the average number of faces in Poisson,
Voronoi and Box tessellations, as a function of the normalized
size L∗ of the domain. The numerical results are illustrated in
Fig. 8. The average number of faces converges towards the ex-280

pected value for each tessellation; nevertheless, Voronoi tessel-
lations need much larger L∗ to attain the asymptotic behaviour.

3.3. Chord lengths
In order to investigate finite-size effects on chord lengths, we

have numerically computed by Monte Carlo simulation the dis-285

tribution and the average of the chord length for each mixing
statistics m. To this aim, we resort to the following method. A
random tessellation is first generated, and a line obeying the µ-
randomness is then drawn according to the prescriptions in (36).
The intersections of the line with the polyhedra of the geometry290

are computed, and the resulting segment lengths are recorded.
This step is repeated for a large number of random lines. Then,
a new geometry is generated and the whole procedure is iterated
for several geometries, in order to get satisfactory statistics.
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Figure 8: The average number of faces by polyhedron 〈NF |L∗〉, as a function of
the normalized size L∗ of the domain and of the mixing statistics m. Symbols
correspond to the Monte Carlo simulation results, with dotted lines added to
guide the eye: blue squares denote m = P, green circles m = V, and red
triangles m = B. The asymptotic value for m = V, 〈NF〉∞ = 15.54, is displayed
for reference with a black dashed line.

The numerical results for the normalized average chord295

length 〈Λ∗|L∗〉 = 〈Λ|L∗〉/〈Λ〉∞ as a function of the normalized
size L∗ of the domain are illustrated in Fig. 4 for different mix-
ing statistics m. Monte Carlo simulation results for the chord
length distribution are shown in Fig. 10, for 〈Λ〉∞ = 1 and for
several values of L. For small L, finite-size effects are visible300

in the chord length distribution: indeed, the longest length that
can be drawn across a box of linear size L is

√
3L, which thus

induces a cut-off on the distribution. For large L, the finite-size
effects due to the cut-off fade away. In particular, the probability
density for Poisson tessellations eventually converges to the ex-305

pected exponential behaviour. Simulations show that the chord
length distributions in Box tessellations and in Poisson tessel-
lations are very close, which is consistent with the observations
in (30). On the contrary, in Voronoi tessellations, the probabil-
ity density has a distinct non-exponential functional form.310

A similar investigation can be conducted for 〈Λα|L〉, the
chord length through clusters with material composition α. We
have computed by Monte Carlo simulation the average value
〈Λα|L〉 as a function of p, 〈Λ〉∞ and the mixing statistics m, for
a given domain size L = 10. Numerical findings are displayed315

in Fig. 5. Theoretical results in the limit of infinite domains are
also provided. Finite-size effects are apparent, and their impact
increases with increasing 〈Λ〉∞ and p. However, the discrep-
ancy due to mixing statistics is rather weak. The distribution
of the chord lengths through material of composition α is illus-320

trated in Fig. 11. Here again, the finite-size effects vanish for
small p and 〈Λ〉∞.

3.4. Percolation properties

For binary mixtures, percolation statistics plays an important
role (31; 37). To fix the ideas, we will consider the percola-325

tion properties of the clusters of composition α. In the limit
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Figure 9: The average percolation probability Pc(p|L) as a function of p and of
〈Λ〉∞, for a domain of linear size L = 10. Symbols correspond to the Monte
Carlo simulation results with added lines to guide the eye: blue is chosen for
m = P, green for m = V, and red for m = B. Circles with a continuous line
denote 〈Λ〉∞ = 1, and crosses with a dashed line 〈Λ〉∞ = 0.1.

of infinite geometries, the (site) percolation threshold pc is de-
fined as the probability pα above which there exists a ‘giant
connected cluster’, i.e., a collection of connected red polyhedra
spanning the entire geometry (38). The percolation probabil-330

ity Pc(p), i.e., the probability that there exists such a connected
percolating cluster, has thus a step behaviour as a function of
the colouring probability p, i.e., PC(p) = 0 for p < pc , and
Pc(p) = 1 for p > pc. Actually, for any finite L, there exists a
finite probability that a percolating cluster exists below p = pc,335

due to finite-size effects.

The site percolation properties of three-dimensional Pois-
son binary mixtures have been previously addressed in (31).
The percolation threshold of three-dimensional Voronoi tessel-
lations has also been estimated (39). Furthermore, the percola-340

tion threshold of a Box tessellation can be mapped to that of a
cubic network, which has been widely studied (40). Tab. 2 re-
sumes the values of the percolation threshold pc for each mix-
ing statistics. In order to illustrate the finite-size effects related
to percolation, Monte Carlo simulation results for percolation345

probabilities as a function of p, 〈Λ〉∞ and m are shown in Fig. 9.
For large domain size L, the percolation threshold estimated by
Monte Carlo simulation converges to the asymptotic values re-
ported in Tab. 2.

m pc

P 0.290 ± 7.10−3

V 0.1453 ± 2.10−3

B 0.3116077 ± 4.10−7

Table 2: Estimation of the percolation threshold, as a function of the mixing
statistics m. Estimates are taken from (31; 39; 40).
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4. Particle transport in benchmark configurations350

Once the key statistical features of the random media have
been characterized, we can now turn our attention to the prop-
erties of particle transport through such tessellations. We pro-
pose two benchmark configurations for single-speed linear par-
ticle transport through non-multiplying stochastic binary mix-355

tures composed of materials α and β. For both configurations
we will set the same geometry and source specifications. The
geometry will consists of a cubic box of side L = 10, with
reflective boundary conditions on all sides of the box except
on two opposite faces (say those perpendicular to the x-axis),360

where leakage boundary conditions are imposed (particles that
leave the domain through these faces can not re-enter). We will
apply a normalized incident angular flux on the leakage sur-
face at x = 0 (with zero interior sources). These specifications
are inspired by our previous work (28) on a d-dimensional gen-365

eralization of the benchmark proposed by Adams, Larsen and
Pomraning (22).

In benchmark case 1, material α is void, and material β is
purely scattering; in benchmark case 2, material α is purely
absorbing, and material β is purely scattering. The former370

case could represent for instance light propagation through tur-
bid media, or to neutron transport in water-steam mixtures,
the probability p determining the fraction of voids. The latter
case could represent for instance neutron diffusion in the pres-
ence of randomly distributed traps, such as Boron or Gadolin-375

ium grains, the probability p determining the fraction of ab-
sorbers. The compositions for the two benchmarks are provided
in Tab. 3. For each case, we consider two sub-cases a and b by
varying the scattering macroscopic cross sections: we set a scat-
tering cross section Σs

β = 1 for cases 1a and 2a, and Σs
β = 10 for380

cases 1b and 2b. The absorbing cross section for material β is
zero for all cases and sub-cases. For material α, we set Σa

α = 10
for case 2a and 2b (absorber), and Σa

α = 0 elsewhere. Scattering
is assumed to be isotropic.

Following (24; 28), the physical observables that we would385

like to determine are the ensemble-averaged reflection proba-
bility 〈R〉 on the face where the incident flux is imposed, the
ensemble-averaged transmission probability 〈T 〉 on the oppo-
site face, and the ensemble-averaged scalar particle flux 〈ϕ〉
within the box. Observe that the flux 〈ϕ〉 integrated over the box390

has a clear physical interpretation: actually, the integral flux is
equal to the average length 〈`V〉 travelled by the particles within
the geometry: see, e.g., the considerations in (41; 42; 43; 44).
Since we are considering single-speed transport, due to the ge-
ometrical configuration of our benchmark 〈ϕ〉 is thus also pro-395

portional to the residence time spent by the particles in the box.
In the absence of absorption (case 1), the residence time can
be identified with the first passage time from the source to the
leakage boundaries.

In order to study the impact of random media on particle400

transport, for each benchmark case we consider three types of
tessellations: Poisson, Voronoi and Box; three average chord
lengths: 〈Λ〉∞ = 1, 〈Λ〉∞ = 0.5 and 〈Λ〉∞ = 0.1; and seven
probabilities of assigning a label α: p = 0.05, p = 0.15,
p = 0.30, p = 0.50, p = 0.70, p = 0.85 and p = 0.95. The405

Case Σs
α Σa

α Σs
β Σa

β

1a 0 0 1 0
1b 0 0 10 0

2a 0 10 1 0
2b 0 10 10 0

Table 3: Material parameters for the two cases 1, 2 of benchmark configurations
and the two sub-cases a, b.

〈Λ〉∞ ρP ρV ρB

1 1 0.6872 0.66667
0.5 2 1.3744 1.33333
0.1 10 6.872 6.66667

Table 4: Parameters ρP, ρV and ρB chosen for the benchmark configurations,
as a function of the average chord length 〈Λ〉∞.

tessellation densities ρP, ρV and ρB can be easily derived based
on Eq. 10 and are resumed in Tab. 4. For the purpose of il-
lustration, examples of realizations of Poisson tessellations for
the benchmark configurations are displayed in Fig. 1, Voronoi
tessellations in Fig. 2 and Box tessellations in Fig. 3.410

For the sake of completeness, we have also considered the
so-called atomic mix model (1): the statistical disorder is ap-
proximated by simply taking a full homogenization of the phys-
ical properties based on the ensemble-averaged cross sections.
The atomic mix approximation is known to be valid when the
chunks of each material are optically thin, i.e., Σt

i〈Λi〉∞ � 1
for i = α, β. For each case, we compute the corresponding
ensemble-averaged scattering cross section 〈Σs〉 and ensemble-
averaged absorbing cross section 〈Σa〉 as follows

〈Σs〉 = pΣs
α + (1 − p)Σs

β (11)

and
〈Σa〉 = pΣa

α + (1 − p)Σa
β. (12)

4.1. Monte Carlo simulation parameters

The reference solutions for the probabilities 〈R〉 and 〈T 〉 and
the ensemble-averaged scalar particle flux 〈ϕ(x)〉 have been
computed as follows. For each configuration, a large number
M of geometries has been generated, and the material properties
have been attributed to each volume as described above. Then,
for each realization k of the ensemble, linear particle trans-
port has been simulated by resorting to the production Monte
Carlo code Tripoli-4 R©, developed at CEA (45). Tripoli-4 R©

is a general-purpose stochastic transport code capable of sim-
ulating the propagation of neutral and charged particles with
continuous-energy cross sections in arbitrary geometries. In or-
der to comply with the benchmark specifications, constant cross
sections adapted to mono-energetic transport and isotropic an-
gular distributions have been prepared. The number of sim-
ulated particle histories per configuration is 106. For a given
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physical observable O, benchmark solutions are obtained by
taking the ensemble average

〈O〉 =
1
M

M∑
k=1

Ok, (13)

where Ok is the Monte Carlo estimate for the observable O ob-
tained for the k-th realization. Specifically, the particle currents
Rk and Tk at the respective surface are estimated by summing
the statistical weights of the particles leaking from that surface.415

Scalar fluxes ϕk(x) have been recorded by resorting to the stan-
dard track length estimator over a pre-defined spatial grid con-
taining 102 uniformly spaced meshes along the x axis.

The error affecting the average observable 〈O〉 results from
two separate contributions, namely, the dispersion

σ2
G =

1
M

M∑
k=1

Ok
2
− 〈O〉

2 (14)

of the observables exclusively due to the stochastic nature of
the geometries and of the material compositions, and

σ2
O

=
1
M

M∑
k=1

σ2
Ok
, (15)

which is an estimate of the variance due to the stochastic nature
of the Monte Carlo method for the particle transport, σ2

Ok
being

the dispersion of a single calculation (21; 20). The statistical
error on 〈O〉 is then estimated as

σ[〈O〉] =

√
σ2

G

M
+ σ2

O
. (16)

The number M of realizations used for the Monte Carlo sim-
ulations has been chosen as follows. Since Poisson, Voronoi420

and Box tessellations have ergodic properties (35; 34), tessel-
lations with smaller average chord length 〈Λ〉∞ require a lower
number of realizations to achieve statistically stable ensemble
averages, as discussed in a previous work (28). Thus, for con-
figurations where 〈Λ〉∞ = 1 we have performed 103 realiza-425

tions; for 〈Λ〉∞ = 0.5 we have taken 8 × 102 realizations; and
for 〈Λ〉∞ = 0.1 we have taken 2 × 102 realizations. All the data
sets considered in the following sections are available from the
authors upon request.

4.2. Computer time430

The average computer time of a transport simulation in-
creases significantly for decreasing average chord length 〈Λ〉∞
of the tessellation, as shown Tab. 5. For the calculations dis-
cussed here we have largely benefited from a feature that has
been recently revised and enhanced in the code Tripoli-4 R©,435

namely the possibility of reading pre-computed connectivity
maps for the volumes composing the geometry. During the gen-
eration of the tessellations, care has been taken so as to store
the indexes of the neighbouring volumes for each realization,
which means that during the geometrical tracking a particle440

m 〈Λ〉∞ 〈N|L〉 σ[N |L] 〈t〉 σ[t]

AM 145 0

1 784 448 176 8
P 0.5 5278 2316 217 14

0.1 561163 117382 7705 2062

1 325 17 185 2
V 0.5 2596 51 258 4

10 324557 563 2511 208

1 473 285 169 7
B 0.5 2975 1344 200 11

0.1 309264 66029 2212 552

Table 5: Complexity of the tessellations used for the benchmark configurations,
as a function of the mixing statistics m (AM stands for atomic mix) and of the
average chord length 〈Λ〉∞ of the tessellation, for a domain of linear size L =

10. 〈N |L〉 denotes the average number of polyhedra composing the tessellation,
whereas 〈t〉 denotes the average computer time (expressed in seconds) for a
transport simulation of the benchmark configuration 1a, with p = 0.05.

will have to find the next crossed volume in a list that might be
considerably smaller than the total number of random volumes
composing the box. When provided to the transport code, such
connectivity maps allow thus for considerable speed-ups for the
most fragmented geometries, up to a factor of one hundred.445

Transport calculations have been run on a cluster based at
CEA, with Xeon E5-2680 V2 2.8 GHz processors. The average
computer time t for case 1a with p = 0.05 is displayed in Tab. 5
as a function of the mixing statistics m and of the average chord
length 〈Λ〉∞ of the tessellation. It is apparent that t increases450

with the complexity of the system, i.e., the number of polyhe-
dra composing the tessellation. Nevertheless, this is not true for
geometries with higher 〈Λ〉∞: simulations in Voronoi tessella-
tions are longer than those in Poisson and Box tessellations, in
spite of a lower number of polyhedra. This is likely due to the455

larger average number of faces in Voronoi geometries, which
slows down particle tracking. For geometries composed of a
large number of polyhedra, the complexity of the system out-
weighs this effect. Moreover, the dispersion on the simulation
time seems correlated to the dispersion on the number of poly-460

hedra: thus, this dispersion may become very large, and even be
comparable to the average t, for Poisson tessellations. Atomic
mix simulations are based on a single homogenized realization,
thus there is no associated dispersion.

4.3. Reflection, transmission and integral flux465

The statistical properties of the random media adopted for the
benchmark configurations, including the average chord length,
the average volume and surface, and the number of faces, have
been determined by Monte Carlo simulation and are resumed
in Tab. 6 for reference, which allows probing finite-size effects.470

Concerning transport-related observables, the simulation re-
sults for the ensemble-averaged reflection probability 〈R〉,
the transmission probability 〈T 〉 and the integral flux 〈ϕ〉 =

〈
∫ ∫

ϕ(r,ω)dωdr〉 are provided in Figs. 12 and 13 for all the
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benchmark configurations, as a function of p, m and 〈Λ〉∞.475

Atomic mix results are also provided for reference.
To begin with, we analyse the behaviour of these observ-

ables as a function of p. For case 1, the transmission proba-
bility increases with the void fraction p. For large values of p,
the medium is prevalently composed of voids, which enhances
transmission because particle trajectories are not hindered by
collisions. When p decreases, the proportion of scattering ma-
terial increases and so does the probability for a particle to scat-
ter, change direction and leak from the face where the source
is imposed. Symmetrically, the reflection probability decreases
with p: this is expected on physical grounds, since for case 1
we have 〈T 〉 + 〈R〉 = 1 from mass conservation. Percolation of
the void fraction appear to play no significant role for the con-
figurations considered here: the variation of 〈T 〉 and 〈R〉 with
respect to p is smooth and no threshold effects at p = pc are
apparent. The void fraction p has no impact on the integral flux
for case 1. Actually, as stated above, 〈ϕ〉 = 〈`V〉, and from the
Cauchy’s formula for one-speed random walks in purely scat-
tering domains we have

〈`V〉 = 4
V

S leak
(17)

where S leak is the surface area of the boundaries where leakage
conditions are applied (41; 42; 43; 44). This formula, which can
be understood as a non-trivial generalization of the Cauchy’s
formula applying to the average chord lengths (41; 43), holds480

true provided that particles enter the domain uniformly and
isotropically, which is ensured here by the source that we have
chosen and by symmetry considerations. Hence, the flux 〈ϕ〉
depends exclusively on the ratio of purely geometrical quanti-
ties, namely, 〈ϕ〉 = 4V/S leak, which for our benchmark yields485

〈ϕ〉 = 20.
For case 2, reflection, transmission and integral flux all de-

crease with increasing absorber fraction p. This is also expected
on physical grounds: the larger is p, the smaller is the survival
probability of particles and the shorter is the average residence490

time within the box (and hence the integral flux). Although
Eq. (17) can be generalized to include also absorbing media
(and even multiplication), the resulting formula will depend on
the specific features of the travelling particles and will not have
a universal character (42; 43; 44).495

The impact of the average chord length on 〈T 〉, 〈R〉 and 〈ϕ〉
is clearly visible in Figs. 12 and 13. As a general consideration,
for any mixing statistics, the respective observables become
closer to those of the atomic mix as 〈Λ〉∞ decreases. These
results suggest a convergence towards atomic mix when 〈Λ〉∞500

tends to zero, i.e., for high fragmentation. However, in most
cases, this convergence is not fully achieved for the range of
parameters explored here. The atomic mix approximation is in-
deed supposed to be valid only when the chunks of different
materials are optically thin, and this condition is typically not505

verified for our configurations (see Tabs. 7 and 3). Nonethe-
less, we notice one exception in case 2b, for large absorber
fractions in the range 0.7 < p < 1, where the relative po-
sitions of the reflection curves corresponding to tessellations
are inverted with respect to those corresponding to atomic mix.510

In such configurations, stochastic geometries with small 〈Λ〉∞
will induce low reflection probabilities and will further enhance
the discrepancy with respect to the atomic mix case. This non-
trivial behaviour, which stems from finite-size and interface ef-
fects dominating the transport process, has been previously ob-515

served for the benchmark configurations analysed in (28) under
similar conditions, i.e., small chunks of scattering material sur-
rounded by an absorbing medium. The threshold behaviour of
〈R〉 at p > 0.7 might be subtly related to the percolation of the
scattering material.520

For cases 1a and 1b, the transmission probability increases
with 〈Λ〉∞: larger void chunks enhance transmission. The
reflection probability is complementary to transmission and
shows the opposite trend. For case 2a and 2b, the transmis-
sion probability increases again with 〈Λ〉∞, and so do the re-525

flection probability and the integral flux. Therefore, the absorp-
tion probability 〈A〉 = 1 − 〈R〉 − 〈T 〉 for case 2 decreases with
increasing 〈Λ〉∞ (see Fig. 13).

Let us now consider the relevance of scattering cross sec-
tions Σs

β. For both case 1 and 2, the reflection probability in-530

creases when increasing Σs
β, whereas the transmission probabil-

ity decreases. For case 2, the resulting absorption probability
〈A〉 = 1 − 〈R〉 − 〈T 〉 decreases with Σs

β. Moreover, larger values
of Σs

β enhance the discrepancies between results corresponding
to different tessellations, as a function of 〈Λ〉∞: this is apparent535

when comparing case 1a to case 1b, or case 2a to case 2b. For
given parameters m and 〈Λ〉∞, the discrepancy with respect to
atomic mix depends on both p and Σs

β: this is maximal for large
values of p in case 1 and, conversely, for small values of p in
case 2.540

For case 2, where scattering is in competition with absorp-
tion, particles are all the more likely to avoid absorbing regions
as the chunks of scattering materials (of linear scale 〈Λ〉∞/p)
are large compared to the scattering mean free path 1/Σs

β. If
the size of scattering chunks is small compared to the scattering545

mean free path, particles have little or no chance of survival,
because they will most often cross an absorbing region. More-
over, 〈R〉 and 〈T 〉 increase with decreasing p and increasing
〈Λ〉∞. When the chunks of scattering material are large, the
stochastic tessellations typically contain clusters composed of550

scattering material spanning the geometry, forming ‘safe corri-
dors’ for the particles. Simulation findings suggest that a small
scattering mean free path does reduce the effect of absorption,
but only with respect to reflection probability: particles have
a greater chance of coming back to the starting boundary when555

the chunks of scattering material are large compared to the scat-
tering mean free path. On the contrary, the transmission proba-
bility is only weakly affected, which shows that for the chosen
benchmark configurations of case 2 transport is dominated by
the behaviour close to the starting boundary.560

Generally speaking, the impact of the mixing statistics m is
weaker than that of the other parameters of the benchmarks.
This is not entirely surprising, since we have chosen the re-
spective tessellation densities so to have the same 〈Λ〉∞, and
transport properties will mostly depend on the average chord565

length of the traversed polyhedra. Such behaviour might be of
utmost importance when the choice of the mixing statistics is
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part of the unknowns in modelling random media. For Box
and Poisson tessellations, the simulation results for all physical
observables are always in excellent agreement, which suggests570

that these mixing statistics are almost equivalent for the chosen
configurations. On the contrary, results for Voronoi tessella-
tions have a distinct behaviour, and for most cases these tes-
sellations show systematic discrepancies with respect to those
of Poisson or Box geometries, particularly in cases 2a and 2b575

for 〈T 〉 and 〈ϕ〉. These findings are coherent with the peculiar
nature of the Voronoi mixing statistics, as illustrated in the pre-
vious sections: differences in the chord length distribution and
in the aspect ratio of the underlying stochastic geometries will
induce small but appreciable differences in the transport-related580

observables.

4.4. Integral flux distribution
In order to better assess the variability of the integral flux

ϕ (i.e., of the time spent by the particles in the box) around
its average value, we have also computed its full distribution,585

based on the available realizations in the generated ensembles.
The resulting normalized histograms are illustrated in Figs. 14
for different values of 〈Λ〉∞ and 15 for different values of p and
different mixing statistics m.

As a general remark, the dispersion of the integral flux de-590

creases with decreasing 〈Λ〉∞, when the other parameters are
fixed (see Fig. 14, where we illustrate an example correspond-
ing to case 1a and 1b): the ensemble averages become increas-
ingly efficient and the average values become more represen-
tative of the full distribution, which is expected on physical595

grounds. The same behaviour has been observed for the reflec-
tion and transmission probabilities, in any configuration, and
for all mixing statistics. Moreover, numerical results show that
Poisson and Box tessellations have a very close distribution for
the integral flux, and that the dispersion around the average is600

smaller for Voronoi tessellations than for the other tessellations
(see Fig. 15).

For case 1, all configurations share the same average integral
flux. However, the dispersion of ϕ around the average value
depends on the probability p and on the scattering cross sec-605

tion Σs
β (see Fig. 15), and this not universal. For this case, the

impact of p is clearly apparent: for small values of p (chunks
of void surrounded by scattering material), the distribution is
rather peaked on the average value, whereas, for large values of
p (chunks of scattering material surrounded by void), the dis-610

persion is more spread out. The influence of the scattering cross
section Σs

β is also visible when comparing cases 1a and 1b: the
dispersion increases with increasing Σs

β.

4.5. Spatial flux
The spatial profiles of the ensemble-averaged scalar flux615

〈ϕ(x)〉 = 〈
∫ ∫ ∫

ϕ(r,ω)dωdydz〉 along the coordinate x are re-
ported in Figs. 16 and 17 for case 1 and in Figs. 18 and 19
for case 2. In Tripoli-4 R©, we estimate 〈ϕ(x)〉 by recording the
flux within the spatial grid defined above and by dividing the
obtained result by the volume of each mesh.620

Consistently with the findings concerning the scalar observ-
ables, the impact of 〈Λ〉∞ on the spatial profile of the scalar

flux is clearly visible (see Figs. 16 and 18). The lower 〈Λ〉∞,
the closer is the associated spatial flux profile to the results of
the atomic mix. As for the transmission and reflection proba-625

bilities, the impact of 〈Λ〉∞ depends on the probability p and
on the scattering cross section Σs

β. The discrepancy between the
atomic mix and stochastic tessellations increases with p for case
1 and decreases with p for case 2; furthermore, the discrepancy
systematically increases with increasing Σs

β.630

Mixing statistics m plays also a role, but again its effect is
weaker with respect to the other benchmark parameters, as il-
lustrated in Figs. 17 and 19. For each benchmark configuration,
we observe an excellent agreement between Poisson tessella-
tions and Box tessellations. On the contrary, spatial profiles635

associated with Voronoi tessellations agree with those of the
other tessellations for case 1, but show a distinct behaviour for
case 2.

5. Conclusions

Benchmark solutions for particle transport in random media640

are mandatory in order to validate faster, albeit approximate so-
lutions coming from closure formulas, such as the celebrated
Levermore-Pomraning model, or from effective transport ker-
nels for stochastic methods, such as the Chord Length Sampling
algorithm. A common assumption when dealing with random645

media is that the mixing statistics obeys a Poisson (Markov)
distribution (1). Most research efforts have been devoted to pro-
ducing reference benchmark solutions for one-dimensional ran-
dom media with slab or rod geometry: in this context, ground-
breaking work was performed by Adams, Larsen and Pomran-650

ing, who proposed a series of benchmark problems in binary
stochastic media with Markov mixing (22). Their findings were
later revisited and extended in (24; 25; 26; 27). In recent works,
we have examined the effects of dimension and finite-size on
the physical observables of interest (28; 31).655

The impact of the mixing statistics on particles transport has
received so far comparatively less attention (23). In this work,
we have considered the effects of varying the stochastic tessella-
tion model on the statistical properties of the resulting random
media and on the transport-related physical observables, such660

as the reflection and the transmission probabilities. As such,
this paper is a generalization of our previous findings (28; 31),
and might be helpful for researchers interested in developing
effective kernels for particle transport in disordered media. In
order to single out the sensitivity of the simulation results to665

the various model parameters, we have proposed two bench-
mark configurations that are simple enough and yet retain the
key physical ingredients. In the former, we have considered a
binary mixture composed of diffusing materials and voids; in
the latter, a binary mixture composed on diffusing and absorb-670

ing materials. The mixing statistics that have been selected for
this work are the homogeneous and isotropic Poisson tessella-
tions, the Poisson-Voronoi tessellations, and the Poisson Box
tessellations.

For each benchmark configuration we have provided refer-675

ence solutions by resorting to Monte Carlo simulation. A com-
puter code that has been developed at CEA allows generating
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the chosen tessellations, and particle transport has been then re-
alized by resorting to the Monte Carlo code Tripoli-4 R©. The
effects of the underlying mixing statistics, the cross sections,680

the material compositions and the average chord length of the
stochastic geometries have been accurately and extensively as-
sessed by varying each parameter. The distribution of the chord
lengths plays an important role in characterizing the transport
properties, which explains why the Voronoi tessellation, whose685

chord length is significantly different from the that of the other
mixing statistics, shows a distinct behaviour. We conclude by
remarking that Box tessellations yield almost identical results
with respect to Poisson tessellations: this is a remarkable fea-
ture, in that the realizations of Box geometries are much simpler690

and could be perhaps adapted for deterministic transport codes.
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2009:453,495-98.

[10] Svensson T, Vynck K, Grisi M, Savo R, Burresi M, Wiersma DS. Holey
random walks: optics of heterogeneous turbid composites. Phys Rev E
2013:87;022120.720

[11] Svensson T, Vynck K, Adolfsson E, Farina A, Pifferi A, Wiersma DS.
Light diffusion in quenched disorder: role of step correlations. Phys Rev
E 2014:89;022141.

[12] Davis AB, Marshak A. Photon propagation in heterogeneous opti-
cal media with spatial correlations. J Quant Spectrosc Radiat Transfer725

2004:84;3-34.
[13] Kostinski AB, Shaw RA. Scale-dependent droplet clustering in turbulent

clouds. J Fluid Mech 2001:434;389-98.
[14] Malvagi F, Byrne RN, Pomraning GC, Somerville RCJ. Stochastic radia-

tive transfer in partially cloudy atmosphere. J Atm Sci 1992:50;2146-58.730

[15] Tuchin V. Tissue optics: light scattering methods and instruments for
medical diagnosis. Cardiff, UK: SPIE Press; 2007.

[16] Mercadier N, Guerin W, Chevrollier M, Kaiser R, Lévy flights of photons
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m 〈Λ〉∞ 〈Λ|L〉 〈V〉∞ 〈V |L〉 〈S 〉∞ 〈S |L〉 〈NF〉∞ 〈NF |L〉

1 0.9247 ± 7.10−4 1.9099 1.90 ± 5.10−2 7.63944 7.5 ± 0.1 6 5.9979 ± 3.10−4

P 0.5 0.4755 ± 3.10−4 0.238732 0.243 ± 4.10−3 1.90986 1.93 ± 2.10−2 6 5.99963 ± 6.10−5

0.1 0.09848 ± 7.10−5 0.00191 0.00196 ± 3.10−5 0.076394 0.0777 ± 8.10−4 6 6.000000 ± 2.10−6

1 0.9554 ± 5.10−4 3.081 3.092 ± 5.10−3 12.326 12.78 ± 2.10−2 15.54 13.125 ± 4.10−3

V 0.5 0.4880 ± 2.10−4 0.3852 0.3854 ± 3.10−4 3.0815 3.137 ± 10−3 15.54 14.300 ± 10−3

10 0.09952 ± 4.10−5 0.003081 0.003082 ± 4.10−6 0.12326 0.12371 ± 10−5 15.54 15.2834 ± 2.10−4

1 0.9056 ± 7.10−4 3.375 3.18 ± 8.10−2 13.5 13.0 ± 0.2 6 6
B 0.5 0.4795 ± 3.10−4 0.4219 0.411 ± 8.10−3 3.375 3.31 ± 4.10−2 6 6

0.1 0.09961 ± 8.10−5 0.00338 0.00325 ± 5.10−5 0.135 0.132 ± 10−3 6 6

Table 6: Statistical properties of the tessellations used for the benchmark configurations, as a function of the mixing statistics m and of the average chord length
〈Λ〉∞, for a domain of linear size L = 10. For a given observable Q, the Monte Carlo result 〈Q|L〉 is compared to the associated value 〈Q〉∞ corresponding to infinite
tessellations. 〈Λ|L〉 is the average chord length measured by Monte Carlo ray tracing. 〈V |L〉 is the average volume of a polyhedron, 〈S |L〉 is the average total surface
of a polyhedron and 〈NF |L〉 is the average number of faces of a polyhedron.

〈Λ〉∞ p 〈Λα〉∞ 〈Λα|L〉P 〈Λα|L〉V 〈Λα|L〉B

0.05 0.1053 0.1032 ± 0.0005 0.1045 ± 0.0003 0.1043 ± 0.0005
0.15 0.1176 0.1163 ± 0.0004 0.1169 ± 0.0003 0.1173 ± 0.0004
0.3 0.1429 0.1403 ± 0.0004 0.1416 ± 0.0003 0.1412 ± 0.0004

0.1 0.5 0.2 0.1944 ± 0.0005 0.1978 ± 0.0004 0.1973 ± 0.0005
0.7 0.3333 0.3227 ± 0.0009 0.3251 ± 0.0008 0.3257 ± 0.0009
0.85 0.667 0.624 ± 0.002 0.631 ± 0.002 0.637 ± 0.002
0.95 2 1.689 ± 0.008 1.691 ± 0.008 1.686 ± 0.008

0.05 0.526 0.491 ± 0.002 0.519 ± 0.002 0.501 ± 0.002
0.15 0.588 0.548 ± 0.002 0.575 ± 0.001 0.559 ± 0.002
0.3 0.714 0.664 ± 0.002 0.690 ± 0.001 0.675 ± 0.002

0.5 0.5 1 0.905 ± 0.002 0.943 ± 0.002 0.918 ± 0.002
0.7 1.667 1.434 ± 0.003 1.479 ± 0.003 1.450 ± 0.004
0.85 3.333 2.486 ± 0.007 2.536 ± 0.006 2.504 ± 0.007
0.95 10 4.44 ± 0.01 4.53 ± 0.01 4.44 ± 0.01

0.05 1.053 0.932 ± 0.005 1.010 ± 0.004 0.907 ± 0.005
0.15 1.176 1.048 ± 0.004 1.122 ± 0.003 1.017 ± 0.004
0.3 1.429 1.251 ± 0.004 1.334 ± 0.003 1.228 ± 0.004

1 0.5 2 1.657 ± 0.004 1.772 ± 0.004 1.637 ± 0.004
0.7 3.333 2.500 ± 0.006 2.605 ± 0.006 2.459 ± 0.006
0.85 6.667 3.769 ± 0.009 3.876 ± 0.009 3.745 ± 0.009
0.95 20 5.38 ± 0.01 5.49 ± 0.01 5.37 ± 0.01

Table 7: The average chord length 〈Λα |L〉m through clusters of composition α, as a function of the probability p, of the mixing statistics m, and of the average chord
length 〈Λ〉∞, for a domain of linear size L = 10. The asymptotic quantity 〈Λα〉∞ = 〈Λ〉∞/(1 − p), valid for infinite domains, is given for reference.
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Figure 11: The probability density Π(Λα |L) of the chord length through clusters of composition α, as a function of the mixing statistics m, for several values of
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Figure 12: Monte Carlo results for for the benchmark configurations: cases 1a (left) and 2b (right). Reflection probability 〈R〉 (top), transmission probability
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Figure 16: Ensemble-averaged spatial scalar flux for Poisson tessellations (m = P), for the benchmark configurations: cases 1a (left) and 1b (right). Top: p = 0.95;
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〈Λ〉∞ = 0.1.

20



〈Λ〉∞ = 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7  8  9  10

 〈
φ

(x
)〉

x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9  10

 〈
φ

(x
)〉

x

〈Λ〉∞ = 0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7  8  9  10

 〈
φ

(x
)〉

x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9  10

 〈
φ

(x
)〉

x

〈Λ〉∞ = 0.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7  8  9  10

 〈
φ

(x
)〉

x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9  10

 〈
φ

(x
)〉

x

Figure 17: Ensemble-averaged spatial scalar flux, for the benchmark configurations: cases 1a (left) and 1b (right), with p = 0.95. Top: 〈Λ〉∞ = 1; center:
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Figure 18: Ensemble-averaged spatial scalar flux for Poisson tessellations (m = P), for the benchmark configurations: cases 2a (left) and 2b (right). Top: p = 0.05;
center: p = 0.3; bottom: p = 0.7. Black crosses denote the atomic mix approximation, dark green squares 〈Λ〉∞ = 1, violet circles 〈Λ〉∞ = 0.5 and orange triangles
〈Λ〉∞ = 0.1.
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Figure 19: Ensemble-averaged spatial scalar flux, for the benchmark configurations: cases 2a (left) and 2b (right), with p = 0.05. Top: 〈Λ〉∞ = 1; center:
〈Λ〉∞ = 0.5; bottom: 〈Λ〉∞ = 0.1. Black crosses denote the atomic mix approximation, blue squares m = P, green circles m = V and red diamonds m = B.
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