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Abstract

Eigenvalue problems for neutron transport in random geometries are key for
many applications, ranging from reactor design to criticality safety. In this
work we examine the behaviour of the reactivity and of the kinetics parame-
ters (the effective delayed neutron fraction and the effective neutron generation
time) for three-dimensional UOX and MOX assembly configurations where a
portion of the fuel pins has been randomly fragmented by using various mixing
statistics. For this purpose, we have selected stochastic tessellations of the Pois-
son, Voronoi and Box type, which provide convenient models for the random
partitioning of space, and we have generated an ensemble of assembly realiza-
tions; for each geometry realization, criticality calculations have been performed
by using the Monte Carlo code TRIPOLI-4 R©, developed at CEA. We have then
examined the evolution of the ensemble-averaged observables of interest as a
function of the average chord length of the random geometries, which is roughly
proportional to the correlation length of the fuel fragmentation. The method-
ology proposed in this work is fairly general and could be applied, e.g., to the
assessment of re-criticality probability following severe accidents.

Keywords: Random media, Monte Carlo, TRIPOLI-4 R©, Kinetics parameters,
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1. Introduction

Neutron multiplication in stochastic media has attracted intense research ef-
forts, in view of many relevant applications emerging in reactor physics and criti-
cality safety, such as the design of prismatic and pebble-bed reactors with double
heterogeneity fuel (Murata et al., 1996; Liang et al., 2013; Brown and Martin,5

2004), the analysis of neutron absorbers with dispersed poison grains (Doub,
1961) or MOX fuels with Pu-rich agglomerates (Yamamoto, 2010), optimal ra-
dioactive waste storage (Williams, 2003), and the assessment of the safety mar-
gins due to the multiplication factor distribution (Pomraning, 1999; Williams,
2000; Williams and Larsen, 2001), only to name a few.10

The formal approach to these problems consists in averaging the critical
Boltzmann equation with respect to the random configurations, and then solv-
ing the corresponding eigenvalue problem (Pomraning, 1991, 1999). Theoretical
progress on such topics is hindered by the great amount of ingenuity required to
derive exact results, even in the simplest models and configurations (Pomraning,15

1999; Williams, 2000, 2003; Williams and Larsen, 2001). Perturbation theory
can be helpful, but several simplifications are usually required, including mono-
energetic transport, isotropic scattering, or diffusion approximation (Pomraning,
1999; Williams and Larsen, 2001).

In this respect, Monte Carlo simulation offers a convenient tool for the nu-20

merical analysis of eigenvalue problems in stochastic media. For this purpose,
two complementary strategies have been proposed (Pomraning, 1991): the for-
mer consists in generating by Monte Carlo methods a collection of realizations
of random media (obeying some given distribution, which is supposed to accu-
rately model the system under analysis) and then solving the eigenvalue problem25

for each realization by using a transport code. The ensemble averages will finally
yield the moments, and in principle also the full distribution, of the physical ob-
servables of interest, e.g., the multiplication factor or the neutron flux shape.
Such reference solutions are exact, since the stochastic nature of the medium is
entirely preserved, including the effects on neutron trajectories possibly induced30

by the spatial correlations. The latter consists in developing effective trans-
port kernels capable of reproducing on-the-fly the ‘average’ behaviour of neu-
tron displacement accounting for the underlying random heterogeneities, such as
in the case of the well-known Chord Length Sampling algorithm (Zimmerman,
1990; Zimmerman and Adams, 1991; Donovan and Danon, 2003; Donovan et35

al., 2003). In this case, a single eigenvalue calculation with effective jump distri-
bution is sufficient, at the expense of sacrificing the correlations (whose effects
must be typically neglected in constructing these algorithms).
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Reference solutions, although computationally expensive, are nonetheless of
utmost importance for the validation of approximate, albeit much faster meth-40

ods, and for the verification of exact formulas (Levermore et al., 1986; Adams
et al., 1989; Malvagi et al., 1992; Su and Pomraning, 1995; Zuchuat et al., 1994;
Larsen and Vasques, 2011; Brantley, 2011; Donovan and Danon, 2003; Dono-
van et al., 2003; Brantley and Palmer, 2009; Brantley, 2009). Significant ad-
vances have been made in the numerical simulation of eigenvalue problems in45

the presence of stochastic inclusions, where objects (typically spheres) are ran-
domly placed within a background matrix (Murata et al., 1996; Liang et al.,
2013; Brown and Martin, 2004). Stochastic inclusions emerge for instance in the
modelling of the double heterogeneities in prismatic or pebble-bed reactors. In
particular, highly sophisticated algorithms have been devised in order to properly50

take into account boundary effects due to spheres not entirely contained in the
medium (Grieshiemer et al., 2010; Ji and Martin., 2013). Eigenvalue calculations
in stochastic tessellations, where the medium is supposed to be partitioned into
a collection of random (fissile and non-fissile) volumes obeying a given mixing
statistics (Pomraning, 1991), have been limited so far to one-dimensional config-55

urations of the rod or slab type (Pomraning, 1999; Williams and Larsen, 2001).
Such models might represent, e.g., the accidental positioning of fuel lumps into
moderating material, in the context of criticality safety.

In a series of recent papers, we have examined the statistical properties of
linear particle transport through d-dimensional stochastic tessellations without60

multiplication (Lepage et al., 2011; Larmier et al., 2017a). In particular, we
have computed reference solutions for the ensemble-averaged scalar flux and the
reflection and transmission probabilities for Poisson (Markov) mixing statistics
by revisiting the benchmark originally proposed by Adam, Larsen and Pomran-
ing (Adams et al., 1989; Brantley, 2011; Brantley and Palmer, 2009; Brantley,65

2009), and we have then extended our findings to the case of Voronoi and Box
statistics (Larmier et al., 2017b).

In this work, we will adopt stochastic tessellations (Santalo, 1976; Torquato,
2013) in order to assess the impact of the three-dimensional random fragmen-
tation of fuel elements on the key safety parameters for criticality calculations,70

including the multiplication factor keff, the effective delayed neutron fraction βeff,
and the effective neutron generation time `eff. In-pile fuel degradation might
result from partial core melt-down during severe accidents, with melting, re-
solidification and relocation (Hagen and Hofmann, 1987; Hofmann, 1999), as
occurred in the case of the Three Mile Island unit 2 (Broughton et al., 1989).75

The effects of such scenario on neutron kinetics are of utmost importance for the
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evaluation of the re-criticality probability. To our best knowledge, the influence
of random geometries on kinetics parameters has never been addressed before.
Starting from a reference UOX or MOX assembly with 17×17 fuel pins, we will
consider three perturbed configurations having the central pin, 7×7 central pins80

and the whole 17× 17 pins being randomly fragmented. We will assume that
the random re-arrangement after melt-down can be described by ternary mix-
ing statistics (Pomraning, 1991), accounting for the dispersion of the fuel, the
cladding and the moderator, the average linear size of the chunks for each mate-
rial being a free parameter of the model. For each realization, we will perform85

criticality calculations by using the Monte Carlo transport code TRIPOLI-4 R©

developed at CEA (Brun et al., 2015), so as to investigate the distribution of keff,
βeff and `eff as a function of the model parameters, including the material compo-
sitions, the kind of stochastic tessellation, the linear size of the random chunks,
and the number of fragmented fuel pins.90

In order to better grasp the physical behaviour of these systems without being
hindered by the complexity of all the ingredients involved in nuclear accidents,
the analysis of assembly configurations that will be carried out in this work is ad-
mittedly highly simplified with respect to the realistic description of fuel degra-
dation: for instance, we will focus exclusively on neutron transport, and we will95

not include the effects due to thermal-hydraulics, thermo-mechanics or the com-
plex physical-chemical reactions occurring in accidental transients (Hagen and
Hofmann, 1987; Hofmann, 1999). Nonetheless, the methodology proposed in
this paper is fairly broad and can be applied without any particular restrictions to
more sophisticated models.100

This paper is organized as follows: in Sec. 2 we will briefly introduce the
stochastic tessellations that will be used in this work. Then, in Sec. 3 we will
describe the benchmark model for the partially melted fuel assembly. Simulation
results for the multiplication factor and the kinetics parameters will be presented
and discussed in Sec. 4. Conclusions will be finally drawn in Sec. 5.105

2. Stochastic tessellations

Stochastic tessellations form a convenient class of probabilistic models to
partition a given d-dimensional domain into random polyhedral cells (Santalo,
1976; Chiu et al., 2013; Torquato, 2013), and as such have been adopted in a
broad spectrum of applications, ranging from material science (Gilbert, 1962;110

Meijering, 1953) to stereology (Serra, 1982; Santalo, 1976): for an extensive
review, see, e.g., (Santalo, 1976; Miles, 1972; Torquato, 2013). In this section,
we introduce the three mixing statistics that will be used in order to generate the
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random geometries for the criticality calculations. In particular, we will recall the
algorithms for their construction based on Monte Carlo methods, and their main115

statistical features. These algorithms have already been discussed elsewhere, but
they are reported here in order for the paper to be self-contained. For the sake of
conciseness, the three stochastic tessellations will be distinguished by their label
m, namely, m = P for Poisson tessellations, m = V for Voronoi tessellations,
and m = B for Box tessellations. The algorithms described in the following have120

been implemented into a computer code that can perform the statistical analysis
of an ensemble of realizations, and can produce input files for the TRIPOLI-4 R©

Monte Carlo transport code (Brun et al., 2015).

2.1. Isotropic Poisson tessellations
Markovian mixing is generated by using isotropic Poisson geometries, which125

form a prototype process of stochastic tessellations: a domain included in a
d-dimensional space is partitioned by randomly generated (d− 1)-dimensional
hyper-planes drawn from an underlying Poisson process (Santalo, 1976; Miles,
1970, 1972). An algorithm has been recently proposed for finite d-dimensional
geometries (Serra, 1982; Ambos and Mikhailov, 2011), allowing for the explicit130

construction of three-dimensional homogeneous and isotropic Poisson tessella-
tions. In the following we will present the algorithm for the construction of these
geometries restricted to a cubic box (further details are provided in (Larmier et
al., 2016)).

The algorithm starts by sampling a random number of hyper-planes NH from
a Poisson distribution of intensity 4ρPR, where R is the radius of the sphere
circumscribed to the cube and ρP is the (arbitrary) density of the tessellation,
carrying the units of an inverse length. This normalization of the density ρP cor-
responds to the convention used in (Santalo, 1976), and is such that ρP yields
the mean number of (d−1)-hyperplanes intersected by an arbitrary segment of
unit length. Then, we generate the planes that will cut the cube. We choose a ra-
dius r uniformly in the interval [0,R] and then sample two additional parameters,
namely, ξ1 and ξ2, from two independent uniform distributions in the interval
[0,1]. A unit vector n = (n1,n2,n3)T with components

n1 = 1−2ξ1

n2 =
√

1−n2
1 cos(2πξ2)

n3 =
√

1−n2
1 sin(2πξ2)

is generated. Denoting by M the point such that OM = rn, the random plane will135

finally obey n1x +n2y+n3z = r, passing trough M and having normal vector n.
5



By construction, this plane does intersect the circumscribed sphere of radius R
but not necessarily the cube. The procedure is iterated until NH random planes
have been generated. The polyhedra defined by the intersection of such random
planes are convex.140

2.2. Poisson-Voronoi tessellations
Voronoi tessellations refer to another prototype process for isotropic random

division of space (Santalo, 1976). A portion of a space is decomposed into poly-
hedral cells by a partitioning process based on a set of random points, called
‘seeds’. From this set of seeds, the Voronoi decomposition is obtained by ap-145

plying the following deterministic procedure: each seed is associated with a
Voronoi cell, defined as the set of points which are nearer to this seed than to
any other seed. Such a cell is convex, because obtained from the intersection of
half-spaces.

In this paper, we will exclusively focus on Poisson-Voronoi tessellations,150

which form a subclass of Voronoi geometries (Meijering, 1953; Gilbert, 1962;
Miles, 1972). The specificity of Poisson-Voronoi tessellations concerns the sam-
pling of the seeds. In order to construct Poisson-Voronoi tessellations restricted
to a cubic box of side L, we adopt the algorithm proposed in (Miles, 1972). First,
we choose the random number of seeds NS from a Poisson distribution of param-155

eter (ρV L)3, where ρV characterizes the density of the tessellation. Then, NS
seeds are uniformly sampled in the box [−L/2,L/2]3. For each seed, we com-
pute the corresponding Voronoi cell as the intersection of half-spaces bounded
by the mid-planes between the selected seed and any other seed. In order to avoid
confusion with the Poisson tessellations described above, we will mostly refer to160

Poisson-Voronoi geometries simply as Voronoi tessellations in the following.

2.3. Poisson Box tessellations
Box tessellations form a class of anisotropic stochastic geometries, composed

of rectangular boxes with random sides. For the special case of Poisson Box tes-
sellations (as proposed by (Miles, 1972)), a domain is partitioned by i) randomly165

generated planes orthogonal to the x-axis, through a Poisson process of intensity
ρx; ii) randomly generated planes orthogonal to the y-axis, through a Poisson
process of intensity ρy; iii) randomly generated planes orthogonal to the z-axis,
through a Poisson process of intensity ρz. In the following, we will assume that
the three parameters are equal, namely, ρx = ρy = ρz = ρB.170

In order to tessellate a cube of side L, the construction algorithm is the fol-
lowing: we begin by sampling a random number Nx from a Poisson distribu-
tion of intensity ρBL. Then, we sample Nx points uniformly on the segment
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[−L/2,L/2]. For each point of this set, we cut the geometry with the plane or-
thogonal to the x-axis and passing through this point. We repeat this process for175

the y-axis and the z-axis. For the sake of conciseness, we will denote by Box
tessellations these Poisson Box tessellations. Poisson-Box tessellations have the
remarkable property that their chord length distribution is almost identical to that
of the homogeneous and isotropic Poisson tessellations (Ambos and Mikhailov,
2011; Larmier et al., 2017b). They could then be used as an approximate model180

for Markov mixing statistics, in view of the extremely reduced algorithmic com-
plexity required for their construction.

2.4. Statistical properties of infinite tessellations
The observables of interest associated to the stochastic geometries, such as

for instance the volume of a polyhedron, its surface, the number of faces, and so185

on, are random variables. With a few remarkable exceptions, their exact distri-
butions are unfortunately unknown (Santalo, 1976). Nevertheless, exact results
have been established for some low-order moments of the observables, in the
limit case of domains having an infinite extension (Santalo, 1976; Chiu et al.,
2013; Miles, 1970).190

In this respect, Poisson tessellations have been shown to possess a remark-
able property: in the limit of infinite domains, an arbitrary line will be cut by
the hyperplanes of the tessellation into chords whose lengths are exponentially
distributed with parameter ρP (whence the identification with Markovian mix-
ing) (Santalo, 1976; Miles, 1970, 1972). Thus, in this case, the average chord
length 〈Λ〉

∞
satisfies 〈Λ〉

∞
= ρ

−1
P , and its probability density ΠP(Λ) is given by

Π
P(Λ) =

1
〈Λ〉

∞

e−Λ/〈Λ〉∞. (1)

To the best of our knowledge, the exact distribution of the chord length for
Voronoi and Box tessellations is not known. However, the average chord length
for Voronoi and Box tessellations has been rigorously derived (Santalo, 1976;
Miles, 1970, 1972) and is recalled in Tab. 1. Monte Carlo simulations show that
the chord length distribution for the Box tessellations is actually very close (and195

nonetheless not equal) to that of Poisson tessellations (Larmier et al., 2017b).
The shape of the chord length distribution for Voronoi tessellations is on the
contrary very different from the exponential shape.

2.5. Chord lengths and finite-size effects
In the presence of boundaries, the average chord lengths of finite-size stochas-200

tic tessellations will generally differ from their asymptotic values. In order to in-
vestigate such effects, we have numerically computed by Monte Carlo simulation
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m 〈Λ〉
∞

P ρP
−1

V 0.6872ρV
−1

B (2/3)ρB
−1

Table 1: Exact formulas for the average chord length 〈Λ〉
∞

in infinite tessel-
lations, for different mixing statistics m. Expressions are taken from (Santalo,
1976; Miles, 1972).

the distribution and the average of the chord length for each mixing statistics m.
A random tessellation is first generated, and a line is then drawn with an isotropic
and homogeneous distribution (technically speaking, the line must obey the µ-205

randomness (Coleman, 1969)). The intersections of the line with the polyhedra
of the geometry are computed, and the resulting segment lengths are recorded.
This step is repeated for a large number of random lines. Then, a new geometry
is generated and the whole procedure is iterated for several geometries, in order
to get satisfactory statistics.210

The numerical results for the normalized average chord length 〈Λ∗|L∗〉 =
〈Λ|L∗〉/〈Λ〉

∞
as a function of the normalized linear size L∗ = L/〈Λ〉

∞
of the do-

main are illustrated in Fig. 1 for different mixing statistics m. Monte Carlo sim-
ulation results for the chord length distribution are shown in Fig. 2, for 〈Λ〉

∞
= 1

and for several values of L. For small L, finite-size effects are visible in the215

chord length distribution: indeed, the longest length that can be drawn across
a box of linear size L is

√
3L, which thus induces a cut-off on the distribution.

For large L, the finite-size effects due to the cut-off fade away. In particular, the
probability density for Poisson tessellations eventually converges to the expected
exponential behaviour. Simulations show that the chord length distributions in220

Box tessellations and in Poisson tessellations are very close, which is consis-
tent with the observations in (Ambos and Mikhailov, 2011). On the contrary,
in Voronoi tessellations, the probability density has a distinct non-exponential
functional form (see Fig. 2).

2.6. Assigning material compositions: colored geometries225

In order to describe the fuel pin fragmentation that will be discussed in the
next section, the material compositions of the fuel pin components must be (ran-
domly) transferred to the stochastic tessellation. For the sake of simplicity,
we will assume that only three compositions are present, namely the fuel, the
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Figure 1: Average chord length 〈Λ|L∗〉 (arbitrary units) as a function of the
rescaled system size L∗ = L/〈Λ〉∞, with parameter 〈Λ〉∞ = 1. Blue squares de-
note the results for Poisson tessellations, red triangles for Box tessellations, and
green circles for Voronoi tessellations. Dotted lines have been added to guide the
eye. Dashed black line corresponds to the asymptotic value for infinite tessella-
tions.

cladding and the moderator. This procedure can be achieved by adopting ternary230

stochastic mixtures, which are realized as follows. First, Poisson, Voronoi or
Box tessellations are constructed as described above. Then, each polyhedron of
the geometry is assigned a material composition by formally attributing a distinct
‘label’ (also called ‘color’), say ‘α’, ‘β ’ or ‘γ’, with associated probabilities pα ,
pβ and pγ = 1− pα − pβ . We will call a ‘cluster’ the collection of adjacent235

polyhedra sharing the same label.
After assigning colors to stochastic geometries, we can introduce the average

chord length through clusters with label i (i = α , β or γ), denoted by 〈Λi〉∞. For
infinite tessellations, it can be shown that 〈Λi〉∞ is related to the average chord
length 〈Λ〉

∞
of the geometry via

〈Λ〉
∞

= (1− pi)〈Λi〉∞. (2)

This property stems from the binomial distribution of the coloring procedure (Ha-
ran et al., 2000; Larmier et al., 2016), and holds true for each tessellation m. Ad-
ditionally, the corresponding probability density ΠP(Λi) is still exponential for
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Figure 2: The probability density Π(Λ) of the chord length for 〈Λ〉∞ = 1 as a
function of the system size L (Λ and L are given in arbitrary units). Results for
Poisson tessellations are displayed in blue, Box tessellations in red, and Voronoi
tessellations in green. Dashed lines correspond to L = 2. Symbols correspond
to L = 100. The exponential distribution is shown as a black solid line, for
reference.

infinite Poisson geometries, i.e.,

Π
P(Λi) =

1
〈Λi〉∞

e−Λi/〈Λi〉∞ (3)

For Voronoi and Box tessellations, the full probability densities ΠV (Λi) and
ΠB(Λi) are not known.

3. A model of assembly with fragmented fuel pins

The stochastic tessellations described above can be conveniently adopted to240

represent a partially melted fuel assembly, the size of the fuel fragments being
determined by the geometry density (which is a free parameter of the model).
We propose in the following some benchmark configurations that are simple
enough to enable a physical interpretation of the effects induced by the presence
of random material fragmentation, and yet retain the key ingredients.245

As a reference configuration we will consider an assembly composed of 17×
17 square fuel pin-cells of side length δ = 1.262082 cm in the plane Oxy and
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Material Isotopes Concentration
(atoms × 1024 × cm−3)

UOX fuel
U235 8.4148×10−4

U238 2.1625×10−2

O16 4.4932×10−2

MOX fuel
U234 3.9390×10−7

U235 4.9524×10−5

U238 2.1683×10−2

PU238 2.2243×10−5

PU239 7.0164×10−4

PU240 2.7138×10−4

PU241 1.3285×10−4

PU242 6.6984×10−5

AM241 1.2978×10−5

AM242M 2.2569×10−10

O16 4.5882×10−2

Moderator
H1 4.7716×10−2

O16 2.3858×10−2

B10 3.9724×10−6

B11 1.5890×10−5

Cladding
ZR90 2.2060×10−2

ZR91 4.8107×10−3

ZR92 7.3532×10−3

ZR94 7.4518×10−3

ZR96 1.2005×10−3

Table 2: Material compositions for the UOX and MOX assemblies used for the
benchmark configurations.

of height Lz = 10 cm. Reflective boundary conditions will be imposed on all
sides of the assembly. The fuel elements will be entirely either of the UOX or
MOX type: the respective material compositions for the fuel, the cladding and250

the moderator are provided in Tab. 2. The proposed compositions correspond to
fresh (Beginning Of Life) fuel. The assembly will be assumed to be at a uniform
temperature of T = 300 K, for conservatism (Doppler effect on reactivity will be
reduced).

The partial melting of a collection of fuel pins is then introduced by applying
a stochastic ternary mixing model of Poisson, Voronoi or Box type to a central
region composed of nx×ny cells. For the sake of simplicity, this region will be
assumed to be located at the center of the assembly, with nx = ny = n, n being
odd. The assembly portion corresponding to this region is removed and replaced
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by a stochastic tessellation. The tessellation is then randomly ‘colored’ with
ternary labels, namely, ’F ’ for fuel, ’C ’ for cladding and ’M ’ for moderator,
with corresponding coloring probabilities pF , pC and pM chosen so that for
each material i the ensemble-averaged volumic ratio 〈pi〉 coincides with that of
a pin-cell before fragmentation:

pF = πR2
1/δ 2 ≈ 0.335861

pC = π(R2
2−R2

1)/δ 2 ≈ 0.107943
pM = (δ 2 − πR2

2)/δ 2 ≈ 0.556196. (4)

Moreover, in order for the three stochastic tessellation models to yield compara-255

ble results with respect to neutron transport, we have set the free parameters of
each model (i.e., the geometry density ρ) so as to have exactly the same average
chord length 〈Λ〉∞. In-pile and out-of-pile experiments of core degradation show
that the fuel fragments after melting are partially mixed with the cladding (Hagen
and Hofmann, 1987; Hofmann, 1999): nonetheless, for the present benchmark260

we assume that the fuel and the cladding are present in distinct phases. The
pin-cells surrounding the perturbed region are left unchanged.

It is important to note that, for a single geometrical realization, the volumic
ratio of material i in the tessellation is not rigorously equal to pi, because of
finite-size effects. However, the finite-size effects progressively fade away with265

increasing fragmentation of the tessellation, and become negligible for tessella-
tions dense enough. This behaviour will be discussed in Sec. 4.8.

For our benchmark model, we have selected three fragmented configurations,
each corresponding to a different size for the melted portion of the assembly: in
configuration 1, only the central pin-cell is replaced by a ternary mixing (n = 1).270

In configuration 2, we have chosen a portion n = 7, i.e., about half of the assem-
bly is fragmented. Finally, in configuration 3, the entire assembly is fragmented
(n = 17). For illustration, some of the resulting partially melted assemblies are
shown in Figs. 3 and 4.

The physical observables that we would like to determine are the ensemble-275

averaged multiplication factor 〈keff〉, the ensemble-averaged kinetics parameters
(namely, the effective neutron generation time 〈`eff〉 and the effective delayed
neutron fraction 〈βeff〉), as well as and the ensemble-averaged scalar particle flux
〈ϕ(r,E)〉 within the assembly.

Our goal is to investigate how these physical observables are affected by the280

presence of the fragmented fuel pins. For this purpose, we will vary the mixing
statistics by separately testing Poisson, Voronoi and Box tessellations, and the
average chord length 〈Λ〉∞ for each tessellation (which basically rules the aver-
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Configuration 1

Configuration 2

Configuration 3

Figure 3: Assemblies with Poisson tessellation for the central fuel pins. Top:
configuration 1 (n = 1), with 〈Λ〉∞ = 0.05 cm. Center: configuration 2 (n = 7),
with 〈Λ〉∞ = 0.2 cm. Bottom: configuration 3 (n = 17), with 〈Λ〉∞ = 0.15 cm.
Left column: radial view. Right column: axial view.

age size of the material chunks composing the randomized portion of the assem-
bly). In-core experiments have shown that the fragment size may vary between285

less than a millimetre and several millimetres, depending on the re-solidification
13



Poisson

Voronoi

Box

Figure 4: Assemblies with stochastic tessellation for the central fuel pins. Radial
view of the configuration 2 (n = 7), for different mixing statistics and average
chord lengths 〈Λ〉∞. Top: Poisson tessellation. Center: Voronoi tessellation.
Bottom: Box tessellation. Left column: 〈Λ〉∞ = 0.5 cm. Right column: 〈Λ〉∞ =
0.1 cm.

speed (Hagen and Hofmann, 1987; Broughton et al., 1989; Hofmann, 1999). De-
creasing 〈Λ〉∞ means increasing the density of the tessellations, which implies
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an increasing computational cost for both the generation of the random geome-
try, and for the particle transport within the geometry. We have thus a practical290

limitation to the smallest achievable value of 〈Λ〉∞. When on the contrary 〈Λ〉∞
becomes comparable to the linear size of the fragmented region, the realization
of the ternary mixing are entirely dominated by finite-size effects, the disper-
sion of the volumic ratio for each material composition becomes relevant. This
roughly defines the upper limit for the range of 〈Λ〉∞ that will be considered in295

the numerical simulations presented in the following.
On the basis of these considerations, we have adapted the range of 〈Λ〉∞ to

each configuration: for n = 1, we have taken 〈Λ〉∞ from 0.03 cm to 0.5 cm; for
n = 7, we have taken 〈Λ〉∞ from 0.1 cm to 1.5 cm; and for n = 17 we have taken
〈Λ〉∞ from 0.15 cm to 3 cm. Some examples of realizations of Poisson, Voronoi300

and Box tessellations corresponding to different values of 〈Λ〉∞ are displayed in
Fig. 4 for the benchmark configuration with n = 7.

For any mixing statistics, we will consider also the limit case of 〈Λ〉∞ → 0.
This corresponds to the so-called ‘atomic mix’ approximation, where material
chunks are assumed to be so fine with respect to the average neutron free path that305

the stochastic tessellations can be replaced by a homogenized composition where
the macroscopic cross sections are obtained by averaging the cross sections of
each material weighed by the respective volumic ratios: PF for the fuel, PM for
the moderator, and PC for the cladding.

4. Simulation results310

In this section we present and discuss the criticality calculations performed
with TRIPOLI-4 R© for the partially melted assemblies. The reference solutions
for the ensemble-averaged multiplication factor 〈keff〉, kinetics parameters 〈`eff〉
and 〈βeff〉, and scalar neutron flux 〈ϕ(r,E)〉 have been computed as follows. For
each assembly configuration, a large number M of geometries has been gener-
ated, and the material properties have been attributed to each volume as described
above. Then, for each realization j of the ensemble, eigenvalue calculations have
been carried out by using TRIPOLI-4 R©. The number of simulated particle his-
tories per configuration has been chosen so that the statistical error on the com-
puted eigenvalue keff is smaller than 50 pcm. For a given physical observable O ,
the benchmark solution is obtained as the ensemble average

〈O〉=
1
M

M

∑
j=1

O j, (5)
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where O j is the Monte Carlo estimate for the observable O obtained for the j-
th realization. The scalar flux ϕ j(r,E) has been recorded by using the standard
track length estimator over a pre-defined spatial grid.

The error affecting the average observable 〈O〉 results from two separate
contributions, namely, the dispersion

σ
2
G =

1
M

M

∑
j=1

O j
2−〈O〉2 (6)

of the observables exclusively due to the stochastic nature of the geometries and
of the material compositions, and

σ
2
O =

1
M

M

∑
j=1

σ
2
O j

, (7)

which is an estimate of the variance due to the stochastic nature of the Monte
Carlo method for the particle transport, σ2

O j
being the dispersion of a single cal-

culation (Donovan and Danon, 2003; Donovan et al., 2003). The statistical error
on 〈O〉 is then estimated as

σ [〈O〉] =

√
σ2

G
M

+σ2
O . (8)

Depending on the correlation lengths and on the volumetric fractions, the
physical observables might display a larger or smaller dispersion around their av-315

erage values. In order to assess the impact of such dispersion, we have also com-
puted the full distribution of keff based on the available realizations. The number
of realizations M has been adapted to the configuration (i.e., to the number n of
fragmented fuel pins) and to the chosen average chord length 〈Λ〉∞. As a general
remark, decreasing the average chord length 〈Λ〉∞ for a given tessellation im-320

plies an increasing computational burden (each realization takes longer both for
generation and for Monte Carlo transport), but also a better statistical averaging
(a single realization is more representative of the ‘typical’ random behaviour).
The parameter M varies between M = 100 for, e.g., n = 1 and 〈Λ〉∞ = 0.03 cm,
and M = 3000 for, e.g., n = 17 and 〈Λ〉∞ = 3 cm.325

4.1. The TRIPOLI-4 code and the simulation options
TRIPOLI-4 R© is a general-purpose Monte Carlo radiation transport code de-

veloped at CEA and devoted to shielding, reactor physics with depletion, crit-
icality safety and nuclear instrumentation (Brun et al., 2015). TRIPOLI-4 R© is
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the reference Monte Carlo code for CEA (including laboratories and reactor fa-330

cilities) and the French utility company EDF. It is also the reference code of the
CRISTAL Criticality Safety package (Gomit et al., 2011) developed with IRSN
and AREVA. The code offers both fixed-source and criticality simulation modes.
Neutrons are simulated in the energy range from 20 MeV to 10−5 eV. Particle
transport is performed in continuous-energy, and the necessary nuclear data (i.e.,335

point-wise cross-sections, scattering kernels, secondary energy-angle distribu-
tions, secondary particle yields, fission spectra, and so on) are read by the code
from any evaluation written in ENDF-6 format (McLane, 2004). The code can
directly access files in ENDF and PENDF format.

For the criticality calculations presented in the following, we have selected340

the JEFF-3.1.1 nuclear data library (Santamarina et al., 2009). Concerning
probability tables for the unresolved resonance range, TRIPOLI-4 R© adopts the
CALENDF code (Sublet et al., 2011). Thermal data S(α,β ) for bound hydro-
gen in water were available in JEFF-3.1.1 at 296 K. Doppler broadening of
elastic scattering differential cross sections has been enforced by using the stan-345

dard SVT model. The DBRC model for resonant nuclides, although available in
TRIPOLI-4 R© (Zoia et al., 2012), has not been used, since it is not expected to
have a major impact on reactivity and kinetics parameters at low temperature.

Concerning kinetics parameters calculations, starting from version 4.10 the
Iterated Fission Probability (IFP) method has been implemented in TRIPOLI-350

4 R© (Truchet et al., 2015) and extensively validated (Truchet et al., 2015; Zoia
and Brun, 2016; Zoia et al., 2016). Exact calculation of adjoint-weighted quan-
tities by the IFP method establishes Monte Carlo simulation as a reference tool
for the analysis of effective kinetics parameters, which are key to nuclear re-
actor safety during transient operation and accidental excursions (Nauchi and355

Kameyama, 2010; Kiedrowski, 2011b). In TRIPOLI-4 R©, a superposed-cycles
implementation has been chosen for IFP, with an arbitrary number of latent gen-
erations M (Truchet et al., 2015). For all the simulations discussed here, we have
chosen M = 20.

For our simulations, we have largely benefited from a feature that has been360

recently implemented in the code TRIPOLI-4 R©, namely the possibility of ex-
ploiting pre-computed connectivity maps for the volumes composing the geom-
etry. During the generation of the stochastic tessellations, care has been taken so
as to store the indexes of the neighbouring volumes for each realization, which
means that during the geometrical tracking a particle will have to find the fol-365

lowing crossed volume in a list that might be considerably smaller than the total
number of random volumes composing the box (depending on the features of the
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Figure 5: Average number of polyhedra 〈NP〉 of the stochastic tessellation as a
function of the average chord length 〈Λ〉∞ and of the mixing statistics m. Blue
symbols denote the results for Poisson tessellations, red symbols for Box tessel-
lations, and green symbols for Voronoi tessellations. Diamonds correspond to
configuration 1 (n = 1), crosses to configuration 2 (n = 7) and circles to config-
uration 3 (n = 17).

random geometry).

4.2. Complexity and computer time
Before addressing the simulation results for the ensemble-averaged physical370

observables, we briefly analyse the computational cost of the performed calcu-
lations as a function of the complexity of the underlying stochastic tessellations.
Transport calculations have been run on a cluster based at CEA, with Xeon E5-
2680 V2 2.8 GHz processors. The average number of polyhedra 〈NP〉 pertaining
to each random geometry is reported in Fig. 5: it is apparent that the quantity375

〈NP〉 increases with decreasing 〈Λ〉∞, i.e., with increasing fragmentation. The
scaling law is fairly independent of the mixing statistics m, and roughly goes
as 〈NP〉 ∼ 1/〈Λ〉3∞ for any m. The exponent of the scaling law stems from the
dimension d = 3. The number n of fragmented fuel pins does not affect these
results, as expected.380

The corresponding (ensemble-averaged) computer times for each assembly
configuration are reported in Tab. 3. Dispersions σ [t] are also given. The simu-
lation time increases when increasing the portion of the assembly that is subject
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min〈Λ〉∞ max〈Λ〉∞
n tmix m 〈t〉±σ [t] 〈t〉±σ [t]

P 6170±570 2970±40
1 3260 V 4580±110 2940±25

B 4060±225 2960±30

P 18000±3000 2840±60
7 2990 V 9200±150 2820±30

B 7500±1000 2840±40

P 48000±16000 2200±200
17 1350 V 14000±300 2300±200

B 16000±3000 2200±200

Table 3: Average computer time 〈t〉 (expressed in seconds) and the correspond-
ing standard deviation σ [t] for transport simulations in benchmark configura-
tions n = 1, n = 7 and n = 17 with UOX fuel, as a function of the mixing
statistics m, for the minimal (respectively, maximal) value of the chord length
min〈Λ〉∞ (respectively, max〈Λ〉∞). The computer time tmix (expressed in sec-
onds) for transport simulations corresponding to atomic mix fuel fragmentation
is also displayed. For reference, the computer time for a transport simulation in
the UOX assembly with intact fuel pins is equal to 3240 seconds.

to fragmentation, as expected. While a decreasing trend for 〈t〉 as a function of
〈Λ〉∞ is clearly apparent, subtle effects due to correlation lengths and volume385

fractions for the material compositions come also into play, and strongly influ-
ence the average computer time. For some configurations, the dispersion σ [t]
may become very large, and even be comparable to the average 〈t〉. The chosen
tessellation model visibly affects the computer time. Atomic mix simulations
are based on a single homogenized realization, and the dispersion is thus triv-390

ially zero.

4.3. Multiplication factor
We begin our analysis by considering the behaviour of the multiplication

factor 〈keff〉, whose evolution is illustrated in Figs. 6, 7, and 8 for UOX and
MOX assemblies with n = 1, n = 7 and n = 17 melted fuel pins, respectively.395

The computed value 〈keff〉 is displayed as a function of increasing chord length
〈Λ〉∞, for Poisson, Voronoi and Box tessellations. As detailed above, the error
bar on 〈keff〉 results from the contribution of the Monte Carlo statistical error
(which is of the order of about 50 pcm for all simulations) and the dispersion
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Figure 6: Evolution of the ensemble-averaged multiplication factor 〈keff〉 as a
function of the average chord length 〈Λ〉∞. Left: UOX assembly with n = 1.
Right: MOX assembly with n = 1. Blue squares denote the results for Poisson
tessellations, red triangles for Box tessellations, and green circles for Voronoi
tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix model.
The black solid line denotes keff,0, the result for the assembly with intact fuel pins,
which has been added for reference (dashed lines represent the 1σ statistical
uncertainty).

due to the random realizations. The limit case of atomic mix (〈Λ〉∞ → 0) is also400

shown. In each figure, the keff,0 eigenvalue corresponding to an assembly with
intact fuel pins is plotted for reference.

As expected on physical grounds, the impact of the stochastic tessellations
on the multiplication factor depends on the size of the assembly that has been
randomly fragmented. When n = 1, the difference between 〈keff〉 and the refer-405

ence keff,0 is of the order of 100 pcm, and falls almost within 1σ uncertainty. The
major contribution to the dispersion of the multiplication factor stems from the
statistical error. In this case, the impact of the specific tessellations models is not
appreciable. For UOX assemblies, the average values 〈keff〉 lie all slightly above
keff,0 for any 〈Λ〉∞, and seem to attain keff,0 in the atomic mix limit. For MOX as-410

semblies, the average values 〈keff〉 lie all slightly below keff,0 for any 〈Λ〉∞, even
in the atomic mix limit.

When n = 7, a relevant portion of the fuel pins is fragmented, and the im-
pact of the stochastic tessellations on the eigenvalue becomes apparent. For
both UOX and MOX assemblies, in the atomic mix limit 〈keff〉 is well below415

the reference keff,0 (about 1000 pcm for UOX and 2000 pcm for MOX). Then,
for increasing chord length 〈Λ〉∞, for all the stochastic tessellations models 〈keff〉
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Figure 7: Evolution of the ensemble-averaged multiplication factor 〈keff〉 as a
function of the average chord length 〈Λ〉∞. Left: UOX assembly with n = 7.
Right: MOX assembly with n = 7. Blue squares denote the results for Poisson
tessellations, red triangles for Box tessellations, and green circles for Voronoi
tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix model.
The black solid line denotes keff,0, the result for the assembly with intact fuel pins,
which has been added for reference (dashed lines represent the 1σ statistical
uncertainty).

first increases up to a maximum value, and then decreases for even larger chord
lengths. In the limit of very large 〈Λ〉∞, the stochastic tessellations would be triv-
ially filled with a single material (fuel, cladding, or moderator), each appearing420

with its respective coloring probability. In this case, 〈keff〉 would be the weighted
sum of the multiplication factors of three configurations with the central por-
tion of the assembly replaced by a fuel, cladding or moderator zone. The values
〈keff〉 computed for Poisson and Box tessellations are almost indistinguishable,
which supports our previous analysis. On the contrary, the 〈keff〉 obtained for425

the Voronoi tessellations reach their maximum for a 〈Λ〉∞ larger than in the case
of the other two tessellations. The 〈keff〉 for Voronoi tessellations lie first be-
low those of the Poisson and Box tessellations; after that 〈keff〉 has attained its
maximum for the Poisson and Box tessellations, the values corresponding to
Voronoi tessellations lie above the others. For the UOX assemblies, the maxi-430

mum 〈keff〉 for Poisson and Box tessellations (for 〈Λ〉∞ ∼ 0.5 cm) is about 300
pcm lower than keff,0, whereas for Voronoi tessellations (for 〈Λ〉∞ ∼ 0.7 cm) is
slightly higher. For MOX assemblies, the maxima are attained for larger average
chord lengths (〈Λ〉∞ ∼ 1 cm for Poisson and Box tessellations and Λ ∼ 1.6 cm
for Voronoi tessellations) and are largely higher than the reference keff,0 by about435
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Figure 8: Evolution of the ensemble-averaged multiplication factor 〈keff〉 as a
function of the average chord length 〈Λ〉∞. Left: UOX assembly with n = 17.
Right: MOX assembly with n = 17. Blue squares denote the results for Poisson
tessellations, red triangles for Box tessellations, and green circles for Voronoi
tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix model.
The black solid line denotes keff,0, the result for the assembly with intact fuel pins,
which has been added for reference (dashed lines represent the 1σ statistical
uncertainty).

500 pcm.
The behaviour of the case n = 17, where the entire collection of fuel pins in

the assembly is fragmented, is similar to that of the case n = 7. The position of
the maxima of 〈keff〉 as a function of the average chord length 〈Λ〉∞ is almost un-
changed. The range of excursion of 〈keff〉 in the explored domain is nonetheless440

much larger. The eigenvalue corresponding to the atomic mix limit is lower by
about 5000 pcm for the UOX case, and by about 12000 pcm for the MOX case.
For UOX, the maxima of 〈keff〉 fall below (for Poisson and Box tessellations)
or slightly above (for Voronoi tessellations) the reference keff,0. For MOX, the
maxima exceed keff,0 by about 2000 pcm for Poisson and Box tessellations, and445

by about 4000 pcm for Voronoi tessellations.
It is interesting to remark that the behaviour of 〈keff〉 as a function of 〈Λ〉∞

has been examined in (Pomraning, 1999) for mono-energetic transport in a rod
geometry with Poisson mixing statistics: by resorting to an ingenuous perturba-
tive approach, it was concluded that 〈keff〉 ≥ keff,am for 〈Λ〉∞ → 0, where keff,am450

is the eigenvalue corresponding to a (non-stochastic) atomic mix fragmentation.
This result seems to hold also in the configurations examined here.
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Figure 9: Evolution of the ensemble-averaged effective delayed neutron fraction
〈βeff〉 as a function of the average chord length 〈Λ〉∞. Left: UOX assembly with
n = 1. Right: MOX assembly with n = 1. Blue squares denote the results for
Poisson tessellations, red triangles for Box tessellations, and green circles for
Voronoi tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix
model. The black solid line denotes βeff,0, the result for the assembly with intact
fuel pins, which has been added for reference (dashed lines represent the 1σ

statistical uncertainty).

4.4. Delayed neutron fraction
The evolution of the effective delayed neutron fraction 〈βeff〉 is illustrated

in Figs. 9, 10, and 11 for UOX and MOX assemblies with n = 1, n = 7 and455

n = 17 melted fuel pins, respectively. The computed value 〈βeff〉 is displayed
as a function of increasing chord length 〈Λ〉∞, for Poisson, Voronoi and Box
tessellations. The error bar on 〈βeff〉 is of the order of about 1% of the average,
which is comparable with the uncertainty stemming from the IFP calculation for
the reference assembly. The limit case of atomic mix (〈Λ〉∞ → 0) is also shown.460

In each figure, the βeff,0 eigenvalue corresponding to an assembly with intact fuel
pins is plotted for reference.

For all the assembly configurations, the impact of stochastic tessellations
on 〈βeff〉 is only marginal, and in most cases well within error bars. For UOX
assemblies we remark nonetheless that the random fragmentation introduces a465

slight bias on the average value, i.e., 〈βeff〉 ≤ βeff,0, where βeff,0 is the reference
value corresponding to an assembly with intact fuel pins. On the contrary, for
MOX assemblies 〈βeff〉 ' βeff,0.

The behaviour of 〈βeff〉 is almost unaffected by the choice of the mixing
statistics. Similarly, the average chord length 〈Λ〉∞ plays no role, and the re-470
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Figure 10: Evolution of the ensemble-averaged effective delayed neutron frac-
tion 〈βeff〉 as a function of the average chord length 〈Λ〉∞. Left: UOX assembly
with n = 7. Right: MOX assembly with n = 7. Blue squares denote the results
for Poisson tessellations, red triangles for Box tessellations, and green circles
for Voronoi tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic
mix model. The black solid line denotes βeff,0, the result for the assembly with
intact fuel pins, which has been added for reference (dashed lines represent the
1σ statistical uncertainty).

sulting 〈βeff〉 show a slight increasing trend only for the case n = 17. Actually,
the effective delayed neutron fraction 〈βeff〉 depends mostly on the volumic frac-
tion of fuel within the assembly, and this quantity is basically flat as a function
of 〈Λ〉∞, as discussed in Sec. 4.8.

4.5. Neutron generation time475

The evolution of the effective neutron generation time 〈`eff〉 is illustrated in
Figs. 12, 13, and 14 for UOX and MOX assemblies with n = 1, n = 7 and n = 17
melted fuel pins, respectively. The computed value 〈`eff〉 is displayed as a func-
tion of increasing chord length 〈Λ〉∞, for Poisson, Voronoi and Box tessellations.
The error bar on 〈`eff〉 is of the order of about 0.1% of the average, which is com-480

parable with the uncertainty stemming from the IFP calculation for the reference
assembly. The limit case of atomic mix (〈Λ〉∞ → 0) is also shown. In each figure,
the `eff,0 eigenvalue corresponding to an assembly with intact fuel pins is plotted
for reference.

As expected, in the case n = 1 the impact of the stochastic tessellations is485

small, and the discrepancy between 〈`eff〉 and `eff,0 lies within the error bar. For
UOX assemblies, the random fragmentation induces 〈`eff〉 ≤ `eff,0 for any 〈Λ〉∞,
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Figure 11: Evolution of the ensemble-averaged effective delayed neutron frac-
tion 〈βeff〉 as a function of the average chord length 〈Λ〉∞. Left: UOX assembly
with n = 17. Right: MOX assembly with n = 17. Blue squares denote the results
for Poisson tessellations, red triangles for Box tessellations, and green circles for
Voronoi tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix
model. The black solid line denotes βeff,0, the result for the UOX assembly with
intact fuel pins, which has been added for reference (dashed lines represent the
1σ statistical uncertainty).

where `eff,0 is the reference value corresponding to an assembly with intact fuel
pins. On the contrary, for MOX assemblies 〈`eff〉 ≥ `eff,0 for any 〈Λ〉∞.

For the assembly configurations with n = 7, the effects of the fuel fragmen-490

tation are clearly apparent for 〈`eff〉. In the atomic mix limit for small 〈Λ〉∞,
〈`eff〉 lies below `eff,0, and it gradually increases as a function of 〈Λ〉∞. The
ensemble-averaged 〈`eff〉 becomes larger than `eff,0 at 〈Λ〉∞ ' 0.3 cm for all mix-
ing statistics. Poisson and Box tessellations yield almost identical results, and
the corresponding 〈`eff〉 are systematically higher than those from Voronoi tes-495

sellations. For UOX assemblies, 〈`eff〉 increases by about 10% in the range of
〈Λ〉∞ explored here, whereas for MOX assemblies the increase is of the order of
20% for the same range of 〈Λ〉∞.

For the case n = 17 the behaviour of 〈`eff〉 is qualitatively similar to that of
n = 7, but the excursion range as a function of 〈Λ〉∞ is wider. In particular, for500

UOX assemblies 〈`eff〉 increases by about 300% in the range of 〈Λ〉∞ explored
here, whereas for MOX assemblies the increase is of the order of 600% for the
same range of 〈Λ〉∞. As in the previous case, Poisson and Box tessellations yield
results for 〈`eff〉 that lie systematically higher than those of Voronoi tessellations.
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Figure 12: Evolution of the ensemble-averaged effective neutron generation time
〈`eff〉 as a function of the average chord length 〈Λ〉∞. Left: UOX assembly with
n = 1. Right: MOX assembly with n = 1. Blue squares denote the results for
Poisson tessellations, red triangles for Box tessellations, and green circles for
Voronoi tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix
model. The black solid line denotes `eff,0, the result for the UOX assembly with
intact fuel pins, which has been added for reference (dashed lines represent the
1σ statistical uncertainty).

4.6. Distribution of the multiplication factor505

In the previous sections we have focused on the ensemble-averaged physi-
cal observables 〈keff〉, 〈βeff〉, and 〈`eff〉, and their evolution as a function of the
mean chord length for different mixing statistics. In order to fully apprehend
the dispersion of the multiplication factors around their average values due to
the variability of the random geometry realizations, which is key for criticality510

safety applications, we have also computed the histograms Π(keff). Some repre-
sentative distributions are displayed in Fig. 15 as a function of 〈Λ〉∞ for a Poisson
tessellation and in Fig. 16 as a function of the mixing statistics for fixed 〈Λ〉∞.

Figure 15 shows that the shape of the Π(keff) distribution is sensitive to the
average chord length: when 〈Λ〉∞ is small, Π(keff) is almost Gaussian, with a515

small dispersion around the average 〈keff〉; as 〈Λ〉∞ increases, the dispersion in-
creases, and Π(keff) becomes less symmetric (in particular, a long left tail appears
for large values of 〈Λ〉∞).

Figure 16 shows the impact of the mixing statistics on the shape of Π(keff),
for a given average chord length 〈Λ〉∞. It is apparent that the stochastic tes-520

sellations affect not only the average values 〈keff〉, but also their dispersion. In
particular, for the example considered here, The Voronoi tessellation leads to a
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Figure 13: Evolution of the ensemble-averaged effective neutron generation time
〈`eff〉 as a function of the average chord length 〈Λ〉∞. Left: UOX assembly with
n = 7. Right: MOX assembly with n = 7. Blue squares denote the results for
Poisson tessellations, red triangles for Box tessellations, and green circles for
Voronoi tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix
model. The black solid line denotes `eff,0, the result for the UOX assembly with
intact fuel pins, which has been added for reference (dashed lines represent the
1σ statistical uncertainty).

Gaussian distribution rather peaked around the average value, whereas the Pois-
son and Box tessellations (whose Π(keff) are almost identical) lead to more dis-
persed and asymmetric distributions, with a long left tail.525

4.7. Scalar neutron flux
We finalize our analysis by considering the effects of fuel fragmentation on

the ensemble-averaged and normalized scalar neutron flux 〈ϕ(r,E)〉. For our
Monte Carlo simulations, we have defined a 17× 17 x− y spatial mesh super-
posed to the fuel pin-cells, with a single mesh along the z axis. For symmetry530

reasons, the flux in the reference assemblies should be spatially flat, due to re-
flective boundary conditions. As for the energy dependence, we have considered
a 281 group mesh, covering the entire energy range of the simulation, namely
10−5 eV to 20 MeV.

The spatial behaviour of the neutron flux 〈ϕ(r)〉 is shown in Fig. 17 for n = 1535

in some representative UOX and MOX assemblies, respectively, and in Fig. 18
for n = 7 in some representative UOX and MOX assemblies. These curves have
been obtained by integrating 〈ϕ(r,E)〉 over the entire energy range. The case
n = 17 leads to a spatially flat neutron flux (the fragmentation is homogeneous
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Figure 14: Evolution of the ensemble-averaged effective neutron generation time
〈`eff〉 as a function of the average chord length 〈Λ〉∞. Left: UOX assembly with
n = 17. Right: MOX assembly with n = 17. Blue squares denote the results
for Poisson tessellations, red triangles for Box tessellations, and green circles for
Voronoi tessellations. The limit case at 〈Λ〉∞ = 0 corresponds to the atomic mix
model. The black solid line denotes `eff,0, the result for the UOX assembly with
intact fuel pins, which has been added for reference (dashed lines represent the
1σ statistical uncertainty).

and extended to the whole assembly) and will not be shown here. For all the540

examples discussed here we have considered Poisson stochastic tessellations.
For n = 1, the effects of the stochastic tessellations on the spatial shape of

the neutron flux are small, and mostly extended to a neighbourhood of the frag-
mented fuel pin-cell (see Fig. 17). The impact is slightly larger for MOX than
for UOX assemblies. The sign of the perturbation with respect to the remain-545

ing portion of the assembly evolves as a function of 〈Λ〉∞: for small 〈Λ〉∞ the
ensemble-averaged flux close to the fragmented fuel cell lies below the value for
the rest of the assembly, whereas for larger 〈Λ〉∞ the flux close to the fragmented
fuel cell lies above. The value of 〈Λ〉∞ for which the ensemble-averaged spa-
tial flux is entirely flat (i.e., the stochastic tessellation has no visible effect on550

the flux) corresponds approximately to the average chord length through a fuel
pin. In other words, if the fragmentation of the random geometry is such that
neutron trajectories see a homogeneous region whose average behaviour is sta-
tistically compatible with the heterogeneous regions of the intact fuel cell, then
the neutron flux becomes insensitive to the fragmentation.555

When n = 7 (Fig. 18), the behaviour of the spatial flux is qualitatively sim-
ilar to the previous case. The amplitude of the perturbations introduced by the
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Figure 15: Distributions of the multiplication factor keff as a function of the aver-
age chord length 〈Λ〉∞ for a MOX assembly with n = 17. The mixing statistics is
a Poisson tessellation. Blue symbols correspond to 〈Λ〉∞ = 0.15, green symbols
to 〈Λ〉∞ = 0.2, magenta symbols to 〈Λ〉∞ = 0.3, purple symbols to 〈Λ〉∞ = 0.4,
red symbols to 〈Λ〉∞ = 0.5, light blue symbols to 〈Λ〉∞ = 0.8 and orange sym-
bols to 〈Λ〉∞ = 1. Solid black line corresponds to keff,0 for a MOX assembly with
intact fuel pins; dashed black line corresponds to keff for a MOX assembly with
atomic mix.

stochastic tessellations is larger, and the effect is extended on a larger portion of
the assembly. Similarly as for n = 1, the MOX assemblies are more sensitive to
the perturbation. Again, the sign of the perturbation with respect to the remain-560

ing portion of the assembly depends evolves as a function of 〈Λ〉∞: for small
〈Λ〉∞ the ensemble-averaged flux close to the fragmented portion of the assem-
bly lies below the value for the rest of the assembly, whereas for larger 〈Λ〉∞ the
perturbed flux lies above. As before, there exists a value of 〈Λ〉∞ for which the
ensemble-averaged spatial flux is entirely flat.565

Concerning the behaviour of the neutron flux with respect to energy, in Fig. 19
we show the spatially-integrated and normalized 〈ϕ(E)〉 for UOX and MOX as-
semblies. We have chosen the case n = 17 with a Poisson stochastic tessellation.
The impact of stochastic tessellations on 〈ϕ(E)〉 is particularly apparent when
examining the discrepancies with respect to the reference flux that is obtained570

for the assemblies with intact fuel pins (see Fig. 20), for both UOX and MOX
assemblies. The effects on 〈ϕ(E)〉 vary as a function of 〈Λ〉∞. For small 〈Λ〉∞,
〈ϕ(E)〉 lies below the reference flux in the thermal region and above for the epi-
thermal and fast regions. For larger 〈Λ〉∞, 〈ϕ(E)〉 lies above the reference flux
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Figure 16: Distributions of the multiplication factor keff for a UOX assembly with
n = 17 and different mixing statistics. The average chord length is 〈Λ〉∞ = 0.6.
Blue symbols correspond to a Poisson stochastic tessellation, green symbols to
Voronoi stochastic tessellations and red symbols to Box stochastic tessellations.
Solid black line corresponds to keff,0 for a UOX assembly with intact fuel pins;
dashed black line corresponds to keff for a UOX assembly with atomic mix.

in the thermal region and below for the epi-thermal and fast regions.575

4.8. Finite-size effects for the assembly calculations
An investigation of finite-size effects for the stochastic tessellations used

above has been carried out for 〈Λi〉, the average chord length through clusters
with material composition i. For illustration, in Fig. 21 we show the case of
the assembly configurations with n = 17, where 〈Λi〉 is plotted as a function of580

〈Λ〉∞ for Poisson tessellations. As 〈Λ〉∞ increases, the value of 〈Λi〉 obtained by
Monte Carlo simulation progressively deviates from the theoretical behaviour
〈Λi〉∞ = 〈Λ〉∞/(1− pi).

We have also computed the average volumic fraction 〈pi〉 through clusters
of composition i, as a function of the average chord length 〈Λ〉∞. The compar-585

ison with the theoretical behaviour pi (which is strictly valid only for infinite
tessellations) is shown in Fig. 22 for an assembly configuration with n = 17: the
deviation with respect to the ideal case increases with increasing 〈Λ〉∞, as ex-
pected. In order to emphasize the role of finite-size effects, in Fig. 22 we have
chosen to show the geometry-induced standard deviation σG on pi, as given in590

Eq. (6), instead of the uncertainty given by Eq. 8.
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Figure 17: Ensemble-averaged spatial flux 〈ϕ(x,y)〉 (arbitrary units) as a func-
tion of the average chord length 〈Λ〉∞, with Poisson mixing statistics. Left: UOX
assembly with n = 1. Purple symbols correspond to 〈Λ〉∞ = 0.03, orange sym-
bols to 〈Λ〉∞ = 0.05, green symbols to 〈Λ〉∞ = 0.1 and red symbols to 〈Λ〉∞ = 0.5.
Right: MOX assembly with n = 1. Purple symbols correspond to 〈Λ〉∞ = 0.03,
orange symbols to 〈Λ〉∞ = 0.05, green symbols to 〈Λ〉∞ = 0.1 and red symbols
to 〈Λ〉∞ = 0.5.

5. Conclusions

Stochastic tessellations provide a convenient tool for the analysis of ran-
domly fragmented materials. In this paper we have proposed a methodology for
the analysis of the impact of random geometries in three-dimensional fuel assem-595

bly, with application to criticality safety for severe accidents. Based on a random
geometry generator that we have recently developed for Poisson, Voronoi and
Box tessellations, we were able to create large ensembles of UOX and MOX as-
sembly configurations with varying portions of fragmented fuel cells. These con-
figurations can be read by the Monte Carlo transport code TRIPOLI-4 R©, which600

has been used to compute the multiplication factor, the adjoint-weighted kinetics
parameters, and the scalar neutron flux. Analysis of the resulting ensemble-
averaged physical quantities has allowed assessing the impact of stochastic tes-
sellations on the key reactor core parameters. In particular, we have determined
the evolution of 〈keff〉, 〈βeff〉, and 〈`eff〉 as a function of the mean chord length605

of the random geometries, which is related to the correlation length of the frag-
mented portion of the assembly. The effect of varying the mixing statistics has
been also examined: while Poisson and Box tessellations yield almost identi-
cal results, Voronoi tessellations yield distinct results. These findings show that
the three mixing statistics, while sharing the same average chord length by con-610
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Figure 18: Ensemble-averaged spatial flux 〈ϕ(x,y)〉 (arbitrary units) as a func-
tion of the average chord length 〈Λ〉∞, with Poisson mixing statistics. Left: UOX
assembly with n = 7. Purple symbols correspond to 〈Λ〉∞ = 0.1, orange symbols
to 〈Λ〉∞ = 0.2, green symbols to 〈Λ〉∞ = 0.5 and red symbols to 〈Λ〉∞ = 0.7.
Right: MOX assembly with n = 7. Purple symbols correspond to 〈Λ〉∞ = 0.1,
orange symbols to 〈Λ〉∞ = 0.2, green symbols to 〈Λ〉∞ = 0.5 and red symbols to
〈Λ〉∞ = 0.7.

truction, might yet induce subtle effects on neutron transport due tho the precise
shape of their associated chord length distributions. Generally speaking, MOX
assemblies seem more sensitive than UOX assemblies to the perturbations intro-
duced by the stochastic tessellations.

The preliminary results presented in this work are admittedly too simplified615

to be amenable to general conclusions concerning the behaviour of a reactor
core in the presence of partially melted fuel pins. In particular, we did not ad-
dress the coupling between neutron transport and thermal-hydraulics (we have
assumed the temperature to be constant at 300 K in the assembly, for conser-
vatism), and we focused exclusively on the stationary behaviour. The complex620

physical-chemistry of the reactions occurring between the fuel and the cladding
at high temperature have not been addressed, either. Nonetheless, our approach
is fairly broad and might be extended to more complex situations. For instance,
the same procedure could be applied also to the assessment of re-criticality prob-
ability of out-of-pile core degradation leading to the deposition of corium debris.625

Monte Carlo simulation, which is capable of dealing with arbitrarily shaped ge-
ometries, would be particularly useful in this context.
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Figure 19: Ensemble-averaged spectral flux 〈ϕ(E)〉 (arbitrary units) as a function
of the average chord length 〈Λ〉∞, with Poisson mixing statistics. Left: UOX
assembly with n = 17. Red solid line corresponds to 〈Λ〉∞ = 0.15, green solid
line to 〈Λ〉∞ = 0.5, orange solid line to 〈Λ〉∞ = 1 and blue solid line to 〈Λ〉∞ = 3.
Right: MOX assembly with n = 17. Red solid line corresponds to 〈Λ〉∞ = 0.15,
green solid line to 〈Λ〉∞ = 0.5, orange solid line to 〈Λ〉∞ = 1 and blue solid
line to 〈Λ〉∞ = 3. For both UOX and MOX configurations, the dotted black line
corresponds to 〈ϕ(E)〉 for assemblies with intact fuel pins; the dashed purple
line corresponds to 〈ϕ(E)〉 for assemblies with atomic mix.
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