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Chaos in eigenvalue search methods

Davide Mancusia, Andrea Zoiaa,∗

aDen-Service d’études des réacteurs et de mathématiques appliquées (SERMA), CEA,
Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

Abstract

Eigenvalue searches for multiplying systems emerge in several applications, en-
compassing the determination of the so-called alpha eigenvalues associated to
the asymptotic reactor period and the adjustment of albedo boundary conditions
or buckling in assembly calculations. Such problems are usually formulated by
introducing a free parameter into a standard power iteration, and finding the value
of the parameter that makes the system exactly critical. The corresponding pa-
rameter is supposed to converge to the sought eigenvalue. In this paper we show
that the search for the critical value of the parameter might fail to converge for
deep sub-critical systems: in this case, the search algorithm may undergo a series
of period doubling bifurcations (leading to a multiplicity of solutions) instead of
converging to a fixed point, or it may even crash. This anomalous behaviour is
explained in terms of the mathematical structure of the search algorithm, which
is shown to be closely related to the well-known logistic map for a few rele-
vant applications illustrated in the context of the rod model. The impact of these
findings for real-life applications is discussed, and possible remedies are finally
suggested.
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1. Introduction

A large class of problems emerging in nuclear reactor physics involve search-
ing for the stationary state of a multiplying system by adjusting a control param-
eter (Bell and Glasstone, 1970; Azmy and Sartori, 2010). Examples include
for instance the determination of the value of boron dilution or the control rod5

∗Corresponding author. Tel. +33 (0)1 6908 7976
Email address: andrea.zoia@cea.fr (Andrea Zoia)

Preprint submitted to Annals of Nuclear Energy July 21, 2017



position that make the reactor exactly critical, all the other system parameters
being kept constant. Similar searches are quite common also outside the realm
of reactor control. Consider, for instance, the determination of the equilibrium
temperature profile of reactor cores with thermal-hydraulics feedback. The sta-
tionary solution of the coupled problem may be sought by alternatively iterating10

neutron transport and thermal-hydraulics solvers until they converge to a fixed
point. There are no external control parameters in this case, but the temperature
field may be seen to play the role of an adjustable parameter, whose shape at
convergence makes the reactor critical. Other examples of critical parameter
searches with iterative solution schemes arise in the context of the determination15

of the albedo at the core boundaries (Cho et al., 2009; Yun and Cho, 2009) or in
reactor period calculations (Azmy and Sartori, 2010; Zoia et al., 2015; Nauchi,
2014).

Although inspired by their real-life counterparts, for the purpose of this paper
we will regard critical parameter searches as mathematical problems: we will as-20

sume that the reactor state can be described by the k-eigenvalue form of the linear
Boltzmann equation (Goad and Johnston, 1959; Lewis and Miller, 1984; Lux and
Koblinger, 1991), with a single free control parameter p. The presence of mul-
tiple control parameters, and the possible interactions between each other due to
coupling mechanisms, will be neglected. For any value of p, there will be a spec-25

trum σp[k] of eigenvalues associated to the Boltzmann equation: starting from
an arbitrary initial condition, the reactor will ultimately relax to its fundamental
mode ϕk0(p), with associated fundamental eigenvalue k0(p). Both ϕk0(p) and k0(p)
depend on the control parameter p. Formally speaking, the critical solution is
usually sought by introducing iterative update schemes for the control parame-30

ter: the k-eigenvalue equation is solved for the fundamental eigenvalue k0(p) for
a given p (for instance by power iteration), then p is progressively adjusted based
on the value k0(p). If such a scheme ultimately converges to a fixed point, with
corresponding fundamental eigenvalue k0(p) = k0(pc) = 1, the resulting value of
the control parameter is the sought solution p = pc that makes the system exactly35

critical.
One may be tempted to assume that such iterative schemes always converge

to the fixed point {p = pc, k0(pc) = 1}, assuming of course that it exists. Clearly,
though, if the initial conditions of the iterative scheme are poorly chosen, the
search may diverge or enter non-physical regions of the search space. Under40

these conditions, the fixed point pc is never attained. However, even if a solu-
tion exists and suitable initial conditions are selected, the iterative scheme may
still fail to converge. This phenomenon has been repeatedly observed and is
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widely documented in the literature related to the numerical determination of the
asymptotic reactor period (the so-called α − k iteration). For instance, simple45

iterative schemes for α eigenvalue search lead to abnormal code termination in
sub-critical configurations (Hill, 1983). The same issue was later reported by
many authors, and effective solutions have been proposed by resorting to oper-
ator or eigenvalue shifting techniques (Yamamoto and Miyoshi, 2003; Ye et al.,
2006; Zoia et al., 2014, 2015).50

It is perhaps worth observing that critical parameter searches are essentially
root-finding problems for numerical functions. Thus, the whole apparatus of
numerical root-finding methods can be in principle brought to bear in order to
determine the value of the parameter p that makes the reactor critical. Many
root-finding algorithms do guarantee convergence under weak assumptions. For55

instance, the class of bracketing methods (such as the bisection method or the
regula falsi method) guarantee convergence if the initial conditions are suitably
chosen (Traub, 1964; Householder, 1970; Ortega and Rheinboldt, 1970). How-
ever, it is not straightforward to apply bracketing methods to stochastic root-
finding problems (Pasupathy and Kim, 2011).60

The purpose of this paper is to provide insight into the reasons why some
iterative schemes for criticality searches may fail to converge to the fixed-point
solution, even when the latter exists and even when the search is seeded with
appropriate initial conditions. While this paper addresses these questions in the
framework of deterministic numerical solvers for the fundamental eigenvalue65

k0(p) and for the adjustment of the control parameter p, we actually also have in
mind possible applications to eigenvalue searches with Monte Carlo codes. In
this case, k0(p) is determined by the stochastic implementation of power itera-
tion (by running a large number of cycles corresponding to successive neutron
generations) and p is updated at the end of each cycle. In view of this considera-70

tion, we will mostly focus on update rules for p simple enough to depend on the
value of k0(p) at the current cycle, without the need of storing in memory the past
cycles. For the same reason, we will not consider methods based on derivatives
of k0(p), which cannot be straightforwardly estimated in Monte Carlo schemes.

This paper is organized as follows. In Sec. 2 we begin by introducing the75

required notation and providing the general mathematical setup for eigenvalue
searches. In particular, we will show that these problems can be formally recast
into a discrete dynamical system, whose equilibrium point is the sought solution.
In Sec. 3 we will provide a few numerical illustrations of eigenvalue searches in
the context of the rod model, a simple system involving mono-energetic neutron80

transport. A broad class of eigenvalue problems associated to the rod model
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will be examined. We will show in particular under which conditions these
searches may fail to converge, and display instead an oscillatory or even chaotic
behaviour. Then, in Sec. 4 we will show that the mechanisms that lead to the
failure of the eigenvalue search have a universal character (whose origins will be85

elucidated) and might thus more broadly emerge in real-life applications. Some
remedies especially conceived in order to regularize the eigenvalue searches and
possibly suppress the route to instabilities and chaos will be proposed and nu-
merically tested in Sec. 5. Conclusions will be finally drawn in Sec. 6.

2. Definitions and notation90

To fix the ideas, let us assume that the state of the reactor can be characterized
in terms of the k-eigenvalue form of the linear Boltzmann equation, namely,

Lϕk = 1
kF ϕk,

B. C. on ϕk

(1)

where ϕk = ϕk(x,Ω, E) are the eigenfunctions of the angular neutron flux and k
the associated eigenvalues,

L = Ω · ∇x + Σt(x, E) −
∫

dΩ′
∫

dE′Σs(x, E′) fs(Ω′, E′ → Ω, E) (2)

is the net disappearance operator, with Σt the total cross section, Σs the scattering95

cross section, and fs the scattering kernel, and

F =
χ f (E)

4π

∫
dΩ′

∫
dE′ν f (E′)Σ f (x, E′) (3)

is the fission operator, with Σ f the fission cross section, ν f the average number of
fission neutrons, and χ f the fission spectrum (Bell and Glasstone, 1970). Bound-
ary conditions (B. C.) on ϕk must be also assigned for Eq. (1). Although the
existence of a dominant discrete eigenvalue k0 with real part larger than those100

of all other eigenvalues in the spectrum σ[k] and with non-negative associate
eigenfunction ϕk0 has not been proven for arbitrary operators L and F , domain
shapes and boundary conditions, under rather mild assumptions it is reasonable
to assume that the fundamental eigenpair {ϕk0 , k0} exists (Lewis and Miller, 1984;
Lux and Koblinger, 1991). This means that the neutron population in the core,105

starting from arbitrary initial conditions, will eventually relax to a phase space
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distribution proportional to ϕk0 , and k0 will asymptotically yield the ratio be-
tween population sizes at two successive generations. If k0 > 1 the population
will diverge; if k0 < 1 the population will shrink; and if k0 = 1 the population
will stay constant, which precisely defines the critical state.110

In many practical applications, one is only interested in determining the
asymptotic behaviour of the core, the precise shape of the spectrum σ[k] being
of lesser importance. In this case, a widely adopted technique for assessing the
dominant eigenpair {ϕk0 , k0} of Eq. (1) is the power iteration (Lewis and Miller,
1984; Lux and Koblinger, 1991). This method requires an ansatz ϕ(0)

k for the115

angular flux, and eventually converges to {ϕk0 , k0} by iterated application of the
update rule

ϕ(n+1)
k =

1
k(n)L

−1F ϕ(n)
k , (4)

with k(n) = |ϕ(n)
k |/|ϕ

(n−1)
k | and k(0) = 1, and the same boundary conditions as in

Eq. (1). For sufficiently large n, the eigenvalue k(n) converges to k0 as k(n) '

k0+c
(

k1
k0

)n
+· · · , where c is a problem-dependent constant and k1 is the eigenvalue120

corresponding to the first excited eigenmode. Correspondingly, the function ϕ(n)
k

converges to the fundamental eigenmode ϕk0 . The power iteration scheme given
in Eq. (4) can be solved by either deterministic or Monte Carlo methods (Lewis
and Miller, 1984; Lux and Koblinger, 1991).

In the following, we will exclusively focus on determining the fundamental125

eigenvalue, so that we will drop the subscript 0 from both the eigenvalue and the
associated eigenfunction.

Generally speaking, the operators in Eq. (1) and the boundary conditions
may both depend on a control parameter p, representing the effects of an ex-
ternal control element (such as a control rod or a reflector layer), or a physical130

counter-reaction (such as temperature or material density variations) in response
to deviations from the nominal reactor state. This yields

Lpϕk(p) = 1
k(p)Fpϕk(p),

B. C.[p] on ϕk(p)

(5)

where now the spectrum σp[k] and the eigenmodes ϕk(p) depend on the con-
trol parameter p. In this context, a natural question concerns the existence of
a critical value of p, say p = pc, for which the system is exactly critical, i.e.,135

the dominant eigenvalue of Eq. (5) satisfies k(pc) = 1. Equations of this kind
arise for instance when trying to determine the critical control rod position or the
critical boron concentration for reactor cores. More broadly, several eigenvalue
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problems associated to the linear Boltzmann equation can be also formally re-
cast in the form of Eq. (5): examples encompass the well-known α-eigenvalue140

equation, where
Lα = L +

α

3
, (6)

the albedo eigenvalue equation, where

B. C.[β] : ϕk(β)(x,Ω, E) = βϕk(β)(x,Ω′, E) (7)

on the boundary x ∈ ∂D of the core, with n ·Ω < 0 and Ω′ = Ω − 2(n ·Ω)n, or
the buckling eigenvalue equation, where

LB = L + iB ·Ω, (8)

for a fixed direction µ = B/|B|.145

The critical value pc can be determined by a generalization of the power
iteration method. The idea is that the power iteration yields k(pc) = 1 for the
critical value pc. Starting from a guess value p(0), the power iteration is applied
and the corresponding fundamental eigenvalue k(p(0)) is computed. One needs
then to introduce some update rule for p(m+1) at step m, based on the recorded150

values of p( j) and k(p( j)), for j = 0, 1, · · · ,m. For the sake of simplicity, we will
assume here that the update rule is local (i.e., memoryless), and that it can be
expressed as

p(m+1) = G
(
p(m), k(p(m))

)
. (9)

The functional form of G is in principle arbitrary, although some constraints must
be respected. In particular, we must have155

G (x, 1) = x, (10)

which means that at convergence the critical value pc must be a fixed point of the
search algorithm. Another natural requirement on G is that it should drive the
parameter p towards its critical value. For instance, if k(p) > 1 and ∂k(p)/∂p >
0, then we require that G(p, k(p)) < p. This additional requirement on G can be
concisely summarized, for any possible combination of directions of inequalities,160

as
G(p, k(p)) − p

k(p) − 1
∂k(p)
∂p

< 0. (11)

A common functional form for G is a power law

G (p, k) = pkγ, (12)
6



which automatically satisfies requirement (10). The second requirement, Eq. (11),
imposes

γp
∂k(p)
∂p

< 0, (13)

which can always be arranged by a suitable choice of the sign of γ.165

We are thus led to consider the coupled dynamical system

Lp(m)ϕ(n+1)
k(p(m)) = 1

k(n)(p(m))Fp(m)ϕ(n)
k(p(m)),

B. C.[p(m)] on ϕ(n)
k(p(m))

p(m+1) = G
(
p(m), k(p(m))

)
,

(14)

where the former equation is first solved for fixed control parameter p(m) by
power iteration in order to determine k(n)(p(m))

n
→ k(p(m)) for large n (the associ-

ated boundary conditions possibly also depending on p(m)), and the latter equa-
tion is then used in order to determine the next value p(m+1) of the control param-170

eter. For sufficiently large m, the dynamical system in Eq. (14) supposedly con-
verges to the sought fixed point p(m) m

→ pc and correspondingly ϕk(p(m))
m
→ ϕk(pc),

with k(p(m))
m
→ 1.

Although formally emerging as an eigenvalue search problem, Eq. (14) has a
clear real-life counterpart: due to an initial perturbation, the core may be driven175

into a super- or sub-critical state. By monitoring over some neutron generations
the discrepancy between the resulting k and unit, the control parameter is ad-
justed (either by an operator or by stabilizing physical feedbacks) in order to
compensate the reactor criticality excess or deficit. Then, the reactor state is
again monitored along some generations, and a new value of k is determined.180

The procedure is iterated until k is unit for some value p = pc, and the reactor is
stationary.

3. Eigenvalue searches for the rod model

For the sake of concreteness, the behaviour of critical-parameter searches
is best illustrated on the rod model, which is possibly the simplest example of
space- and direction-dependent transport problem (Wing, 1962; Montagnini and
Pierpaoli, 1971): particles move at constant speed 3 along a line (the rod) and
undergo collision events with total cross section Σt. Because of the geometric
constraints, only two directions of flight are allowed, namely forward (Ω = +)
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and backward (Ω = −); here, we furthermore assume that scattering and fission
are isotropic, i.e., that directions taken by the particles after a collision are sam-
pled with equal probability, and a single fissile isotope is present. If we define
ϕ+

k (x) and ϕ−k (x) to be the angular flux at position x in the positive and negative
direction, respectively, Eq. (1) takes the form of two coupled ordinary first-order
differential equations

±
∂

∂x
ϕ±k (x) + Σtϕ

±
k (x) − Σsϕk(x) =

ν f

k
Σ fϕk(x), (15)

where ϕk(x) = [ϕ+
k (x) + ϕ−k (x)]/2 is the scalar flux integrated over the directions.

We will assume that the viable space is a segment [0, L], for some positive L.185

3.1. Dispersion laws
Suppose now that some control parameter p is introduced in Eq (15), either

in the operator or in the boundary conditions. We will denote by ϕ±k(p)(x) the so-
lutions of the rod model equations including the effects of the control parameter
p. We would like to determine the corresponding dispersion law Λ(p, k), whose190

zeros provide the spectrum σp[k] for a given value of p. Conversely, the roots of
Λ(p, k) = 0, solved as a function of p for k(p) = 1, are the values of the control
parameter p for which the system is critical.

The general integrals of Eq. 15 are easily obtained as linear combinations of
exponential functions up to two integration constants, say κ1 and κ2, that must195

be fixed by the boundary conditions. In the usual case, the boundary conditions
translate into a system of linear equations for κ1 and κ2 with coefficients given by
a 2 × 2 matrix M(p, k). The existence of non-trivial solutions requires

Λ(p, k) = det M(p, k) = 0, (16)

which is the sought dispersion relation. This is an implicit equation for the eigen-
value k, the control parameter p and the physical constants (the cross sections,200

the average fission yield, and the domain size).

3.2. Reactor period search
A prominent example of eigenvalue problem that can be solved by a modi-

fied power iteration is the so-called alpha eigenvalue equation, where the dom-
inant eigenvalue physically represents the inverse of the asymptotic reactor pe-
riod (Weinberg, 1952). This class of problems has attracted intensive research
efforts, on both the theoretical (Larsen and Zweifel, 1974; Azmy and Sartori,
2010) and computational side (Brockway et al., 1985; Hill, 1983; Nolen et al.,
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2012), especially in view of reactor period (Zoia et al., 2015; Nauchi, 2014) and
neutron die-away constants (Zoia et al., 2014; Ye et al., 2006; Yamamoto and
Miyoshi, 2003) calculations. The α-eigenvalue equation for the rod model reads

±
∂

∂x
ϕ±k(α)(x) +

α

3Σt
ϕ±k(α)(x) + Σtϕ

±
k(α)(x) − Σsϕk(α)(x) =

ν f

k(α)
Σ fϕk(α)(x), (17)

with leakage boundary conditions ϕ+
k(α)(0) = 0 and ϕ−k(α)(L) = 0. Eq. (16) yields

the dispersion law

Λ(α, k) = cosh
(
LΣt

√
Qα

)
+

(
α
3Σt

+ 1 − ck
2

)
sinh

(
LΣt
√
Qα

)
√
Qα

, (18)

where we have defined205

Qα =

(
α

3Σt
+ 1

) (
α

3Σt
+ 1 − ck

)
(19)

and

ck =
Σs +

νΣ f

k

Σt
, (20)

which represents the average number of secondary particles per collision, nor-
malized to k. The associated spectrum, i.e., the roots of Λ(α, k) = 0 in Eq. (18),
has a rather intricate structure, which has been extensively examined by several
authors (see, e.g., Larsen and Zweifel (1974); Montagnini and Pierpaoli (1971)).210

In particular, it has been shown that, for k(α) = 1, Eq. (18) has a finite number of
real eigenvalues α, plus a countable infinity of complex eigenvalues associated
to oscillating modes (Montagnini and Pierpaoli, 1971).

For very large systems, LΣt � 1, the roots of Eq. (18) become independent
of L and there exists only one eigenvalue satisfying the simpler relation215

α = 3Σt(ck − 1). (21)

Correspondingly, the k-eigenvalue for a given α reads

k(α) =
k∞

1 + α/α∗
(22)

where k∞ = νΣ f /(Σt − Σs) is the fundamental k-eigenvalue of the system with
α = 0 and α∗ = 3(Σt − Σs) is the so-called removal rate, i.e., the frequency at
which particles are removed from the system because of captures. Eqs. (3.2) are
physically meaningful only for α > −α∗.220
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The asymptotic reactor period is determined in closed form by setting k(α) =

1 in Eq. (21):
α = α∗(k∞ − 1). (23)

However, for the sake of illustrating critical parameter searches, we pretend that
an analytical solution is not available and that a solution must be numerically
sought, as detailed in Sec. 2. We select Eq. (12) as an update rule for α. The sign225

of γ must be fixed according to Eq. (13): since ∂k(α)/∂α < 0 for Eq. (17), γ and
α must have the same sign. For simplicity, we take γ = 1 for α ≥ 0 and γ = −1
for α < 0.

With these provisions, the update rule for α reads

α(m+1) =


α(m) · k(α(m)) if k∞ ≥ 1
α(m)

k(α(m))
if k∞ < 1.

(24)

We draw the attention of the reader to the fact that Eq. (12) preserves the sign230

of α (which might be convenient for applications involving Monte Carlo power
iteration); therefore, the sign of the initial value α(0) must be the correct one, i.e.,
the same as the dominant α eigenvalue. This imposes the restriction α(0) > 0
for k∞ > 1, and −α∗ < α(0) < 0 for k∞ < 1. In the general case, one would
numerically solve for k(α(0)) by applying the power iteration to Eq. (17); the235

update rule Eq. (24) is then applied and a new value α(1) is determined. The
procedure is in principle iterated until convergence.

However, does convergence ever occur? For the problem at hand, we can
simply substitute Eq. (22) (which replaces the iterative search for the dominant
k-eigenvalue for a given α) in Eq. (24) to explicitly obtain the actual update rule240

α(m+1) =


k∞

α(m)

1 + α(m)/α∗
if k∞ ≥ 1

1
k∞
α(m)

(
1 + α(m)/α∗

)
if k∞ < 1.

(25)

This update rule clearly admits α = 0 and α = α∗(k∞ − 1) as fixed points, whose
stability depends on the absolute value of the derivative of the map evaluated at
the fixed points. If such value is smaller than one, then the fixed point is stable;
otherwise, it is unstable. It is easy to verify that α = 0 is always unstable, for any
k∞. The stability of α = α∗(k∞ − 1) is always ensured for the map corresponding245

to k∞ ≥ 1. For the map corresponding to k∞ < 1, α = α∗(k∞ − 1) is stable
for 1 > k∞ > 1/3, and becomes unstable for smaller values of k∞. The precise
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Figure 1: Left. Application of the iterated map for α(m) as a function of 1/k∞, for α∗ = 1. For
k∞ > 1/3, the eigenvalue search (displayed as blue points) finds the exact solution (displayed as
a red dashed line). For k∞ < 1/3, the map undergoes a series of period-doubling bifurcations,
and the search for the dominant eigenvalue fails. Right. The map given in Eq. (25) as a function
of 1/k∞, for α∗ = 1.

behaviour of the nonlinear map in Eq. (25) for the case k∞ < 1 can be determined
by remarking that this update rule is conjugate to the celebrated logistic map

fa(y) = a y (1 − y) (26)

under the variable transformation250

y(m) = −
α(m)

α∗
, (27)

and a = 1/k∞. We can immediately deduce the key features of Eq. (25) from
those of the logistic map, which has attracted intensive research efforts (May,
1976; Collet and Eckmann, 1980; Feigenbaum, 1983). For 1 > k∞ > 1/2,
the map will converge to α∗(k∞ − 1), for almost all initial guesses. For 1/2 >
k∞ > 1/3, the map will also eventually approach the same value through damped255

oscillations around that value. The rate of convergence in this interval is lin-
ear, except for k∞ = 1/3, when it becomes slower than linear. When 1/3 >
k∞ > 1/(1 +

√
6) ' 0.2899, from almost all initial conditions the algorithm will

approach permanent oscillations between two values: technically speaking, the
map has undergone a period-doubling bifurcation (May, 1976; Collet and Eck-260

mann, 1980; Feigenbaum, 1983). For 0.2899 > k∞ > 0.2822, from almost all
initial conditions the map will permanently oscillate among four values. By fur-
ther decreasing k∞, the map will display oscillations among 8 values, then 16,
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and so on. This behaviour is known as a period-doubling cascade, and is ba-
sically due to the fact that i) the map has a single (quadratic) maximum in the265

region k∞ < 1, and ii) this maximum is an increasing function of the control
parameter 1/k∞ (Feigenbaum, 1978, 1979, 1983). This is illustrated in Fig. 1.
The absence of a maximum for k∞ > 1 is responsible for the stability of the
fixed point for the eigenvalue search in the super-critical regime. The lengths
of the k∞ intervals that yield oscillations of a given length decrease for increas-270

ing period doubling order q; for large q, the ratio between the lengths of two
successive bifurcation intervals eventually approaches the so-called Feigenbaum
constant (Feigenbaum, 1983)

δ = lim
q→∞

(1/k∞)q−1 − (1/k∞)q−2

(1/k∞)q − (1/k∞)q−1
= 4.669 . . . (28)

The value k∞ ' 0.2801 corresponds to the end of the period-doubling cascade
and the onset of a chaotic behaviour for the map: from almost all initial con-275

ditions, slight variations in the initial guess will induce exceedingly different
results, and the oscillations will have an infinite period. For most values below
k∞ ' 0.2801 the map will display chaos; however, some isolated ranges of k∞
(which take the name of islands of stability) display non-chaotic behaviour (Col-
let and Eckmann, 1980).280

As far as the search of the dominant α eigenvalue is concerned, the important
point of this analysis is that the iteration of the map given in Eq. (25) will basi-
cally fail whenever k∞ < 1/3, i.e., after the first period-doubling bifurcation. For
sub-critical systems beyond this threshold value of k∞, the search of the domi-
nant α eigenvalue will eventually lock on a cycle oscillating between two values,285

none of which corresponds to the sought solution α = α∗(k∞ − 1). For even more
sub-critical configurations, the situation worsens, and the map oscillates between
more and more pairs of values, until a chaotic aperiodic behaviour emerges. For
k∞ = 1/4, the map codomain spans the entire allowed interval [−α∗, 0], and for
k∞ < 1/4 almost any initial condition taken in [−α∗, 0] will escape to infinity: the290

eigenvalue search algorithm will eventually crash. This behaviour is illustrated
in Fig. 1.

For finite domain size L, based on the analysis above it would be tempting to
postulate again a functional form of the kind

k(α) =
k

1 + α/α∗
, (29)

where k is the dominant eigenvalue of the k-eigenvalue equation (15), with leak-295

age boundary conditions, and α∗ is a problem-dependent removal rate that has to
12



be determined. Remark that the k(α) parameter for finite-size systems cannot be
derived analytically from the dispersion law Λ(α, k) = 0, and must be found by
applying the power iteration scheme described in the previous section. Actually,
by taking the α-eigenvalue equation (17) and applying the term-by-term scalar300

product with the adjoint eigenfunction ϕ†k of the k-eigenvalue equation (15), and
by taking the k-eigenvalue equation and applying the term-by-term scalar prod-
uct with the adjoint eigenfunction ϕ†k(α) of the α-eigenvalue equation (17), we get
precisely Eq. (29), with

α∗ =
〈ϕ†k(α),Lϕk〉

〈ϕ†k(α),
1
3
ϕk〉

, (30)

where 〈·, ·〉 denotes the scalar product, † stands for adjoint, and L is the net305

disappearance operator. The term α∗ is thus an adjoint-weighted bi-linear form
that can be interpreted as the removal rate for finite-size systems. For large LΣt,
it is easy to show that α∗ → 3(Σt −Σs), since the flux eigenfunctions are spatially
flat. Equation (29) establishes a correspondence between the k eigenvalues and
the α eigenvalues by means of the term α∗, which depends on both the k(α)- and310

k-eigenfunctions.
Because of α∗, the relation in Eq. (29) will display a dependence on α and k

that is more involved than the one for the infinite system. However, numerical
simulations show that α∗ only weakly depends on α (provided that the removal
rate is dominated by captures rather than by leakage), so that the chaotic be-315

haviour observed for the case of the eigenvalue search in infinite-size systems
is qualitatively carried over to finite-size systems. In particular, we can still ap-
ply the change of variables given in Eq. (27), which transforms the update rule
for finite L into the logistic map. In order to substantiate our claim, we have
performed a series of eigenvalue searches in finite-size rod models: the results320

are reported in Fig. 2. It is apparent that the eigenvalue search suffers from the
same issue affecting infinite systems: in particular, for deep sub-critical systems
the search will undergo a series of period-doubling bifurcations that will end up
in the failure of the algorithm. When k > 1, the update map is a monotonous
function of α, and the power iteration will converge to the exact solution.325

3.3. Buckling eigenvalue equation
Buckling eigenvalue equations emerge for reactor physics calculations by as-

suming that the neutron flux can be factorized into a form of the kind ϕ±k (x) =

eiB·xϕ±k(B)(x), representing the product of a lattice structure factor exp(iB · x) and
a fine structure factor ϕ±k(B)(x). Buckling eigenvalues emerge for instance in the330
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Figure 2: Application of the iterated map for α(m) as a function of 1/k. For k > 1/3, the eigen-
value search (displayed as blue points) finds a single solution. For k < 1/3, the map undergoes a
series of period-doubling bifurcations, and the search for the dominant eigenvalue fails. The true
dominant α eigenvalue has been determined numerically by setting γ = −1/2 in the update rule
and is displayed as red dots.

treatment of fundamental-mode neutron leakage in the presence of voids (Gel-
bard and Lell, 1976) and have also inspired recent work concerning complex-
weight Monte Carlo schemes (Yamamoto, 2012a,b; Rouchon, 2017).

For the rod model, only the positive or negative directions are allowed: by
taking B oriented in the positive direction Ω = +, the resulting eigenvalue equa-335

tions read

±

(
∂

∂x
+ iB

)
ϕ±k(B)(x) + Σtϕ

±
k(B)(x) − Σsϕk(B)(x) =

ν f

k(B)
Σ fϕk(B)(x), (31)

with periodic boundary conditions ϕ+
k(B)(0) = ϕ+

k(B)(L) and ϕ−k(B)(0) = ϕ−k(B)(L).
By applying the same strategy as for α eigenvalues, we are led to the following
relation

k(B) =
k

1 +
〈ϕ†k(B),iΩ·Bϕk〉

〈ϕ†k(B),Lϕk〉

, (32)

whose structure is very similar to that of Eq. (29). An explicit expression for k(B)340

can be obtained by observing that the dispersion law for the buckling eigenvalues
14



reads
Λ(B, k) = cos (LB) − cos

(
LΣt

√
ck − 1

)
. (33)

The equation Λ(B, k) = 0 admits the following analytical solution:

k(B) =
k∞

1 + B2/B2
∗

, (34)

where again k∞ = νΣ f /(Σt−Σs) is the fundamental eigenvalue of the system with
B = 0, and B2

∗ = Σt(Σt − Σs) is the maximum allowed buckling. Actually, it can345

be shown that B−2
∗ is proportional to the adjoint-weighted migration area of the

neutrons in the system (Gelbard and Lell, 1976).
Eq. (34) is formally similar to Eq. (22). Indeed, the relevant update rule for

the buckling parameter reads

(B2)(m+1) =


k∞

(B2)(m)

1 + (B2)(m)/B2
∗

if k∞ ≥ 1

1
k∞

(B2)(m)
[
1 + (B2)(m)/B2

∗

]
if k∞ < 1.

(35)

The sub-critical case of Eq. (35) can also be shown to be conjugate to the logistic350

map with the variable transformation

y = −
B2

B2
∗

. (36)

The logistic map parameter is given by a = 1/k∞. We thus expect the buck-
ling eigenvalue search to display the same behaviour as the α eigenvalue search:
for super-critical systems, the search algorithm by power iteration is stable and
converges to the fundamental buckling eigenvalue355

B2 = B2
∗(k∞ − 1). (37)

When on the contrary the system is sub-critical, for k∞ < 1/3 the power iteration
will undergo a series of period-doubling bifurcations, and the search will fail.

Observe that the update rule for the α eigenvalue search was a linear func-
tion of the dimensionless ratio α/α∗, whereas for the buckling the update rule
depends quadratically on the ratio B/B∗. Except for this minor change, the buck-360

ling eigenvalue search will display exactly the same behaviour as the α eigen-
value search in infinite systems.
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It is legitimate to ask whether using a different update rule would similarly
lead to the failure of the search algorithm. For sub-critical configurations, it is
convenient to substitute iB→ B and rewrite Eq. (38) as365

±

(
∂

∂x
+ B

)
ϕ±k(B)(x) + Σtϕ

±
k(B)(x) − Σsϕk(B)(x) =

ν f

k(B)
Σ fϕk(B)(x), (38)

with the update rule

B(m+1) =
B(m)

k(B(m))
. (39)

Numerical simulations show that this update rule also exhibits period-doubling
bifurcations in the sub-critical regime, albeit at different values of k∞. This can
be understood as a consequence of the functional shape of the update map, which
displays a single quadratic maximum for k∞ < 1 and thus belongs to the class of370

universality of the logistic map (although not necessarily by conjugation).

3.4. Albedo eigenvalue equation
The critical albedo search consists in imposing albedo conditions on the

boundaries (or part of the boundaries) of the system, and determining the albedo
value β (if any) that makes the reactor critical. Such problems emerge for in-375

stance in connection with Monte Carlo depletion calculations at the lattice scale,
as a way of reproducing whole-core effects at the boundaries of the assem-
bly (Cho et al., 2009; Yun and Cho, 2009). For the albedo search, the eigen-
value equation for the rod model is left unchanged with respect to the case of the
regular k-eigenvalue equation, namely,380

±
∂

∂x
ϕ±k(β)(x) + Σtϕ

±
k(β)(x) − Σsϕk(β)(x) =

ν f

k(β)
Σ fϕk(β)(x). (40)

However, the eigenvalue β appears in the albedo boundary conditions ϕ+
k(β)(0) =

βϕ−k(β)(0) and ϕ−k(β)(L) = βϕ+
k(β)(L). For the sake of simplicity, we will assume that

the albedo condition is imposed at both ends of the domain [0, L]. The smallest
admissible albedo value is β = 0, which corresponds to perfect leakage bound-
ary conditions: thus, for sufficiently super-critical systems, no albedo boundary385

condition β > 0 can make the system critical.
The relation between k(β) and k (the latter being the dominant eigenvalue

of the equations with β = 0) can again be expressed by resorting to the scalar
products between direct and adjoint eigenfunctions, and reads

k(β) =
k

1 − ∆(β)
〈ϕ†k(β),Lϕk〉

, (41)
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where the term ∆(β) = 〈ϕ†k(β),∇·Ωϕk〉+〈∇·Ωϕ
†

k(β), ϕk〉 does not vanish because of390

the different boundary conditions on Eqs. (15) and (40). Actually, by the Gauss
theorem, the term ∆(β) can be rewritten as

∆(β) =

∫
S

dS n·
∫

dΩϕ†k(β)Ωϕk = β

∫
S

dS n·
∫

out
dΩϕ†k(β)(Ω−n·ΩΩ)Jk(Ω), (42)

where we have used the albedo boundary conditions. Here Jk(Ω) = Ωϕk(Ω) de-
notes the neutron vector current. The quantity ∆(β)/β thus physically represents
the out-going neutron current weighted by the in-going adjoint neutron flux. By395

analogy with the case of α and buckling eigenvalues, it is convenient to define

β∗ =
〈ϕ†k(β),Lϕk〉∫

S
dS n ·

∫
out

dΩϕ†k(β)(Ω − n ·ΩΩ)Jk(Ω)
, (43)

so that we can formally rewrite Eq. (41) as

k(β) =
k

1 − β/β∗
. (44)

The dispersion law for the albedo eigenvalues reads

Λ(β, k) = (β2 − 1) cosh
(
LΣt

√
1 − ck

)
(45)

+
1
2

ck(1 + β)2 − 1 − β2

√
1 − ck

sinh
(
LΣt

√
1 − ck

)
. (46)

The parameter β that solves Λ(β, k) = 0 can be determined analytically, yielding

β =
1 − Qβ
1 + Qβ

, (47)

where

Qβ =

√(
k∞

k(β)
− 1

)
Σa

Σt
tan

LΣt

2

√(
k∞

k(β)
− 1

)
Σa

Σt

 , (48)

Σa = Σt − Σs is the absorption cross section, and k∞ is defined as above. In400

particular, setting k(β) = 1 in Eq. (47) yields the dominant albedo eigenvalue.
We have probed the eigenvalue search by solving Eq. (40) by power iteration,

together with the update rule

β(m+1) =
β(m)

k(β(m))
. (49)
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Figure 3: Application of the iterated map for β(m) as a function of 1/k. For sufficiently sub-critical
systems, the map undergoes a series of period-doubling bifurcations, and the search for the dom-
inant eigenvalue fails. The exact solution for the dominant eigenvalue as given by Eq. (47) is
displayed as a red dashed line.

This is numerically illustrated in Fig. 3, where we compare the dominant eigen-
value found by the search algorithm with the exact result given in Eq. (47): for405

deep sub-critical systems, the albedo eigenvalue search undergoes period dou-
bling, then exhibits chaos and ultimately fails. This can again be understood by
observing that Eq. (49) is conjugate to the logistic map when setting y = β/β∗,
provided that the quantity β∗ is a sufficiently slowly varying function of β.

4. Generalization: the appearance of chaos in eigenvalue searches410

The findings described in the previous section by resorting to the rod model
are not restricted to mono-energetic transport, and actually emerge in real-life
applications. In order to illustrate this point, we present now an an example
concerning the albedo eigenvalue search. We have recently implemented in
the continuous-energy production Monte Carlo code Tripoli-4 R© (developed at415

CEA (Brun et al., 2015)) a new method for the determination of the albedo
boundary conditions that make a multiplying system exactly critical: this func-
tionality can be used for instance in the analysis of fuel depletion for assem-
bly calculations (Yun and Cho, 2009; Cho et al., 2009). The albedo eigenvalue

18



0 20 40 60 80 100
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

β
(g

)

g

Figure 4: Albedo eigenvalue search with Tripoli-4 R©, for a UOX assembly. For beginning-of-
life conditions, the assembly is slightly super-critical and the search algorithm converges to the
sought eigenvalue as a function of the power iteration generations g (blue dots). At higher burn-
up, the assembly has a lower multiplication factor, and the albedo search undergoes a period-
doubling bifurcation, leading to an oscillating series (red circles). This latter configuration has
been re-run by setting γ = −1/2: in this case, the convergence towards the sought albedo eigen-
value is ensured (green squares).

search has been implemented by modifying the standard power iteration of crit-420

icality calculations, including β as an adjustable parameter: the albedo value is
iteratively computed based on the k value determined by the underlying power
iteration.

For our calculations, we have chosen a three-dimensional model of UOX as-
sembly with 17×17 fuel pin-cells. The albedo boundary condition is imposed425

on the radial surfaces of the assembly. At beginning-of-life conditions, the as-
sembly is slightly super-critical, and the albedo search converges to the sought
eigenvalue (see Fig. 4, where simulation results are displayed as a function of the
power iteration generations). As the fuel burn-up increases and the effective mul-
tiplication factor decreases, the albedo search encounters the convergence issues430

described above for the rod model. In particular, for sufficiently low multiplica-
tion factor the search algorithm will bifurcate and lead to an oscillating series as
a function of the power iteration generations (see Fig. 4). The presence of the
statical noise intrinsically due to Monte Carlo simulation does not qualitatively
alter the conclusions reached in the previous sections by using a deterministic435
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power iteration.
Thus, the emergence of bifurcation instabilities in eigenvalue searches is not

specific to mono-energetic or one-dimensional transport. Unfortunately, a rigor-
ous characterization of the conditions for bifurcation of the eigenvalue search has
eluded us; however, we have some plausibility arguments. Consider an eigen-440

value search, and let p be the eigenvalue. For a fixed value of p, the eigenvalue
equation is actually a k-eigenvalue equation that may or may not admit a solu-
tion. In all the problematic cases discussed above, instabilities emerged when
the update rule is taken to be

p(m+1) =
p(m)

k(p(m))
. (50)

A trivial root for this equation is p(m) = 0. Moreover, if there is a finite value of p445

(say p̄ > 0; the argument is similar for p̄ < 0) for which the corresponding multi-
plication factor k(p) diverges to infinity, then this leads to a second root. Observe
that the non-trivial root p̄ can be formally seen as the dominant eigenvalue of the
Boltzmann Eq. (5) when the fission operator is suppressed.

Specifically, for the examples shown in Sec. 3 for the rod model, the non-450

trivial roots of the update map exist and read

ᾱ = −α∗ = −3(Σt − Σs) (51)

for α eigenvalue search in infinite systems,

B̄ = B∗ =
√

Σt(Σt − Σs) (52)

for buckling eigenvalue search, and

β̄ =
1 − Q∞
1 + Q∞

(53)

for albedo eigenvalue search, with

Q∞ = −

√
Σa

Σt
tanh

LΣt

2

√
Σa

Σt

 . (54)

The update rule Eq. (50) thus maps both p(m) = 0 and p(m) = p̄ on p(m+1) =455

0. Since the update rule is a smooth, non-trivial function of p, and since it
preserves the sign of p, it must have at least one maximum for 0 < p < p̄.
If the maximum is unique, it will generally be quadratic; therefore, the update
rule will typically satisfy the topological conditions for the emergence of chaos
identified by Feigenbaum (Feigenbaum, 1978, 1979). This argument suggests460

that the route to instabilities for eigenvalue searches in sub-critical systems might
be universal, and possibly manifest itself quite often.
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Figure 5: Bifurcation diagram for the sub-critical α eigenvalue search with γ = −1 (blue) and
γ = −1/2 (red). The search with γ = −1/2 is able to converge also for the interval 3 < 1/k∞ < 5,
where the search with γ = −1 fails. However, bifurcations still appear for larger values of 1/k∞.
The black dashed line corresponds to the exact solution as given by Eq. (23).

5. Possible workarounds for the instabilities

We have shown so far that eigenvalue searches may fail to converge to the
correct solution even in situations where the latter exists and represents a fixed465

point of the iterated search algorithm. Naturally, one may ask whether it is pos-
sible to recast the search problem in a way that ensures convergence, or at least
mitigates the problems described above. This section discusses a few possible
workarounds.

In all the cases described in Section 3, the success of the search ultimately
depends on the stability of the critical value of the parameter under iteration of
the update map; in other words, iterated application of the update map on values
close to the solution must converge to the solution. The stability of the update
map with respect to infinitesimal perturbations is governed by the Jacobian of
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the map, calculated at the fixed point. For Eq. (12), this reads

dG
dp

∣∣∣∣∣
p=pc,k=1

=

(
kγ + γpkγ−1 ∂k

∂p

)∣∣∣∣∣∣
p=pc,k=1

(55)

= 1 + γpc
∂k
∂p

(pc). (56)

The fixed point is stable if the Jacobian is smaller than 1 in absolute value, i.e.,470

if ∣∣∣∣∣1 + γpc
∂k
∂p

(pc)
∣∣∣∣∣ < 1. (57)

With the constraint of Eq. (13), this inequality reduces to∣∣∣∣∣γpc
∂k
∂p

(pc)
∣∣∣∣∣ < 2. (58)

This suggests that it is possible to stabilise an unstable search by reducing the
absolute value of the exponent γ. This is illustrated by Fig. 5, which shows the
effect of the choice of the exponent γ on the bifurcation diagram for the sub-475

critical α eigenvalue search. Clearly, reducing the absolute value of γ helps in
stabilising the search: the search with γ = −1 fails to converge for 1/k∞ > 3,
while the search with γ = −1/2 converges up to 1/k∞ = 5. However, bifurcations
still appear for larger values of 1/k∞. More generally, for arbitrary γ it can be
shown that the map first bifurcates at480

k∞ =
γ

2 + γ
. (59)

By taking sufficiently small γ, the stability of the eigenvalue search can be ex-
tended to deep sub-critical systems. However, this will come at the price of
progressively slowing down the convergence of the power iteration coupled to
the update rule. This regularization technique has been successfully applied also
to the case of α eigenvalue search for the finite-size rod model, as illustrated in485

Fig. 2: by setting γ = −1/2 it has been possible to extend the range of conver-
gence of the algorithm well below the value of k which led to the failure detected
for γ = −1.

The option of setting the value of the constant γ has been implemented in
Tripoli-4 R© as an effective means of stabilizing the albedo eigenvalue search for490

sub-critical systems. In order to illustrate the effectiveness of the parameter γ,
we have re-run the sub-critical assembly configuration considered in the previous
section by setting γ = −1/2: the simulation results are displayed in Fig. 4 as
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a function of the power iteration generations. In this case, the convergence is
ensured, and the oscillations are suppressed.495

Another possibility to stabilize the eigenvalue search consists in resorting
to operator-shift techniques, as suggested for instance in (Cullen et al., 2003;
Yamamoto and Miyoshi, 2003; Ye et al., 2006). Let us illustrate this point in the
case of α eigenvalues: instead of solving

Lϕk(α) +
α

3
ϕk(α) =

1
k(α)
F ϕk(α), (60)

we can solve the shifted equation500

Lϕk(α) =
1

k(α)
F ϕk(α) −

1
k(α)

α

3
ϕk(α), (61)

for k(α) = 1, where the term containing the α eigenvalue is formally treated as
a production operator. For infinite systems, e.g., this would yield the modified
relation

k(α) = k∞ − α/α∗, (62)

which is to be compared with the original Eq. (22). Correspondingly, the update
rule for the sub-critical case would become505

α(m+1) =
α(m)

k∞ − α(m)/α∗
, (63)

which is easily seen to be stable for any k∞ and α∗.
It has been observed that the shift given in Eq. (61) is not convenient for the

Monte Carlo implementation of the power iteration, and might lead to other nu-
merical instabilities (Yamamoto and Miyoshi, 2003; Ye et al., 2006). Operator-
shift strategies ensuring the convergence of the eigenvalue search and better510

suited to Monte Carlo methods have been successfully tested in (Yamamoto and
Miyoshi, 2003; Ye et al., 2006; Zoia et al., 2014, 2015; Nauchi, 2014).

A closely related approach consists in applying eigenvalue-shift techniques,
which can be again seen as a clever way to recast the search problem into a
numerically stable form. For instance, in the case of α eigenvalues Eq. (60) can515

be rewritten as
Lϕk(η) +

η

3
ϕk(η) +

α̃

3
ϕk(η) =

1
k(η)
F ϕk(η), (64)

where the search parameter is now η = α − α̃. Here the eigenvalue shift α̃
must be chosen under the constraint that α̃ should be smaller than the dominant
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α eigenvalue, so that η > 0. Under these provisions, the update rule becomes
η(m+1) = k(η(m))η(m), which is stable.520

It remains to discuss whether other forms of the update rule are intrinsically
resilient to failure by bifurcation. For instance, update rules of the kind

α(m+1) = α(m) + C · (k(α(m)) − 1), (65)

where C is a constant, were proposed in the literature for α eigenvalue searches (Hill,
1983). It is easily seen that this equation satisfies the requirements (10) and (11)
for a suitably chosen sign of C. However, Eq. (65) is not immune from the emer-525

gence of bifurcations in deep sub-critical systems, as shown by analysing the
stability of its fixed point as above. The failure of the eigenvalue search per-
formed with Eq. (65) was indeed numerically noticed by Hill (1983), but the
phenomenon was not clearly elucidated at the time.

Within the class of simple update rules G(p, k) considered in this paper, it530

seems hardly feasible to unconditionally ensure the stability of the search algo-
rithms for any k(p). To this end, more complex schemes should be introduced,
such as two-point update laws (Cho et al., 2009; Yun and Cho, 2009). However,
for Monte Carlo applications these approaches are very demanding in terms of
CPU time and their robustness has not been rigorously proven. Stochastic ap-535

proximation and sample-path methods are quite promising (Pasupathy and Kim,
2011). Investigation of these issues is left for future research.

6. Conclusions

In this paper we have examined the behaviour of the eigenvalue searches that
emerge in several applications in reactor physics. Such problems are usually540

solved by resorting to a modified power iteration where the sought eigenvalue
plays the role of an adjustable free parameter. The solution is found by apply-
ing the power iteration with an update rule for the parameter depending on the
dominant multiplication factor of the underlying power iteration. The functional
form of the update rule is chosen based on physical considerations.545

We have shown that the eigenvalue search might fail for sufficiently deep sub-
critical systems: the update rule undergoes period-doubling bifurcations leading
to a multiplicity of parameter values, with the search algorithm indefinitely oscil-
lating between them. In order to investigate the origins of this behaviour, we have
examined a class of eigenvalue problems related to a single-speed rod model, a550

neutron transport system where particles are only allowed to move along two
directions, namely, forward and backward. The rod model is simple enough to
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obtain in some cases exact formulas, and yet retains the key physical ingredi-
ents that have motivated our investigation. Mathematical analysis of the search
algorithm for the rod model has revealed that the update rule for sub-critical555

systems might take a form that is formally conjugate or closely related to the
logistic map. The logistic map is a well-studied discrete dynamical system that
is known to exhibit period-doubling bifurcations and ultimately chaos when its
control parameter is progressively increased: for our models, the role of the con-
trol parameter is played by the degree of sub-criticality of the system.560

The formal relation between the eigenvalue searches and the logistic map
elucidates the reasons behind the failure of the modified power iteration. Fur-
thermore, we have also shown that the pathological behaviour of the search al-
gorithm is not limited to the simplified case of the rod model: the same failures
have been detected in simulations aimed at finding the critical albedo boundary565

conditions for UOX assemblies with the continuous-energy Monte Carlo pro-
duction code Tripoli-4 R©. Based on these numerical findings, we have been led
to conjecture that the appearance of bifurcations and chaos is universal in suf-
ficiently sub-critical systems, at least for the simple update rules that we have
examined in this work.570

Possible remedies have been proposed, including operator-shift or eigenvalue-
shift techniques. Numerical simulations have been run in order to demonstrate
the efficiency of these methods in palliating or even completely suppressing the
reasons leading to the failure of the search algorithms. Further research work
will be aimed at investigating improved update maps that guarantee the stabil-575

ity of the search algorithms and at the same time can be easily implemented in
Monte Carlo codes.
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