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Abstract

The Chord Length Sampling (CLS) algorithm is a powerful Monte Carlo method that models the effects of stochastic media on
particle transport by generating on-the-fly the material interfaces seen by the random walkers during their trajectories. This an-
nealed disorder approach, which formally consists of solving the approximate Levermore-Pomraning equations for linear particle
transport, enables a considerable speed-up with respect to transport in quenched disorder, where ensemble-averaging of the Boltz-
mann equation with respect to all possible realizations is needed. However, CLS intrinsically neglects the correlations induced by
the spatial disorder, so that the accuracy of the solutions obtained by using this algorithm must be carefully verified with respect
to reference solutions based on quenched disorder realizations. When the disorder is described by Markov mixing statistics, such
comparisons have been attempted so far only for one-dimensional geometries, of the rod or slab type. In this work we extend
these results to Markov media in two-dimensional (extruded) and three-dimensional geometries, by revisiting the classical set of
benchmark configurations originally proposed by Adams, Larsen and Pomraning (1) and extended by Brantley (2). In particular,
we examine the discrepancies between CLS and reference solutions for scalar particle flux and transmission/reflection coefficients
as a function of the material properties of the benchmark specifications and of the system dimensionality.
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1. Introduction

Several applications in nuclear science and engineering in-
volve linear particle transport theory in stochastic media. Ex-
amples include neutron diffusion in pebble-bed reactors or
randomly mixed water-vapor phases in boiling water reac-
tors (3; 4; 5; 6; 7), and inertial confinement fusion (8; 9; 10).
Particle propagation in random media emerges more broadly
in material and life sciences and in radiative transport (11; 12;
13; 14; 15; 16; 17). Assuming that particles undergo single-
speed transport with isotropic scattering, the angular particle
flux ϕ(r,ω) for each physical realization of the system obeys
the linear Boltzmann equation

ω · ∇ϕ + Σ(r)ϕ =
Σs(r)
Ωd

∫
ϕ(r,ω′)dω′ + S . (1)

Here r and ω denote the position and direction variables, re-
spectively, Σ(r) being the total cross section and S = S (r,ω)
the source term. The quantity Ωd = 2πd/2/Γ(d/2) is the surface
area of the unit sphere in dimension d, Γ(a) being the Gamma
function. The quantities Σ(r), Σs(r) and S (r,ω) are in principle
random variables, since the materials composing the traversed
medium are assumed to be possibly distributed according to
some statistical law. The physical observable of interest is typ-
ically the ensemble-averaged angular particle flux 〈ϕ(r,ω)〉, or
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more generally some ensemble-averaged functional 〈F[ϕ]〉 of
the particle flux, namely,

〈ϕ(r,ω)〉 =

∫
P(q)ϕ(q)(r,ω)dq, (2)

where ϕ(q)(r,ω) is the solution of the Boltzmann equation (1)
corresponding to a single realization q, and P(q) is the station-
ary probability of observing the state q for the functions Σ(q)(r),
Σ

(q)
s (r) and S (q)(r,ω) (3; 18).5

Exact solutions for 〈F[ϕ]〉 can be in principle obtained in the
following way: first, a realization of the medium is sampled
from the underlying mixing statistics; then, the linear transport
equation (1) corresponding to this realization is solved by ei-
ther deterministic or Monte Carlo methods, and the physical10

observables of interest F[ϕ] are determined; a sufficiently large
collection of realizations is produced; and ensemble averages
are finally taken for the physical observables.

Reference solutions are very demanding in terms of com-
putational resources, especially if transport is to be solved by
Monte Carlo methods in order to preserve the highest possi-
ble accuracy in solving the Boltzmann equation. In principle,
it would be thus desirable to directly derive a single equation
for the ensemble-averaged flux 〈ϕ〉. A widely adopted model of
random media is the so-called binary stochastic mixing, where
only two immiscible materials (say α and β) are present (3).
Then, by averaging Eq. (1) over realizations having material α
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at r, we obtain the following equation for 〈ϕα(r,ω)〉

[ω · ∇ + Σα] pα〈ϕα〉 =
pαΣs,α

Ωd

∫
〈ϕα(r,ω′)〉dω′

+ pβ,α〈ϕβ,α〉 − pα,β〈ϕα,β〉 + pαS α (3)

where pi(r) is the probability of finding the material of index
i at position r. Here pi, j = pi, j(r,ω) represents the probabil-15

ity per unit length of crossing the interface from material i to
material j for a particle located at r and travelling in direction
ω. The quantity 〈ϕi, j〉 denotes the angular flux averaged over
those realizations where there is a transition from material i to
material j for a particle located at r and travelling in direction20

ω. The cross sections Σα and Σs,α are those of material α. The
equation for 〈ϕβ(r,ω)〉 is immediately obtained from Eq. (3) by
permuting the indices α and β. Excluding the special case of
particle transport in the absence of scattering, we are thus led to
an infinite hierarchy for 〈ϕα〉 in Eqs. (3).25

In order to explicitly derive the ensemble-averaged flux 〈ϕα〉,
it is therefore necessary to introduce a closure formula, which
will in general depend on the underlying mixing statistics (3;
18; 19). The celebrated Levermore-Pomraning model assumes
for instance 〈ϕα,β〉 = 〈ϕα〉 for homogeneous Markov mixing
statistics, with

pi, j(r,ω) =
pi

Λi(ω)
, (4)

where Λi(ω) is the mean chord length for trajectories crossing
material i in direction ω (3). Several generalisations of this
model have been later proposed, including higher-order closure
schemes (3; 19).

In parallel, a family of Monte Carlo algorithms have been30

conceived in order to approximate the ensemble-averaged solu-
tions to various degrees of accuracy (9; 20; 21). Their com-
mon feature is that they allow a simpler treatment of trans-
port in stochastic mixtures (typically by neglecting the cor-
relations on particle trajectories induced by the spatial disor-35

der), which might be convenient in practical applications. In
this context, a prominent role is played by the so-called Chord
Length Sampling (CLS) algorithm, which is supposed to solve
the Levermore-Pomraning model for Markovian binary mix-
ing (9; 22; 23). The basic idea behind CLS is that the interfaces40

between the constituents of the stochastic medium are sampled
on-the-fly during the particle displacements by drawing the dis-
tances to the following material boundaries from a distribution
depending on the mixing statistics. The free parameters of the
CLS model are the average chord length Λi through each mate-45

rial and the volume fraction pi. Since the the spatial configura-
tion seen by each particle is regenerated at each particle flight,
the CLS corresponds to an annealed disorder model, as opposed
to the quenched disorder of the reference solutions, where the
spatial configuration is frozen for all the traversing particles.50

Generalization of these Monte Carlo algorithms including par-
tial memory effects due to correlations for particles crossing
back and forth the same materials have been also proposed (9).

In order to quantify the accuracy of the various approxi-
mate models, comparisons with respect to reference solutions55

are mandatory. For instance, although originally formulated for

Markov statistics, CLS has been extensively applied also to ran-
domly dispersed spherical inclusions into background matrices,
with application to pebble-bed and very high temperature gas-
cooled reactors (20; 21), and several benchmark problems have60

been examined in two and three dimensions (20; 21; 24; 25).
For Markov mixing, a number of benchmark problems com-
paring CLS and reference solutions have been proposed in the
literature so far (1; 2; 18; 26; 27), with focus exclusively on 1d
geometries, either of the rod or slab type. Flat two-dimensional65

configurations have received less attention (10).
In a series of recent papers, some of the authors have pro-

vided reference solutions for particle transport in extruded two-
dimensional and full three-dimensional random media with
Markov statistics (28; 29), where the spatial disorder has70

been generated by means of homogeneous and isotropic d-
dimensional Poisson tessellations (30). In this work, we will
compare the CLS simulation results to the reference solu-
tions for the classical benchmark problem proposed by Adams,
Larsen and Pomraning for transport in stochastic media (1) and75

revisited by Brantley (2). The case of 1d slab disorder has been
considered previously in the literature (1; 2; 18; 26; 27) and
will be reported here for the sake of completeness. In addition,
we will also consider 2d extruded and full 3d Markov mixing
configurations. The physical observables of interest will be the80

particle flux 〈ϕ〉, the transmission coefficient 〈T 〉 and the re-
flection coefficient 〈R〉: we will examine the discrepancies be-
tween reference and CLS simulation results as a function of the
benchmark configurations and of the system dimensionality d.
In order to verify the consistency of the proposed results, the85

CLS calculations will be performed by using two independent
Monte Carlo implementations of the CLS algorithm, the for-
mer in the Tripoli-4 R© code (31), and the latter in the Mercury
code (32; 33).

This paper is organized as follows: in Sec. 2 we will recall90

the benchmark specifications that will be used in this work. In
Secs. 3 and 4 we will detail the methods and the algorithms
that we have adopted in order to produce reference and CLS
results, respectively. Simulation findings will be illustrated and
discussed in Sec. 5. Conclusions will be finally drawn in Sec. 6.95

2. Benchmark specifications

In order for the paper to be self-contained, we start by re-
calling the benchmark specifications that have been selected for
this work, which are essentially taken from those originally pro-
posed in (1) and (18), and later extended in (2; 26; 27).100

We consider single-speed linear particle transport through a
stochastic binary medium with homogeneous Markov mixing.
The medium is non-multiplying, with isotropic scattering. The
geometry consists of a cubic box of side L = 10 (in arbitrary
units), with reflective boundary conditions on all sides of the
box except two opposite faces (say those perpendicular to the x
axis), where leakage boundary conditions are imposed 1. Two

1In (1) and (18), system sizes L = 0.1 and L = 1 were also considered, but
in this work we will focus on the case L = 10, which leads to more physically
relevant configurations.
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kinds of non-stochastic sources will be considered: either an
imposed normalized incident angular flux on the leakage sur-
face at x = 0 (with zero interior sources), or a distributed ho-
mogeneous and isotropic normalized interior source (with zero
incident angular flux on the leakage surfaces). Following the
notation in (2), the benchmark configurations pertaining to the
former kind of source will be called suite I, whereas those per-
taining to the latter will be called suite II. The material prop-
erties for the Markov mixing are entirely defined by assigning
the average chord length for each material i = α, β, namely
Λi, which in turn allows deriving the homogeneous probability
pi of finding material i at an arbitrary location within the box,
namely

pi =
Λi

Λi + Λ j
. (5)

By definition, the material probability pi yields the volume frac-
tion for material i. The cross sections for each material will
be denoted as customary Σi for the total cross section and Σs,i

for the scattering cross section. The average number of par-
ticles surviving a collision in material i will be denoted by105

ci = Σs,i/Σi ≤ 1. The physical parameters for the benchmark
configurations are recalled in Tabs. 1 and 2: the benchmark
specifications include three cases (numbered 1, 2 and 3, cor-
responding to different materials), and three sub-cases (noted
a, b and c, corresponding to different ci for a given material)110

for each case (1). The so-called atomic mix limit (3), where
one assumes that the statistical disorder can be approximated
by simply taking a full homogenization of the physical prop-
erties based on the ensemble-averaged cross sections, has been
examined, e.g., in (2) for d = 1 and in (28) for d = 2 and d = 3115

and will not be considered here.

Case Σα Λα Σβ Λβ

1 10/99 99/100 100/11 11/100
2 10/99 99/10 100/11 11/10
3 2/101 101/20 200/101 101/20

Table 1: Material parameters for the three cases of the benchmark configura-
tions.

Sub-case a b c

cα 0 1 0.9
cβ 1 0 0.9

Table 2: Scattering probabilities for the three sub-cases of the benchmark con-
figurations.

The physical observables of interest for the proposed bench-
mark will be the ensemble-averaged outgoing particle cur-
rents 〈J〉 on the two surfaces with leakage boundary con-
ditions, the ensemble-averaged scalar particle flux 〈ϕ(x)〉 =120

〈
∫ ∫ ∫

ϕ(r,ω)dωdydz〉 along 0 ≤ x ≤ L, and the total scalar
flux 〈ϕ〉 = 〈

∫
ϕ(x)dx〉. For the suite I configurations, the out-

going particle current on the side opposite to the imposed cur-
rent source will represent the ensemble-averaged transmission
coefficient, namely, 〈T 〉 = 〈Jx=L〉, whereas the outgoing parti-125

cle current on the side of the current source will represent the
ensemble-averaged reflection coefficient, namely, 〈R〉 = 〈Jx=0〉.
For the suite II configurations, the outgoing currents on oppo-
site faces are expected to be equal (within statistical fluctua-
tions), for symmetry reasons. In this case, we also introduce130

the average leakage current 〈L〉 = 〈(T + R)/2〉.

3. Reference solutions

For particle transport in the presence of quenched disorder
with Markov mixing, the reference solutions for the ensemble-
averaged scalar particle flux 〈ϕ(x)〉 and the currents 〈R〉 and 〈T 〉135

have been thoroughly described in (28). Here we will briefly
recall the methods that have been used.

3.1. Poisson tessellations

Random tessellations are stochastic aggregates of disjoint
and space-filling cells obeying a given distribution (34). Pois-140

son tessellations are obtained by partitioning a domain of a
d-dimensional space by sampling (d − 1)-dimensional hyper-
planes from an auxiliary Poisson process (34; 35; 36). An ex-
plicit construction amenable to Monte Carlo realizations for
two-dimensional homogeneous and isotropic Poisson geome-145

tries of finite size has been established in (37). A generalization
of this algorithm to d-dimensional domains has been recently
proposed (38). The construction of Poisson stochastic geome-
tries depends on a single free parameter ρ, which takes the name
of tessellation density, and is such that an arbitrary segment of150

length s will have on average ρs intersections with the random
hyper-planes.

The algorithm for the 1d slab tessellations is recalled in (1),
based on the Poisson process on the line. For the 2d extruded
tessellations, we begin by creating an isotropic Poisson tessel-155

lation of a square of side L, according to the algorithm detailed
in (39). The full geometrical description for the cube is simply
achieved by extruding the random polygons of the plane along
the orthogonal (say z) axis. The algorithm for 3d tessellations
of a cube of side L by drawing random planes has been detailed160

in (30).
Isotropic Poisson geometries satisfy a Markov property: for

domains of infinite size, arbitrary drawn lines will be cut by the
(d−1)-surfaces of the d-polyhedra into segments whose lengths
` are exponentially distributed, with average chord length 〈`〉 =165

1/ρ (34). The quantity Λ = 1/ρ intuitively defines the correla-
tion length of the Poisson geometry, i.e, the typical linear size
of a volume composing the random tessellation.

3.2. Colored stochastic geometries

Binary Markov mixtures required for the benchmark specifi-
cations are obtained as follows: first, a d-dimensional Poisson
tessellation is constructed as described above. Then, each poly-
hedron of the geometry is assigned a material composition by
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formally attributing a distinct ‘color’, say α or β, with asso-
ciated complementary probabilities pα and pβ = 1 − pα (3).
This gives rise to (generally) non-convex α and β clusters, each
composed of a random number of convex polyhedra. It can
be shown that the average chord length Λα through clusters
with composition α is related to the correlation length Λ of the
geometry via Λ = (1 − pα)Λα, and for Λβ we similarly have
Λ = pαΛβ. This yields 1/Λα + 1/Λβ = 1/Λ, and we recover

pα =
Λ

Λβ
=

Λα

Λα + Λβ
. (6)

Based on the formulas above, and using ρ = 1/Λ, the param-170

eters of the colored Poisson geometries corresponding to the
benchmark specifications provided in Tab. 1 are easily derived.

3.3. Particle transport and ensemble averages

For each benchmark case and sub-case, a large number M
of geometries has been generated, and the material properties
have been attributed to each volume as described above. Then,
for each realization k of the ensemble, linear particle transport
has been simulated by using the production Monte Carlo code
Tripoli-4 R©, developed at CEA (31). Tripoli-4 R© is a general-
purpose stochastic transport code capable of simulating the
propagation of neutral and charged particles with continuous-
energy cross sections in arbitrary geometries. In order to com-
ply with the benchmark specifications, constant cross sections
adapted to mono-energetic transport and isotropic angular dis-
tributions have been prepared. The number of simulated parti-
cle histories per configuration is 106. For a given physical ob-
servable O, the benchmark solution is obtained as the ensemble
average

〈O〉 =
1
M

M∑
k=1

Ok, (7)

where Ok is the Monte Carlo estimate for the observable O ob-
tained for the k-th realization. Specifically, currents Rk and Tk at175

a given surface are estimated by summing the statistical weights
of the particles crossing that surface. Scalar fluxes ϕk(x) have
been tallied using the standard track length estimator over a pre-
defined spatial grid containing 102 uniformly spaced meshes
along the x axis.180

The error affecting the average observable 〈O〉 results from
two separate contributions, the dispersion

σ2
G =

1
M

M∑
k=1

Ok
2
− 〈O〉

2 (8)

of the observables exclusively due to the stochastic nature of
the geometries and of the material compositions, and

σ2
O

=
1
M

M∑
k=1

σ2
Ok
, (9)

which is an estimate of the variance due to the stochastic nature
of the Monte Carlo method for particle transport, σ2

Ok
being the

dispersion of a single calculation (21; 20). The statistical error
on 〈O〉 is then estimated as

σ[〈O〉] =

√
σ2

G

M
+ σ2

O
. (10)

The number M of realizations that have been used for the
Monte Carlo simulations has been chosen as follows: for 1d
slab tessellations, we have taken M = 104 (except for the case
2a for the suite II, where the number of geometries has been
increased to M = 5 × 104 in order to reduce the statistical185

fluctuations); for the 2d extruded tessellations, we have taken
M = 4 × 103; finally, for the 3d tessellations we have taken
M = 103. Actually, increasing the dimension d implies a bet-
ter statistical mixing (in other words, a single realization is
more representative of the average behaviour), at the expense190

of increasing the computational burden (each realization takes
longer both for generation and for Monte Carlo transport).

Transport calculations have been run on a cluster based at
CEA, with Intel Xeon E5-2680 V2 2.8 GHz processors. The
average computer time globally increases as a function of di-195

mension, but depends also on the correlation lengths, volume
fractions, and material properties such as cross sections and
scattering probabilities. For the simulations discussed here we
have largely benefited from a feature implemented in the code
Tripoli-4 R©, namely the possibility of reading pre-computed200

connectivity maps for the volumes composing the geometry.
During the generation of the Poisson tessellations, care has been
taken so as to store the indices of the neighbouring volumes
for each realization, which means that during the geometrical
tracking a particle will have to find the following crossed vol-205

ume in a list that might be considerably smaller than the total
number of random volumes composing the box (depending on
the features of the random geometry).

4. The Chord Length Sampling approach

Reference solutions based on the quenched disorder ap-210

proach are computationally expensive, so that intensive re-
search efforts have been devoted to the development of Monte
Carlo-based annealed disorder models capable of approximat-
ing the ensemble observables on-the-fly, i.e., with a single par-
ticle transport simulation. The pioneering work by Zimmerman215

and Adams (8; 9) has led to a family of algorithms that go now
under the name of Chord Length Sampling methods. In particu-
lar, it has been shown that the standard form of the CLS (Algo-
rithm A in (9)) formally solves the Levermore-Pomraning equa-
tions, i.e., Eq. (3) with the closure formula (4), corresponding220

to Markov mixing with the approximation that memory of the
crossed material interfaces is lost at each particle flight (22; 23).

Algorithm A proceeds as follows (9): each particle history
begins by sampling position, angle and velocity from the spec-
ified source, as customary. Moreover, the particle is assigned225

a supplementary attribute, the material label, which is sampled
from the probability pi. Then we need to compute three dis-
tances, denoted respectively `b, `c, and `i. The quantity `b is
the distance to the next physical boundary, along the current
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direction of the particle. The quantity `c is the distance to the230

next collision, which is determined by using the material cross
section that has been chosen at the previous step: if the particle
has a material α, e.g., then `c will be drawn from an exponen-
tial distribution of parameter 1/Σα. Finally, the quantity `i is the
distance to the next material interface, which is sampled from235

an exponential distribution with parameter Λα, i.e., the average
chord length of material α, if the particle has a material label α
(whence the name of CLS).

Then, the minimum distance among `b, `c and `i must be
selected: if the minimum is `b, the particle is moved along a240

straight line until it hits the external boundary; if the minimum
is `c, the particle is moved to the collision point, and the out-
going particle features are selected according to the collision
kernel pertaining to the current material label. If the minimum
is `i, the particle is moved to the interface between the two ma-245

terials, and the material label is switched. If the particle is not
absorbed, a new set of distances `b, `c and `i are determined.
During the time spent within the random medium, the particle
will be thus either colliding within a random chunk, or crossing
the interface between two chunks; the particle will ultimately250

get absorbed in one of the chunks, or escape out of the bound-
aries of the random medium. The Monte Carlo estimators for
the scalar flux and the currents are the same as those for the
reference solutions described above.

As observed above, Algorithm A assumes that the particle255

has no memory of its past history, and in particular the crossed
interfaces are immediately forgotten (which is coherent with
the closure formula of the Levermore-Pomraning model). In
this respect, CLS is an approximation of the exact treatment of
disorder-induced spatial correlations (actually, it can be shown260

that CLS is exact only for pure absorbers). As a result, Algo-
rithm A is expected to be less accurate in the presence of strong
scatterers with optically thick mean material chunk length.

4.1. Slab geometries
For mono-energetic particle transport in slab geometries with

isotropic scattering, the Boltzmann equation (1) yields

µ
∂

∂x
ϕ + Σ(x)ϕ =

Σs(x)
2

∫ 1

−1
dµ′ϕ(x, µ′), (11)

where ϕ = ϕ(x, µ) is the angular particle flux for particles at265

position x with a direction cosine µ = cos(θ) with respect to the
x axis. The source and the boundary conditions depend on the
benchmark specifications.

Correspondingly, the CLS algorithm that formally solves the
Levermore-Pomraning model as applied to Eq. 11 is the fol-
lowing. For suite I, the source particle position is set to x = 0,
and the direction cosine is sampled from a cosine distribution,
namely,

µ =
√
ξ, (12)

where ξ is a uniform random number in [0, 1), in order to en-
sure the isotropic incident flux condition. For suite II, the start-
ing position x is sampled uniformly in [0, L], and the direc-
tion cosine is sampled uniformly in [−1, 1] in order to ensure
the uniform and isotropic source condition. According to the

Levermore-Pomraning prescription, the distance to material in-
terfaces for a particle in material α is sampled from an expo-
nential distribution as follows:

di = −
Λα

|µ|
ln(1 − ξ), (13)

where the factor 1/|µ| accounts for the projection of the distance
along the x axis. The distance to the next collision is sam-270

pled from the exponential distribution of parameter 1/Σα(x),
and the distance to the boundary is computed as customary. For
isotropic scattering, the cosine direction after collision is sam-
pled uniformly in [−1, 1].

4.2. Two-dimensional extruded geometries275

Assuming again mono-energetic particle transport with
isotropic scattering, the Boltzmann equation for two-
dimensional geometries extruded in the z axis direction yields√

1 − µ2 cos(φ)
∂

∂x
ϕ +

√
1 − µ2 sin(φ)

∂

∂y
ϕ =

Σ(x, y)ϕ +
Σs(x, y)

4π

∫ 1

−1
dµ′

∫ 2π

0
dφ′ϕ(x, y, µ′, φ′), (14)

where ϕ = ϕ(x, y, µ, φ) is the angular particle flux for particles
being at position x, y with a direction cosine µ = cos(θ) with
respect to the z axis and a polar angle φ with respect to the x
axis.

The CLS algorithm that formally corresponds to solving the
Levermore-Pomraning model as applied to Eq. 14 is the follow-
ing. For suite I, the source particle positions are set to x = 0 and
y taken uniformly in [0, L]. Then we sample a direction cosine
µ′ (with respect to the x axis) from

µ′ =
√
ξ (15)

where ξ is taken in [0, 1), and a polar angle φ′ (with respect to
the y axis) uniform in [0, 2π]. The initial particle direction is

ω0 =

µ′Q ,

√
1 − µ′2 cos(φ′)

Q

 , (16)

with

Q =

√
µ′2 + (1 − µ′2) cos2(φ′), (17)

in order to ensure the isotropic incident flux condition, and the
initial direction cosine µ0 is defined by

µ0 =

√
1 − µ′2 sin(φ′). (18)

For suite II, the starting positions x, y are sampled uniformly
in [0, L] × [0, L], the direction cosine µ is sampled uniformly
in [−1, 1] and the polar angle φ is sampled uniformly in [0, 2π]
in order to ensure the uniform and isotropic source condition,
which yields the initial particle direction

ω0 = {cos(φ), sin(φ)} . (19)
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According to the Levermore-Pomraning prescription, the dis-
tance to material interfaces for a particle in material α is sam-
pled from an exponential distribution as follows:

di = −
Λα√
1 − µ2

ln(1 − ξ), (20)

where the factor 1/
√

1 − µ2 again accounts for the projection
of the distance on the x − y plane. The distance to the next col-
lision is sampled from the exponential distribution of parame-
ter 1/Σα(x, y), and the distance to the boundary is computed as
customary. For isotropic scattering, the cosine direction µ after
collision is sampled uniformly in [−1, 1], and the polar angle
φ is sampled uniformly in [0, 2π]; the particle direction is then
given by

ω = {cos(φ), sin(φ)} . (21)

4.3. Three-dimensional geometries280

The Boltzmann equation for mono-energetic transport with
isotropic scattering in three-dimensional geometries yields(√

1 − µ2 cos(φ)
∂

∂x
+

√
1 − µ2 sin(φ)

∂

∂y
+ µ

∂

∂z

)
ϕ =

Σ(x, y, z)ϕ +
Σs(x, y, z)

4π

∫ 1

−1
dµ′

∫ 2π

0
dφ′ϕ(x, y, z, µ′, φ′), (22)

where ϕ = ϕ(x, y, z, µ, φ) is the angular particle flux for particles
being at position x, y, z with a direction cosine µ = cos(θ) with
respect to the z axis and a polar angle φ with respect to the x
axis.

The CLS algorithm that formally corresponds to solving the
Levermore-Pomraning model as applied to Eq. 22 is the fol-
lowing. For suite I, the source particle positions are set to x = 0
and y, z taken uniformly in [0, L] × [0, L]. Then we sample a
direction cosine µ′ (with respect to the x axis) from

µ′ =
√
ξ (23)

where ξ is taken in [0, 1), and a polar angle φ′ (with repect to
the y axis) uniform in [0, 2π]. The initial particle direction is

ω0 =

{
µ′,

√
1 − µ′2 cos(φ′),

√
1 − µ′2 sin(φ′)

}
(24)

in order to ensure the isotropic incident flux condition. For
suite II, the starting positions x, y, z are sampled uniformly in
[0, L] × [0, L] × [0, L], the direction cosine µ is sampled uni-
formly in [−1, 1] and the polar angle is sampled uniformly in
[0, 2π] in order to ensure the uniform and isotropic source con-
dition, which yields the initial particle direction

ω0 =

{√
1 − µ2 cos(φ),

√
1 − µ2 sin(φ), µ

}
. (25)

According to the Levermore-Pomraning prescription, the dis-
tance to material interfaces for a particle in material α is sam-
pled from an exponential distribution as follows:

di = −Λα ln(1 − ξ). (26)

The distance to the next collision is sampled from the exponen-
tial distribution of parameter 1/Σα(x, y, z), and the distance to
the boundary is computed as customary. For isotropic scatter-
ing, the cosine direction µ after collision is sampled uniformly
in [−1, 1], and the polar angle φ is sampled uniformly in [0, 2π];
the particle direction is then given by

ω =

{√
1 − µ2 cos(φ),

√
1 − µ2 sin(φ), µ

}
. (27)

5. Simulation results285

The simulation results for the total scalar flux 〈ϕ〉, the trans-
mission coefficient 〈T 〉 and the reflection coefficient 〈R〉 are
provided in Tabs. 3 to 5 for the benchmark cases corresponding
to suite I, and in Tabs. 6 to 8 for the benchmark cases corre-
sponding to suite II, respectively. The reference solutions are290

taken from reference (28).
The CLS results have been obtained with both Tripoli-4 R©

and Mercury Monte Carlo codes by following the procedure de-
scribed above. We will denote by σCLS[O] the resulting statis-
tical uncertainty associated to each physical observable O. For295

the Tripoli-4 R© CLS simulations of the d-dimensional bench-
mark configurations we have used 109 particles (103 replicas
with 106 particles per replica). Mercury is a Monte Carlo par-
ticle transport code being developed at Lawrence Livermore
National Laboratory (32; 33). The Monte Carlo Levermore-300

Pomraning CLS algorithm was previously implemented in Mer-
cury (25) in a manner consistent with the algorithmic descrip-
tions in (9; 2) and Sec. 4. The Mercury Levermore-Pomraning
implementation has been demonstrated (25) to accurately re-
produce the independent one-dimensional slab geometry Monte305

Carlo Levermore-Pomraning results in (2). We modelled the
three-dimensional benchmark suites I and II using the Mercury
Levermore-Pomraning CLS implementation with 109 particle
histories. We obtained results that are generally statistically
equivalent to the Tripoli-4 R© CLS results to typically within310

three standard deviations for the reflection and transmission co-
efficients and the scalar flux distributions (agreement to typi-
cally four to five digits). For this paper, we will present only
the Tripoli-4 R© simulation results. Computer times for the ref-
erence and CLS solutions are also provided in the same tables:315

not surprisingly, the CLS approach is much faster than the ref-
erence method, since a single transport simulation is needed.

As a general remark, the accuracy of CLS with respect to ref-
erence solutions increases with increasing system dimensional-
ity d. This is expected on physical grounds, since the higher d320

and the smaller is the impact of the spatial correlations: a par-
ticle undergoing back-scattering is less likely to cross exactly
the same material interface as the one crossed during the pre-
vious flight. In other words, the approximations introduced in
the CLS algorithm by neglecting spatial correlations will have325

a weaker effect on particle transport. Nonetheless, simulation
results show a few exceptions among the examined configura-
tions. Moreover, the accuracy of CLS also generally improves
when increasing the tessellation density, i.e., decreasing the av-
erage chord length: configurations pertaining to case 1 globally330
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show a better agreement than those of case 2, and those of case
2 show a better agreement than those of case 3.

The effects of system dimensionality on the discrepancies be-
tween CLS and exact solutions are stronger for configurations
with smaller average chord lengths. This behaviour is again335

consistent with the fact that increasing the chord length induces
larger chunks of materials, and for chunks that span a large frac-
tion of the entire geometry the impact of dimensionality must
be rather weak: in this regime, particle transport is mostly influ-
enced by the material volume fractions (i.e., the coloring prob-340

ability).
The behaviour of suite II configurations is quite similar to

that of suite I configurations, and no specific trend due to the
source and/or initial conditions can be easily detected.

The spatial scalar flux 〈ϕ〉 within the box is illustrated in
Figs. 1 to 3 for case 1 to case 3, respectively. The discrep-
ancies between CLS and reference solutions for this observable
have the same behaviour as for the scalar quantities described
above. The discrepancy decreases with increasing system di-
mensionality and with decreasing average chord length. For
dense geometries (case 1) the effects of dimensionality on the
discrepancy are rather strong, and become less appreciable for
less dense geometries. The kind of source and/or initial condi-
tions plays again a minor role. This analysis is confirmed by
plotting the differences ∆[〈ϕ(x)〉] between reference and CLS
solutions (see Figs. 4 to 6 for case 1 to case 3, respectively).
Since both reference and CLS solutions are affected by a sta-
tistical uncertainty, the error bars on ∆[〈ϕ(x)〉] have been com-
puted by taking the combined variance

σ[∆[O]] =

√
σ2[〈O〉] + σ2

CLS[O] (28)

for each observable O.345

6. Conclusions

The Chord Length Sampling algorithm efficiently provides
approximate ensemble-averaged observables corresponding to
the Levermore-Pomraning model for Markovian binary mixing.
The interfaces between the constituents of the random medium350

are sampled on-the-fly during the particle displacements by
drawing the distances to the following material boundaries from
a distribution depending on the mixing statistics: the corre-
lations on particle trajectories induced by the spatial disorder
are thus neglected. Comparisons of CLS solutions with respect355

to reference results are mandatory in order to quantify the de-
gree of approximations introduced in these models. For Markov
mixing, a number of benchmark problems have been proposed
in the literature for this purpose, but so far analyses have been
conducted in one-dimensional media of the rod or slab type.360

Based on the set of reference solutions for particle transport
in two and three dimensional random media with Markov statis-
tics that we have derived in a series of recent papers, in this
work we have compared CLS simulation results to the refer-
ence solutions for the classical benchmark problem proposed365

by Adams, Larsen and Pomraning, and recently revisited by

Brantley, for particle propagation in stochastic media with bi-
nary Markov mixing. In particular, we have examined the evo-
lution of the particle flux, the transmission coefficient and the
reflection coefficient as a function of the benchmark configura-370

tions and of the system dimension d.
Two main trends have been detected: the accuracy of CLS al-

gorithm with respect to reference solutions generally increases
with increasing system dimensionality. Moreover, the accuracy
of the CLS algorithm increases for decreasing average chord375

length, i.e., for denser stochastic tessellations. The impact of
dimensionality is particularly relevant for case 1 configurations
(which have smaller chord lengths), and progressively dimin-
ishes for configurations having larger material chunks. The
considerations presented in this paper, although derived strictly380

speaking for the Adams, Larsen and Pomraning benchmark
considered here, seem to be quite general.

This work represents a first step towards extensive compar-
isons between CLS and reference solutions for Markov mix-
ing statistics in higher dimensions. Furthermore, extension385

of these comparisons to reference solutions for other types of
d-dimensional mixing statistics based on spatial tessellations
(such as the Poisson-Voronoi model presented in (29)) would
be interesting topics for future research.
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Case d Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Ref 0.435 ± 0.002 0.0147 ± 2.10−4 6.09 ± 0.01 1.6 × 106

1 CLS 0.37814 ± 2.10−5 0.026403 ± 5.10−6 6.6288 ± 2.10−4 2.6 × 103

Err [%] −13.10 ± 0.33 79.00 ± 2.36 8.93 ± 0.27

Ref 0.4031 ± 6.10−4 0.0173 ± 10−4 6.356 ± 0.008 6.7 × 105

1a 2 CLS 0.39001 ± 2.10−5 0.020100 ± 5.10−6 6.5056 ± 2.10−4 4.2 × 103

Err [%] −3.25 ± 0.16 16.37 ± 0.92 2.35 ± 0.13

Ref 0.4065 ± 5.10−4 0.0162 ± 10−4 6.318 ± 0.008 4.0 × 106

3 CLS 0.40176 ± 2.10−5 0.017491 ± 4.10−6 6.3933 ± 2.10−4 4.6 × 103

Err [%] −1.17 ± 0.13 7.87 ± 0.87 1.19 ± 0.12

Ref 0.0841 ± 7.10−4 0.0017 ± 10−4 2.89 ± 0.02 6.3 × 105

1 CLS 0.058641 ± 8.10−6 0.001545 ± 10−6 2.7738 ± 2.10−4 6.2 × 102

Err [%] −30.28 ± 0.61 −9.97 ± 7.28 −3.99 ± 0.76

Ref 0.0453 ± 2.10−4 0.00108 ± 3.10−5 2.165 ± 0.005 3.1 × 105

1b 2 CLS 0.042346 ± 6.10−6 0.001067 ± 10−6 2.1467 ± 2.10−4 9.6 × 102

Err [%] −6.52 ± 0.50 −1.55 ± 3.10 −0.86 ± 0.23

Ref 0.0376 ± 2.10−4 0.00085 ± 3.10−5 1.920 ± 0.003 1.7 × 106

3 CLS 0.036714 ± 6.10−6 0.0008413 ± 9.10−7 1.91440 ± 6.10−5 1.0 × 103

Err [%] −2.30 ± 0.52 −0.73 ± 3.51 −0.28 ± 0.17

Ref 0.4743 ± 5.10−4 0.0159 ± 3.10−4 6.95 ± 0.03 1.2 × 106

1 CLS 0.36953 ± 10−5 0.023765 ± 3.10−6 6.9137 ± 2.10−4 5.6 × 103

Err [%] −22.08 ± 0.08 49.67 ± 3.22 −0.56 ± 0.50

Ref 0.4059 ± 5.10−4 0.0179 ± 10−4 6.52 ± 0.01 7.5 × 105

1c 2 CLS 0.38557 ± 10−5 0.019478 ± 3.10−6 6.4952 ± 2.10−4 9.8 × 103

Err [%] −5.02 ± 0.12 8.78 ± 0.91 −0.32 ± 0.17

Ref 0.4036 ± 5.10−4 0.0164 ± 10−4 6.296 ± 0.008 3.6 × 106

3 CLS 0.39619 ± 10−5 0.016992 ± 2.10−6 6.2957 ± 10−4 1.1 × 104

Err [%] −1.84 ± 0.12 3.89 ± 0.86 0.001 ± 0.132

Table 3: Ensemble-averaged observables and computer time ttot for the benchmark configurations: suite I - case 1.
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Case d Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Ref 0.235 ± 0.003 0.0975 ± 9.10−4 7.63 ± 0.02 9.4 × 105

1 CLS 0.18051 ± 10−5 0.12841 ± 10−5 7.8140 ± 10−4 2.1 × 103

Err [%] −23.21 ± 0.93 31.75 ± 1.26 2.41 ± 0.27

Ref 0.226 ± 0.002 0.0955 ± 7.10−4 7.57 ± 0.02 3.6 × 105

2a 2 CLS 0.18972 ± 10−5 0.11403 ± 10−5 7.7288 ± 10−4 3.0 × 103

Err [%] −16.21 ± 0.80 19.43 ± 0.87 2.06 ± 0.21

Ref 0.223 ± 0.002 0.0935 ± 8.10−4 7.55 ± 0.02 1.2 × 105

3 CLS 0.20043 ± 10−5 0.105624 ± 9.10−6 7.6615 ± 2.10−4 3.1 × 103

Err [%] −9.96 ± 0.98 12.91 ± 0.97 1.52 ± 0.22

Ref 0.285 ± 0.002 0.193 ± 0.003 11.65 ± 0.08 6.2 × 105

1 CLS 0.21827 ± 10−5 0.17938 ± 10−5 10.7138 ± 5.10−4 5.4 × 102

Err [%] −23.47 ± 0.45 −7.03 ± 1.23 −8.04 ± 0.60

Ref 0.196 ± 0.001 0.143 ± 0.002 9.00 ± 0.06 2.5 × 105

2b 2 CLS 0.16674 ± 10−5 0.13377 ± 10−5 8.3763 ± 4.10−4 8.8 × 102

Err [%] −14.78 ± 0.63 −6.40 ± 1.08 −6.98 ± 0.60

Ref 0.161 ± 0.002 0.119 ± 0.002 7.76 ± 0.07 6.3 × 104

3 CLS 0.14223 ± 10−5 0.10996 ± 10−5 7.2609 ± 2.10−4 9.3 × 102

Err [%] −11.72 ± 0.90 −7.34 ± 1.43 −6.40 ± 0.81

Ref 0.4304 ± 8.10−4 0.185 ± 0.002 12.50 ± 0.06 7.5 × 105

1 CLS 0.28962 ± 10−5 0.19497 ± 10−5 11.3443 ± 4.10−4 3.3 × 103

Err [%] −32.72 ± 0.12 5.44 ± 1.23 −9.28 ± 0.45

Ref 0.3669 ± 6.10−4 0.176 ± 0.002 11.39 ± 0.05 3.3 × 105

2c 2 CLS 0.27853 ± 10−5 0.16713 ± 10−5 10.1679 ± 3.10−4 5.6 × 103

Err [%] −24.09 ± 0.12 −5.00 ± 0.83 −10.76 ± 0.39

Ref 0.3438 ± 6.10−4 0.165 ± 0.002 10.76 ± 0.06 8.7 × 104

3 CLS 0.27693 ± 10−5 0.15031 ± 10−5 9.6048 ± 2.10−4 8.9 × 103

Err [%] −19.44 ± 0.13 −8.78 ± 1.00 −10.75 ± 0.48

Table 4: Ensemble-averaged observables and computer time ttot for the benchmark configurations: suite I - case 2.
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Case d Algorithm 〈R〉 〈T 〉 〈ϕ〉 ttot [s]

Ref 0.693 ± 0.003 0.161 ± 0.002 16.35 ± 0.05 1.4 × 106

1 CLS 0.60758 ± 2.10−5 0.24037 ± 10−5 16.3738 ± 7.10−4 3.8 × 103

Err [%] −12.32 ± 0.33 49.45 ± 1.64 0.14 ± 0.31

Ref 0.672 ± 0.003 0.170 ± 0.002 16.46 ± 0.05 6.1 × 105

3a 2 CLS 0.62678 ± 2.10−5 0.21473 ± 10−5 16.3866 ± 7.10−4 6.0 × 103

Err [%] −6.71 ± 0.41 26.26 ± 1.44 −0.44 ± 0.33

Ref 0.670 ± 0.004 0.169 ± 0.003 16.35 ± 0.08 1.4 × 105

3 CLS 0.64107 ± 2.10−5 0.19957 ± 10−5 16.3231 ± 6.10−4 9.1 × 103

Err [%] −4.28 ± 0.61 18.41 ± 1.86 −0.19 ± 0.46

Ref 0.0349 ± 5.10−4 0.074 ± 0.002 5.01 ± 0.06 4.5 × 105

1 CLS 0.024013 ± 5.10−6 0.075671 ± 8.10−6 5.0313 ± 5.10−4 3.5 × 102

Err [%] −31.21 ± 1.01 2.27 ± 3.07 0.42 ± 1.25

Ref 0.0221 ± 4.10−4 0.061 ± 0.002 4.08 ± 0.06 1.8 × 105

3b 2 CLS 0.015501 ± 4.10−6 0.052503 ± 7.10−6 3.7582 ± 4.10−4 5.7 × 102

Err [%] −29.82 ± 1.42 −13.80 ± 2.98 −7.92 ± 1.35

Ref 0.0167 ± 6.10−4 0.045 ± 0.003 3.49 ± 0.08 4.6 × 104

3 CLS 0.012454 ± 3.10−6 0.040345 ± 6.10−6 3.2382 ± 10−4 8.0 × 102

Err [%] −25.48 ± 2.52 −9.57 ± 5.12 −7.19 ± 2.16

Ref 0.443 ± 0.001 0.101 ± 0.002 8.80 ± 0.07 6.9 × 105

1 CLS 0.32613 ± 10−5 0.119665 ± 9.10−6 8.4702 ± 6.10−4 3.4 × 103

Err [%] −26.41 ± 0.17 18.48 ± 2.67 −3.79 ± 0.76

Ref 0.406 ± 0.001 0.098 ± 0.002 8.34 ± 0.07 2.9 × 105

3c 2 CLS 0.33767 ± 10−5 0.094998 ± 9.10−6 7.6579 ± 5.10−4 5.6 × 103

Err [%] −16.93 ± 0.22 −2.97 ± 2.40 −8.21 ± 0.79

Ref 0.395 ± 0.001 0.085 ± 0.003 7.9 ± 0.1 7.5 × 104

3 CLS 0.34652 ± 10−5 0.080613 ± 7.10−6 7.3217 ± 2.10−4 8.8 × 103

Err [%] −12.33 ± 0.32 −4.77 ± 3.63 −7.78 ± 1.21

Table 5: Ensemble-averaged observables and computer time ttot for the benchmark configurations: suite I - case 3.
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Case d Algorithm 〈L〉 〈ϕ〉 ttot [s]

Ref 0.1522 ± 3.10−4 7.70 ± 0.01 1.0 × 106

1 CLS 0.165716 ± 8.10−6 7.3449 ± 1.10−4 2.6 × 103

Err [%] 8.90 ± 0.24 −4.64 ± 0.14

Ref 0.1589 ± 3.10−4 7.511 ± 0.008 2.1 × 106

1a 2 CLS 0.162634 ± 8.10−6 7.4287 ± 1.10−4 4.6 × 103

Err [%] 2.32 ± 0.17 −1.10 ± 0.10

Ref 0.1580 ± 3.10−4 7.530 ± 0.008 6.3 × 107

3 CLS 0.159828 ± 8.10−6 7.4924 ± 2.10−4 5.3 × 103

Err [%] 1.14 ± 0.17 −0.49 ± 0.10

Ref 0.0724 ± 4.10−4 3.73 ± 0.01 3.8 × 105

1 CLS 0.069346 ± 6.10−6 3.4898 ± 2.10−4 5.8 × 102

Err [%] −4.23 ± 0.59 −6.55 ± 0.37

Ref 0.0541 ± 2.10−4 2.182 ± 0.003 1.8 × 106

1b 2 CLS 0.053662 ± 5.10−6 2.1468 ± 2.10−4 8.9 × 102

Err [%] −0.84 ± 0.33 −1.63 ± 0.16

Ref 0.0480 ± 2.10−4 1.809 ± 0.003 6.2 × 107

3 CLS 0.047859 ± 5.10−6 1.79609 ± 6.10−5 1.0 × 103

Err [%] −0.35 ± 0.33 −0.69 ± 0.14

Ref 0.1738 ± 7.10−4 9.62 ± 0.03 1.0 × 106

1 CLS 0.172845 ± 7.10−6 8.2618 ± 3.10−4 6.7 × 103

Err [%] −0.57 ± 0.38 −14.13 ± 0.22

Ref 0.1628 ± 3.10−4 7.77 ± 0.01 2.5 × 106

1c 2 CLS 0.162379 ± 6.10−6 7.4824 ± 2.10−4 1.2 × 104

Err [%] −0.27 ± 0.19 −3.73 ± 0.12

Ref 0.1575 ± 3.10−4 7.455 ± 0.008 6.3 × 107

3 CLS 0.157383 ± 6.10−6 7.3335 ± 1.10−4 1.4 × 104

Err [%] −0.06 ± 0.17 −1.63 ± 0.11

Table 6: Ensemble-averaged observables and computer time ttot for the benchmark configurations: suite II - case 1.
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Case d Algorithm 〈L〉 〈ϕ〉 ttot [s]

Ref 0.1900 ± 3.10−4 8.26 ± 0.03 5.3 × 106

1 CLS 0.195346 ± 9.10−6 6.8189 ± 2.10−4 1.7 × 103

Err [%] 2.79 ± 0.16 −17.43 ± 0.30

Ref 0.1896 ± 3.10−4 7.45 ± 0.03 3.4 × 105

2a 2 CLS 0.193217 ± 9.10−6 6.8517 ± 2.10−4 2.8 × 103

Err [%] 1.90 ± 0.18 −7.99 ± 0.36

Ref 0.1886 ± 3.10−4 7.21 ± 0.02 1.0 × 105

3 CLS 0.191527 ± 9.10−6 6.8774 ± 2.10−4 3.0 × 103

Err [%] 1.55 ± 0.18 −4.66 ± 0.31

Ref 0.291 ± 0.002 10.70 ± 0.05 2.7 × 105

1 CLS 0.26783 ± 10−5 9.8684 ± 5.10−4 4.9 × 102

Err [%] −7.88 ± 0.51 −7.78 ± 0.41

Ref 0.226 ± 0.001 7.94 ± 0.04 1.2 × 105

2b 2 CLS 0.209414 ± 9.10−6 7.2072 ± 4.10−4 7.8 × 102

Err [%] −7.33 ± 0.51 −9.25 ± 0.48

Ref 0.193 ± 0.001 6.54 ± 0.05 6.3 × 104

3 CLS 0.181518 ± 9.10−6 6.0577 ± 2.10−4 8.6 × 102

Err [%] −6.14 ± 0.71 −7.38 ± 0.69

Ref 0.312 ± 0.001 11.90 ± 0.03 4.0 × 105

1 CLS 0.283614 ± 9.10−6 10.3022 ± 4.10−4 2.8 × 103

Err [%] −9.07 ± 0.33 −13.40 ± 0.25

Ref 0.286 ± 0.001 10.38 ± 0.03 1.9 × 105

2c 2 CLS 0.254187 ± 8.10−6 8.8967 ± 3.10−4 5.2 × 103

Err [%] −11.06 ± 0.30 −14.31 ± 0.26

Ref 0.269 ± 0.001 9.57 ± 0.04 8.4 × 104

3 CLS 0.240117 ± 8.10−6 8.3498 ± 2.10−4 8.4 × 103

Err [%] −10.63 ± 0.38 −12.72 ± 0.33

Table 7: Ensemble-averaged observables and computer time ttot for the benchmark configurations: suite II - case 2.
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Case d Algorithm 〈L〉 〈ϕ〉 ttot [s]

Ref 0.4111 ± 6.10−4 27.5 ± 0.2 2.0 × 106

1 CLS 0.40935 ± 1.10−5 19.3460 ± 8.10−4 4.3 × 103

Err [%] −0.42 ± 0.15 −29.52 ± 0.39

Ref 0.4102 ± 6.10−4 24.2 ± 0.2 6.9 × 105

3a 2 CLS 0.40967 ± 1.10−5 19.5145 ± 7.10−4 7.4 × 103

Err [%] −0.14 ± 0.15 −19.20 ± 0.51

Ref 0.4083 ± 7.10−4 22.4 ± 0.2 1.6 × 105

3 CLS 0.40807 ± 1.10−5 19.7173 ± 6.10−4 1.1 × 104

Err [%] −0.05 ± 0.18 −12.24 ± 0.77

Ref 0.128 ± 0.001 5.84 ± 0.05 1.4 × 105

1 CLS 0.125785 ± 7.10−6 5.7673 ± 6.10−4 3.1 × 102

Err [%] −1.42 ± 1.02 −1.26 ± 0.90

Ref 0.101 ± 0.001 3.81 ± 0.05 5.3 × 104

3b 2 CLS 0.093978 ± 7.10−6 3.3419 ± 4.10−4 5.2 × 102

Err [%] −7.37 ± 1.20 −12.20 ± 1.16

Ref 0.086 ± 0.002 2.95 ± 0.06 1.6 × 104

3 CLS 0.080949 ± 6.10−6 2.6747 ± 1.10−4 7.8 × 102

Err [%] −6.18 ± 1.81 −9.33 ± 1.83

Ref 0.223 ± 0.001 10.46 ± 0.05 4.2 × 105

1 CLS 0.211761 ± 8.10−6 9.5120 ± 6.10−4 3.8 × 103

Err [%] −5.04 ± 0.56 −9.08 ± 0.46

Ref 0.207 ± 0.001 8.81 ± 0.05 1.7 × 105

3c 2 CLS 0.191469 ± 7.10−6 7.8470 ± 5.10−4 6.7 × 103

Err [%] −7.70 ± 0.64 −10.94 ± 0.51

Ref 0.197 ± 0.002 8.16 ± 0.06 4.8 × 104

3 CLS 0.183044 ± 7.10−6 7.4839 ± 1.10−4 1.1 × 104

Err [%] −7.30 ± 0.94 −8.33 ± 0.71

Table 8: Ensemble-averaged observables and computer time ttot for the benchmark configurations: suite II - case 3.
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Figure 1: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 1. Left column: suite I configurations; right column: suite II configurations.
Blue lines correspond to d = 1, red lines to d = 2 and green lines to d = 3. Solid lines represent the benchmark solutions (quenched disorder approach), dotted or
dashed lines represent the solutions from the Chord Length Sampling algorithm (annealed disorder approach).
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Case 2a
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Figure 2: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 2. Left column: suite I configurations; right column: suite II configurations.
Blue lines correspond to d = 1, red lines to d = 2 and green lines to d = 3. Solid lines represent the benchmark solutions (quenched disorder approach), dotted or
dashed lines represent the solutions from the Chord Length Sampling algorithm (annealed disorder approach).
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Figure 3: Ensemble-averaged spatial scalar flux for the benchmark configurations: Case 3. Left column: suite I configurations; right column: suite II configurations.
Blue lines correspond to d = 1, red lines to d = 2 and green lines to d = 3. Solid lines represent the results from the benchmark (quenched disorder approach),
dotted or dashed lines represent the results from the Chord Length Sampling algorithm (annealed disorder approach).
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Case 1a
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Figure 4: Discrepancy ∆[〈ϕ(x)〉] between the ensemble-averaged spatial flux 〈ϕ(x)〉 obtained with Poisson tessellations (quenched disorder approach) and that
obtained with the Chord Length Sampling algorithm (annealed disorder approach) for the benchmark configurations: Case 1. Left column: suite I configurations;
right column: suite II configurations. Blue lines correspond to d = 1, red lines to d = 2 and green lines to d = 3. Error bars are computed as in Eq. (28).
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Case 2a
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Figure 5: Discrepancy ∆[〈ϕ(x)〉] between the ensemble-averaged spatial flux 〈ϕ(x)〉 obtained with Poisson tessellations (quenched disorder approach) and that
obtained with the Chord Length Sampling algorithm (annealed disorder approach) for the benchmark configurations: Case 2. Left column: suite I configurations;
right column: suite II configurations. Blue lines correspond to d = 1, red lines to d = 2 and green lines to d = 3. Error bars are computed as in Eq. (28).
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Case 3a

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8 9 10

∆
[〈
ϕ

(x
)〉

]

x

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0 1 2 3 4 5 6 7 8 9 10

∆
[〈
ϕ

(x
)〉

]

x

Case 3b

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0 1 2 3 4 5 6 7 8 9 10

∆
[〈
ϕ

(x
)〉

]

x

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0 1 2 3 4 5 6 7 8 9 10

∆
[〈
ϕ

(x
)〉

]

x

Case 3c

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0 1 2 3 4 5 6 7 8 9 10

∆
[〈
ϕ

(x
)〉

]

x

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0 1 2 3 4 5 6 7 8 9 10

∆
[〈
ϕ

(x
)〉

]

x

Figure 6: Discrepancy ∆[〈ϕ(x)〉] between the ensemble-averaged spatial flux 〈ϕ(x)〉 obtained with Poisson tessellations (quenched disorder approach) and that
obtained with the Chord Length Sampling algorithm (annealed disorder approach) for the benchmark configurations: Case 3. Left column: suite I configurations;
right column: suite II configurations. Blue lines correspond to d = 1, red lines to d = 2 and green lines to d = 3. Error bars are computed as in Eq. (28).
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