

Americium and trivalent Lanthanides incorporation in high-level waste glass-ceramics

I. Bardez-Giboire, A. Kidari, M. Magnin, J.-L. Dussossoy, S. Peuget, R.

Caraballo, M. Tribet, F. Doreau, C. Jegou

► To cite this version:

I. Bardez-Giboire, A. Kidari, M. Magnin, J.-L. Dussossoy, S. Peuget, et al.. Americium and trivalent Lanthanides incorporation in high-level waste glass-ceramics. Journal of Nuclear Materials, 2017, 492, pp.231-238. 10.1016/j.jnucmat.2017.05.045 . cea-02418707

HAL Id: cea-02418707 https://cea.hal.science/cea-02418707

Submitted on 19 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Americium and trivalent Lanthanides incorporation in high-level waste glass-ceramics

Abdessamad Kidari¹, Isabelle Bardez-Giboire^{1*}, Magali Magnin², Jean-Luc Dussossoy², Sylvain Peuget², Richard Caraballo², Magaly Tribet², Franck Doreau², Christophe Jégou2[§]

¹CEA, DEN, DE2D, SEVT, Laboratoire d'études de Développement des Matrices de Conditionnement, F-30207 Bagnols-sur-Cèze, France.

²CEA, DEN, DE2D, SEVT, Laboratoire d'étude des Matériaux et Procédés Actifs, F-30207 Bagnols-sur-Cèze, France

*Corresponding author: isabelle.giboire@cea.fr

Abstract

The incorporation and partitioning of americium and trivalent lanthanides were investigated in aluminoborosilicate glass-ceramics with apatite-like silicate crystals of general formula Ca₂(Ln,Am)₈(SiO₄)₆O₂.

A microstructural and structural study of two glass-ceramics containing $Am_2O_3 - La_2O_3$ or $Nd_2O_3 - La_2O_3$, respectively, was carried out by XRD, SEM/EDS and EMPA so as to assess a comparison of Lanthanides and Actinides partitioning into apatite crystals and residual glass. Moreover, Raman analyses of residual glasses were performed to compare the role of Am and Nd on the glassy structure.

Results put forward that shape, composition, Ln/Am stoichiometry and cell parameters of apatite crystals of both (Am-La) and (Nd-La) glass-ceramics are very close. This paper thus shows similar results for (Am-La) and (Nd-La) glass-ceramics in terms of apatite / glass

partitioning and in terms of structural role on glassy structure. It can be therefore put forward that Nd³⁺ and Am³⁺ behaviors are close, either in the glass or in the crystalline structure.

I. Introduction

The conditioning of high level wastes coming from spent nuclear fuel reprocessing aims at stabilizing the radionuclides for geological time scale in bulk matrices. The compositions of these matrices must ensure good chemical durability and thermal and radiation stability in geological repositories. Current and past investigations have mainly considered amorphous and crystalline materials for the immobilization of specific wastes type or composition. ^{1,2,3,4,5,6,7,8} The industrial immobilization of radioactive wastes is in operation in several countries, each relying on specific technological solutions. This is the case for the French R7/T7 borosilicate glass which incorporates up to18.5 wt.% of high level wastes coming from reprocessed spent nuclear fuel.⁹

Glass-ceramic matrices could be an alternative way to confine high level rates of waste and could offer flexibility in the management of flows to be vitrified. Their design and development need to evaluate the partitioning of radionuclides into glassy and crystalline phases and also to master the crystallization phenomena.

Furthermore, the aspects of minor-actinides and lanthanides incorporation in glass and glassceramic matrices are of utmost interest, not only for the design of high level waste matrices but also for further understanding of the chemistry of minor-actinide elements. In a previous study, we have thoroughly investigated Lanthanides (Nd^{3+} , La^{3+}) incorporation and local environment in an aluminoborosilicate glassy system ($SiO_2 - B_2O_3 - Na_2O - Al_2O_3 - CaO - Nd_2O_3 - La_2O_3$).¹⁰ The changes in glass composition affect their local environment and their impact on the crystallization mechanisms.^{10,11,12} Beyond the solubility limit, lanthanides elements are reported to form apatite phases with the general formula $Ca_2Ln_8(SiO_4)_6O_2$. It appeared that Ln_2O_3 solubility is higher for La-rich formulations than for Nd-rich ones and that an increase in the RE oxide content reduces the connectivity of the network building units through formation of non-bridging oxygens at the expense of the oxygen bridges. This depolymerization of the glass network did not affect neodymium environment which always consisted in silicate tetrahedra. The composition of the apatite crystals was found to be affected by the La and Nd contents of the parent glass and deviation from the ideal composition ($Ca_2Ln_8(SiO_4)_6O_2$) occurred in the neodymium end of the system (La/(La + Nd)) ratio approaching zero). It thus appears that both Ln_2O_3 solubility and crystal composition are strongly dependent on the type and crystal chemistry of the Ln elements.

However, similar studies conducted with transuranic elements at concentrations exceeding their solubility or with glass-ceramic materials are limited. In glasses, even if introduced as Am^{4+} in AmO₂, americium stabilizes as Am^{3+} in borosilicate and aluminoborosilicate glasses.^{13,14} Under this oxidation state (+III), Am^{3+} has a ionic radius of 0.097 nm and 0.108 nm when coordinated to 6 (CN6) and 8 (CN8) oxygen atoms, respectively.¹⁵ These values are comparable to that of Nd³⁺: 0.098 nm (CN6) and 0.111 nm (CN8).¹⁶ Moreover in crystalline structures, both elements are accommodated in their +III oxidation state: neodymium in apatite structures for example,¹⁷ and americium in AmNbTiO₆¹⁷ and AmPO₄.^{2,18}

To our knowledge, there are no previous reports of americium behavior in crystalline structures similar to those of the present study, the closest cases being that of $Ca_2Nd_8(SiO_4)_6O_2$ apatites containing ²⁴⁴Cm formed in supercalcine ceramics¹⁹ and that of $Ca_3Gd_7(SiO_4)_5(PO_4)O_2$ apatites like crystals containing ²⁴⁴Cm formed in partially devitrified PNL 77-260 waste glass²⁰. Nevertheless, none of these studies adressed the specific role and partitionning of Am in the glass-ceramic systems. In this paper, Lanthanides (Nd³⁺, La³⁺) and

Actinides (Am³⁺) incorporation and local environment were investigated in glass-ceramics of the $SiO_2 - B_2O_3 - Na_2O - Al_2O_3 - CaO - Ln_2O_3/Am_2O_3$ system (with Ln = Nd, La) for which the cumulative Ln₂O₃ - Am₂O₃ solubility limit was voluntary exceeded, leading to the formation of apatite-like silicate crystals of general formula Ca2(Ln,Am)8(SiO4)6O2. A comparison of Lanthanides and Am (particularly Nd and Am) partitioning into apatite crystals and residual glass was performed, focusing on the stoichiometry and cell parameters of Lnapatite and Am-apatite crystals. Neodymium is generally considered as a good minor-actinide surrogate since both elements have similar ionic radii and identical oxidation states in the glass network and crystalline structures. However this was never experimentally confirmed. Therefore to this aim, two glass-ceramics (Am-La) and (Nd-La), respectively containing Am₂O₃ - La₂O₃ and Nd₂O₃ - La₂O₃, for which americium was fully substituted by neodymium on a molar basis, were elaborated and characterized. Structural and microstructural aspects were assessed by means of chemical analyses, spectroscopic and X-ray diffraction techniques. The relevant differences in the structure and composition of the amorphous and crystalline phases are reported, while the overall effects of replacing Am by Nd are discussed in light of the trivalent cations partitioning in the crystals and in the amorphous glassy matrix. These results provide valuable information on the partitioning of Am/Nd in the residual glass and on the Am-apatite chemistry above the $Ln_2O_3 - Am_2O_3$ solubility limit.

II. Materials and methods

(1) Material fabrication

Two glass-ceramics (GC) called (Am-La) GC and (Nd-La) GC, respectively containing $Am_2O_3 - La_2O_3$ and $Nd_2O_3 - La_2O_3$, with a R ratio of 0.5 (R = La/(La+Am) or La/(La+Nd)¹⁰), were prepared in the SiO₂ – B₂O₃ – Na₂O – Al₂O₃ – CaO – Ln₂O₃/Ac₂O₃ system. Moreover a

base glass SiO₂-B₂O₃-Na₂O-Al₂O₃-CaO was prepared as a structural reference without Nd and Am for comparing both role and Nd and Am by Raman spectroscopy analyses (Table I).

Reagent grade SiO₂ (Millisil), H₃BO₃, Al₂O₃, Na₂CO₃, La₂O₃, Nd₂O₃ (Prolabo) and CaO (Alfa Aesar) were used along with americium oxide powder (AmO₂, Camix 85% ± 1 Am per g) with an isotopic composition of 99.99% $\pm 0.02^{241}$ Am.

Preparation and characterization operations of (Am-La) GC were conducted in dedicated hot cells of DHA laboratory located within ATALANTE facility. Under these conditions, it is possible to proceed with remote preparation and analysis of glasses with significant fractions of radionuclides. Prior to synthesis, the homogeneity of compositions with increasing lanthanides content (Nd₂O₃+La₂O₃ = 2.08, 2.66, 3.26, 3.90, 4.56 mol.% at La/(La+Nd) = 0.5) was assessed in a non-radioactive laboratory using an exact replica of the hot cell process. The solubility limit of Ln³⁺ elements (which corresponds to the last content before the appearance of apatite-like crystals Ca₂Nd_xLa_{8-x}(SiO₄)₆O₂ as seen in the previous study¹⁰) was established to be located between 2.66 and 3.26 mol.%. According to these results, the radioactive sample was batched with a La₂O₃+Am₂O₃ content of 3.90 mol.% with a ratio of La/(La+Am) = 0.5 so as to yield to a heterogeneous material (i) with sufficient crystallinity for convenient structural analyses and (ii) using realistic quantities of ²⁴¹Am (Table 1).

The hot cell sample preparation procedure used 5 g batch of glass-ceramic. Powders were first introduced in cylindrical Pt crucible (\emptyset 14.8 mm x100 mm) in which 4 ml of deionized H₂O were added, followed by AmO₂ powder. The slurry was homogenized by means of an ultrasonic probe for several minutes. After homogenization, the Pt-crucible was placed in an alumina container, loaded in a graphite resistor furnace. The furnace atmosphere was then flushed with argon for 4 hours. Melting took place at 1200°C for 5.5 hours (heating rate of

around 50°C.h⁻¹ from room temperature to 800°C then 100°C.h⁻¹ from 800°C to 1200°C). The melt was then cooled down to room temperature at 350°C.h⁻¹.

To assess a pertinent comparison of Am and Nd behavior, preparation of (Nd-La) GC was performed under identical experimental conditions (reactant mixing and thermal treatments).

Furthermore, the fabrication of the base glass was done according a fabrication process described elsewhere. ¹⁰

(2) Characterization

The ²⁴¹Am content of the (Am-La) sample was determined from the thermal output of the sample measured in a SETARAM C80D calorimeter (SETARAM, France) with a resolution of 1.2×10^{-7} W and a detection limit of 2×10^{-6} W. The average of three measurements was converted into Am₂O₃ considering a decay heat of 0.11 W/g of ²⁴¹Am.

Following analysis of the americium content, the initial cylindrical (Am-La) sample was cut in two parts and both samples were embedded in a Wood's alloy or epoxy resin and furthermore polished for subsequent structural and microstructural investigations.

X-ray diffraction patterns were recorded using a Seifert 3000 diffractometer (GE Sensing, France) equipped with a Mo source (λ =0.07093 nm) (40 kV, 30 mA) and on a Phillips X'pert PRO instrument (PANalytical, Netherlands) operated with a Cu source (λ =0.15406 nm) (40 kV, 40 mA) for the active (Am-La) and non-active (Nd-La) samples, respectively. After extraction of the space groups, the profiles were fitted by the Le Bail method using the FULLPROF program.²¹

Scanning electron micrographs were collected on carbon-coated samples with a JEOL 6300 (JEOL, Japan) scanning electron microscopes (SEM, 15kV) and a Philips XL30 (Philips, Netherlands) for (Am-La) and (Nd-La) samples, respectively.

The chemical composition of the (Am-La) sample was determined by means of a CAMECA SX 50 electron probe micro analyzer (EMPA, Cameca, France) equipped with four X-ray spectrometers and TAP/PET crystals and operated under an acceleration voltage of 20 kV and 20 nA stabilized beam. The chemical composition of the (Nd-La) sample was determined by means of a CAMECA SX 100 electron probe micro analyzer (EMPA, Cameca, France) equipped with four X-ray spectrometers (LPC3, LTAP, LPET and PET crystals) and an acceleration voltage of 12 kV and 10 nA stabilized beam.

For (Am-La) glass-ceramic, Raman spectra were collected with a Horiba HR-800microspectrometer (Horiba, UK) using a 532 nm green laser source located outside the hot cell and coupled to an optical microscope with x1.25 to x100 objectives (Optic Peter, France) located within the hot cell. A grating of 1800 mm⁻¹ and a slit size of 125 μ m were used. For (Nd-La) sample, Raman spectra were also collected with a Horiba HR-800micro-spectrometer with a green laser at 532 nm. The beam was focused on the sample with x50 and x100 objectives (Olympus BX41) and the spectra collected between 200 and 1600 cm⁻¹ (1800 mm⁻¹ grating, 100 μ m slit and 200 μ m confocal hole). All the spectra were corrected for temperature and frequency dependent scattering intensity²² and the baseline subtracted.

III. Results

(1) Am content

After removal of the platinum crucible (Fig. 1-(a)), calorimetric analyses indicated an average thermal power output that corresponds to ~1.65 mol.% Am_2O_3 instead of the 1.95 mol.% theoretical value. Therefore the (Am-La) GC composition was recalculated, noted "(Am-La) GC corrected" in Table 1.

Then, the crude sample has been embedded and polished (Fig. 1-(b)) for optical and electronic microscopic observations.

(2) Microstructure

Optical microscopy images of the (Am-La) GC confirmed its glass-ceramic character under polarized light, with a homogeneous dispersion of the crystals within the sample (Fig. 1-(c-e)). The (Nd-La) GC synthesized under identical conditions showed similar features (Fig. 2-(a-b)).

Scanning electron microscopy (SEM) revealed hexagonal shaped crystals (white phase on the SEM micrographs) of varying sizes and orientations in both radioactive (Fig. 3(a-c)) and non-radioactive samples (Fig. 3(d-f)). In addition, back scattered electron imaging reveal a similar contrast between the amorphous and crystalline regions of the (Am-La) and (Nd-La) GCs, that could state for close compositions of the (Am-La) and (Nd-La) residual glassy phase on the one hand and (Am-La) and (Nd-La) crystalline ones on the other hand.

(2) Structure and composition of crystalline and glassy phases

X-ray diffraction measurement of the (Am-La) GC (Fig. 4-(a)) showed reflections unequivocally corresponding to that of hexagonal apatite-like silicate structure ($P6_3/m$ space

group) with the general formula $Ca_2RE_8(SiO_4)_6O_2$, where RE is a trivalent cation. The same crystalline structure was identified in the (Nd-La) GC (Fig. 4-(b)). The refinement of the lattice parameters indicates that cell parameters of crystal phases formed in (Am-La) and (Nd-La) GCs are very close (a_{Am-La} = 0.960 nm and c_{Am-La} = 0.707 nm; a_{Nd-La} = 0.961 nm and c_{Nd-La} = 0.707 nm) and nearly similar to those of the Ca₂La₄Nd₄(SiO₄)₆O₂ ceramic reference (a_{ceram} = 0.959 nm and c_{ceram} = 0.708 nm) (Table II).

Table III summarizes the residual glass chemical composition of both (Am-La) and (Nd-La) GCs as measured by EPMA. For (Am-La) GC, although close to that of the theoretical "corrected" GC (Table I), residual glass composition indicates a depletion of Am_2O_3 (1.07 mol. % in comparison to ~1.65 mol.%), La_2O_3 (1.61 mol. % instead of 1.95 mol. %) and CaO (7.30 mol. % in comparison to 8.23 mol. %). The R ratio (R = La/(La + Am)) in the glassy phase is also slightly modified (R_{residual matrix} = 0.60 instead of R theoretical value of 0.5). For (Nd-La) GC, such phenomena are a bit less marked: the residual glass matrix composition is closer to that of the theoretical (Nd-La) composition in terms of rare earth amounts (Nd₂O₃, La_2O_3), it can only be noticed a lower CaO content (7.62 mol. % instead of 8.20 mol. %) (Table III).

Apatite phase chemical composition of both (Am-La) and (Nd-La) samples determined by EPMA are reported in Table IV. These results indicate a stoichiometry in lanthanum, neodymium or americium close to that of the theoretical $Ca_2La_4Nd_4(SiO_4)_6O_2$ ceramic phase with a R_{crystal} ratio of 0.5.

Fig. 5-(a) compares Raman spectra of (Am-La) and (Nd-La) residual glass with those of the base glass used as a free-lanthanide-actinide reference (Table I) and Table V indicates fitted areas of 850 - 1250 cm⁻¹ ranges. This region is attributed to the stretching motion of silicon oxygen bonds in SiO₄ units with Q^n connectivity (where n is the number of bridging oxygen

atoms per tetrahedron). This band has been decomposed into several components, using the second derivative of the signal and data from the literature as shown in Table V. 23,24,25

In the base glass, spectrum decomposition yields three components at 970, 1070 and 1145 cm⁻¹ that could be assigned to $Q^2 / Q^4(2AI) / Q^4(2B)$, $Q^3(Na+Ca)$ and $Q^4(AI) / Q^4(B)$ silicate tetrahedra, respectively.^{23-25,26,27,28} At lower frequencies two main bands are detected at 505 and 630 cm⁻¹ assigned to mixed Si-O-Si bending and rocking mode and to the breathing mode of danburite rings (four members ring containing two silica and two boron tetrahedra), respectively.^{27,29} Raman bands between 630 and 800 cm⁻¹ are also observed whose origin arise mainly to borate units and to O-Si-O bonds and will not be discussed here, because of overlapping and of a lack of discernable features.^{10,30,31}

In the (Am-La) and (Nd-La) GCs the main 850 - 1250 cm⁻¹ band shifts towards lower wavenumbers compared to the one of the base glass. Decomposition of the Qⁿ band needs the introduction of four components instead of three, with the replacement of the band at 970 cm⁻¹ by two bands at 933 and 998 cm⁻¹. It is known that the position of a specific band associated to a Qn unit is strongly dependent of the valence state of the neighboring cations. Q³ band were observed at 1100 cm⁻¹ for Q³(Na⁺), ³² at 1060-1080 cm⁻¹ for Q³(Ca²⁺, Sr²⁺), ^{28,33}, ³⁴ at 1010-1040 cm⁻¹ for Q³(Y³⁺, La³⁺, Zr⁴⁺). ^{34,35} Therefore, the band at 998 cm⁻¹ could be assigned to Q³ units surrounded by Ln³⁺/Ac³⁺, with also a possible contribution from Q² tetrahedra ³⁵ exclusively surrounded by Ca²⁺/Na⁺ that is observed at around 950-970cm⁻¹ (Table V). ³³ Subsequently, the new band at 933 cm⁻¹ could be assigned to Q² silicate units connected to several lanthanides (Ln³⁺: La³⁺, Nd³⁺) and/or actinide (Ac³⁺: Am³⁺) cations.

Raman spectra of crystals formed in (Am-La) and (Nd-La) GCs are very similar (Fig. 5-(b)). In both (Am-La) and (Nd-La) crystals, the symmetric stretching mode of SiO₄ (v_1) appears around 852-854 cm⁻¹ and the associated asymmetric stretching motion ($v_3 \sim 920$ cm⁻¹) is

hidden by contributions from the residual glass matrix. Both symmetric (v_2) and asymmetric (v_4) bending modes are found at 394 and 527 cm⁻¹, respectively.^{31,35} A slight difference lies in the fact that v_1 Full Width at Half Maximum (FWHM) value was found to be higher in the (Am- La) crystals than in the (Nd-La) and in the Ca₂La₄Nd₄(SiO₄)₆O₂ ceramic (Table VI). This origin could be related to the radiation damage generated by Am alpha decays, even if the characterization were performed rapidly after the elaboration process to minimize this effect.

IV. Discussion

Thanks to prior investigations on the solubility limit of Nd₂O₃ and La₂O₃ in the SiO₂ – B₂O₃ – Al₂O₃ – Na₂O – CaO – La₂O₃ - Nd₂O₃ system ((Nd-La) system),¹⁰ a composition of a glass-ceramic in the SiO₂ – B₂O₃ – Al₂O₃ – Na₂O – CaO – La₂O₃ - Am₂O₃ system ((Am-La) system) has been determined and tested, relying on a presumed assumption of a Nd and Am close crystal chemistry.

The first notable statement is that the (Am-La) GC contains a homogeneous dispersion of crystals, as theoretically wanted, with an Am_2O_3 content close to the target value.

Comparing (Am-La) GC with its counterpart (Nd-La) - elaborated with the same process – XRD, SEM/EDS, EMPA and Raman characterizations have clearly shown that Am and Nd have similar behavior in both glass-ceramic materials. Indeed, both (Am-La) and (Nd-La) GCs present a similar microstructure and identical crystals morphology, with a dispersion of hexagonal shaped crystals of varying sizes and orientations. In both glass-ceramics, crystals formed in the same apatite-like structure (P6₃/m space group), of general formula Ca₂La_xAm₈. $_x(SiO_4)_6O_2$ and Ca₂La_xNd_{8-x}(SiO₄)_6O₂, respectively. Furthermore, cell parameters of (Am-La) and (Nd-La)-apatite crystals are almost identical and also close to that of the Ca₂La₄Nd₄(SiO₄)_6O₂ ceramic reference. Raman data on crystals formed in both (Am-La) and (Nd-La) glass-ceramic materials are also very close. These results are confirmed by EPMA, leading to the determination of very close apatite compositions: Ca_{2.02}La_{3.96}Am_{4.07}(SiO₄)_6O_{1.99} and Ca_{2.81}La_{3.62}Nd_{3.57}(SiO₄)_6O_{1.59}, respectively. The values of the R ratios, close to 0.5 in both (Am-La) and (Nd-La) apatite crystals (R = La/(La+Am) or La/(La+Nd)), put forward the fact that the two Nd³⁺ and Am³⁺ behave in a similar manner, i.e. both cations are congruently incorporated in the crystalline phase during the crystallization process.

Within the amorphous glass matrix, Nd^{3+} , La^{3+} and Am^{3+} also behave in a similar manner; the incorporation of both elements to the base glass induces a global shift of the Qⁿ unit vibration bands toward lower wavenumbers due to the connectivity of both Ln^{3+} and Am^{3+} to the silicon units. This global shift is an indication of a modifier role of both Ln and Am in the glassy network as already demonstrated for Ln^{36} with specific ¹⁷O NMR experiments and for Am with EXAFS studies showing a similar field strength of around $0.5A^{-2}$ for Ln^{3+} and Ac^{3+} .

In the base glass, used as a non-disrupted network reference, most of the sodium atoms are used as charge compensators for alumina and boron tetrahedra. Because NMR analysis of this glass revealed around 75% of boron atoms in fourfold coordination, and because AlO₄ tetrahedra are preferentially compensated by Na atoms, only around 3.5 mol. % of Na₂O are still available for creating NBO atoms. Consequently, NBOs are created mainly by Ca atoms (8.5 mol. % of CaO compared to 3.5 mol. % of Na₂O in a modifier role). It is known that the Si-O stretching vibrations of Q³(Na) and Q³(Ca) are located at around 1100 and 1060-1080 cm⁻¹, respectively. Therefore, the broad band at 1070 cm⁻¹ comes certainly from a mixture of these two contributions. The weaker band observed at 1145 cm⁻¹ could be attributed to Q⁴(Al) and Q⁴(B) as generally assigned in aluminosilicate and borosilicate systems.²⁹⁻³¹ The band at 970 cm⁻¹ can be assigned to a mixture of Q² units and of Q⁴(2Al) or Q⁴(2B) as discussed in several articles on aluminosilicate and borosilicate glasses ²⁹⁻³¹.

As introducing lanthanides and/or actinides in this system, news bands appear in the silicon tetrahedral region, attributed to Q^2 and Q^3 silicate units connected to one or several lanthanide $(Ln^{3+} : La^{3+}, Nd^{3+})$ and/or actinide $(Ac^{3+} : Am^{3+})$ cations. It means that a part of Q^2 and Q^3 units of the base glass are shifted to lower frequency due to the vicinity of an Ln^{3+}/Ac^{3+} in the silica tetrahedra due to the higher field strength. The introduction of either Am or Nd exactly induces the same effect on the Q^n region of the glassy phases of the (Am-La) and (Nd-La)

GCs which indicates a similar role of both Am or Nd in the glassy network, and confirming their modifying role. Therefore Nd can be considered as a good surrogate of Am in the glassy network of silicate glasses.

This study by comparing the incorporation and partitioning of Am and Ln in the two phases of an aluminoborosilicate GC, apatite crystals and glassy phase, have demonstrated a similar behavior of Am³⁺ and Nd³⁺ in both phases and that Nd³⁺ can be used as a good surrogate as Am³⁺ in the two phases and in the GC system.

V. Conclusion

This paper aimed to assess a comparison of Actinides (Am) and Lanthanides (Nd) incorporation in High-Level Waste glass-ceramics in terms of Ln³⁺/Am³⁺ partitioning into crystals and residual glass, stoichiometry and cell parameters of Ln/Am-crystals and influence of Ln/Am nature on the glassy structure.

As reminded here before, neodymium is usually taken as minor-actinide surrogate in glasses, thanks to their common oxidation state (+III) and ionic radius (0.097 nm and 0.108 nm for Am^{3+} when coordinated to 6 (CN6) and 8 (CN8) oxygen atoms respectively and 0.098 nm (CN6) and 0.111 nm (CN8) for Nd³⁺).^{15,16} In crystalline structures also, both elements are accommodated in their +III oxidation state.^{2,17,18}

In the present glass-ceramics prepared in the $SiO_2 - B_2O_3 - Al_2O_3 - Na_2O - CaO - Ln_2O_3/Am_2O_3$ system (with Ln = Nd, La) above the Am_2O_3/Ln_2O_3 solubility limit, Am^{3+} and Nd³⁺ behave in a similar manner. In both (Am-La) and (Nd-La) systems apatite silicate crystals were formed of composition $Ca_2La_xNd_{8-x}(SiO_4)_6O_2$ and $Ca_2La_xAm_{8-x}(SiO_4)_6O_2$,

respectively. Shape, composition, Ln/Am stoichiometry and cell parameters of apatite crystals of both (Am-La) and (Nd-La) glass-ceramics are very close. Moreover, both Nd³⁺ and Am³⁺ cations are congruently incorporated in the crystalline phase compared to the glass. In the glassy phase the role of both Am³⁺ and Nd³⁺ are similar with a modifier behavior.

This paper thus shows that Nd³⁺ and Am³⁺ behaviors are very close, either in the glass or in the crystalline structure and demonstrated from a structural basis that Nd can be used as a good surrogate of Am in such aluminoborosilicate GC systems.

Acknowledgement

Financial support for this research has been provided within the framework of CEA/AREVA cooperative agreement.

The experimental data on the radioactive material were obtained in the DHA hot cell laboratory (Atalante facility) and the work of all technicians is gratefully acknowledged.

EPMA measurements were conducted by Sylvie Poissonnet at CEA Saclay, France.

References

¹ W. J. Weber, R. C. Ewing, and A. Meldrum, "The Kinetics of Alpha-decay-induced Amorphization in Zircon and Apatite Containing Weapons-grade Plutonium or Other Actinides", *Journal of Nuclear Materials*, **250** [2–3] 147-55 (1997).

² O. Terra, N. Dacheux, F. Audubert, and R. Podor, "Immobilization of Tetravalent Actinides in Phosphate Ceramics," *Journal of Nuclear Materials*, **352** [1–3] 224-32 (2006).

³ H.-j. Matzke, I. L. F. Ray, B. W. Seatonberry, H. Thiele, C. Trisoglio, C. T. Walker, and T. J. White, "Incorporation of Transuranic Elements in Titanate Nuclear Waste Ceramics", *Journal of the American Ceramic Society*, **73** [2] 370-78 (1990).

⁴ S. Le Gallet, L. Campayo, E. Courtois, S. Hoffmann, Y. Grin, F. Bernard, and F. Bart, "Spark plasma sintering of iodine-bearing apatite", *Journal of Nuclear Materials*, **400** [3] 251-56 (2010).

⁵ L. Campayo, S. Le Gallet, Y. Grin, E. Courtois, F. Bernard, and F. Bart, "Spark plasma sintering of lead phosphovanadate Pb₃(VO₄)_{1.6}(PO₄)_{0.4}", *Journal of the European Ceramic Society*, **29** [8] 1477-84 (2009).

⁶ X. Deschanels, S. Peuget, J. N. Cachia, and T. Charpentier, "Plutonium solubility and selfirradiation effects in borosilicate glass", *Progress in Nuclear Energy*, **49** [8] 623-34 (2007).

⁷ C. M. Jantzen and F. P. Glasser, "Stabilization of Nuclear Waste Constituents in Portland Cement," *American Ceramic Society Bulletin*, **58** [4] 459-66 (1979).

⁸ C. M. Jantzen, F. P. Glasser, and E. E. Lachowski, "Radioactive Waste-Portland Cement Systems: I, Radionuclide Distribution", *Journal of the American Ceramic Society*, **67** [10] 668-73 (1984).

⁹ J.-M. Gras, R. D. Quang, H. Masson, T. Lieven, C. Ferry, C. Poinssot, M. Debes, and J.-M. Delbecq, "Perspectives on the closed fuel cycle – Implications for high-level waste matrices," *Journal of Nuclear Materials*, **362** [2-3] 383-94 (2007).

¹⁰ ¹A. Kidari, J.-L. Dussossoy, E. Brackx, D. Caurant, M. Magnin, and I. Bardez-Giboire, "Lanthanum and Neodymium Solubility in Simplified SiO₂-B₂O₃-Na₂O-Al₂O₃-CaO High Level Waste Glass," *Journal of the American Ceramic Society*, **95** [8] 2531-44 (2012).

¹¹ C. W. Ponader and G. E. Brown Jr, "Rare Earth Elements in Silicate Glassmelt Systems: I. Effects of Composition on the Coordination Environments of La, Gd, and Yb," *Geochimica et Cosmochimica Acta*, **53**[11] 2893-903 (1989).

¹² A. Quintas, D. Caurant, O. Majérus, J. L. Dussossoy, and T. Charpentier, "Effect of changing the rare earth cation type on the structure and crystallisation behaviour of an aluminoborosilicate glass," *Physics and Chemistry of Glasses - European Journal of Glass Science and Technology Part B*, **49**[4] 192-97 (2008).

¹³ D. G. Karraker, "Actinide Valences in Borosilicate Glass," *Journal of the American Ceramic Society*, **65**[1] 53-55 (1982).

¹⁴ Eller, "Actinide Valences in Borosilicate Glass," *Radiochimica Acta*, **39** 17-22 (1985).

¹⁵ R. G. Haire and N. A. Stump, "Fundamental Chemistry and Materials Science of Americium in Selected Immobilization Glasses", *Materials Research Society Symposium Proceedings* **465** 39-46 (1996).

¹⁶ S. Sen, "Atomic environment of high-field strength Nd and Al cations as dopants and major components in silicate glasses: a Nd LIII-edge and Al K-edge X-ray absorption spectroscopic study," *Journal of Non-Crystalline Solids*, **261**[1–3] 226-36 (2000).

¹⁷ J. Ito, "Silicate apatites and oxyapatites," American Mineralogist, **53** 890-907 (1968).

¹⁸ C. Keller and K. H. Walter, "Darstellung, gitterkonstanten und chemische eigenschaften einiger ternärer oxide des plutoniums, americiums und curiums vom typ MeIIIXVO4," *Journal of Inorganic and Nuclear Chemistry*, **27**[6] 1253-60 (1965).

¹⁹ R. P. Turcotte, J. W. Wald, F. P. Roberts, J. M. Rusin, and W. Lutze, "Radiation Damage in Nuclear Waste Ceramics," *Journal of the American Ceramic Society*, **65**[12] 589-93 (1982).

²⁰ W. Weber, F. P. Roberts, "A review of the current status of radiation effects in solid nuclear waste forms", *Scientific Basis for Nuclear Waste Management VI. Proceedings of the Sixth International Symposium*, Boston 407-414 (1983).

²¹ J. Rodríguez-Carvajal, "Recent advances in magnetic structure determination by neutron powder diffraction," *Physica B: Condensed Matter*, **192**[1-2] 55-69 (1993).

²² D. A. Long, "Raman spectroscopy", McGraw-Hill: New-York (1977).

²³ B. O. Mysen, F. J. Ryerson, and D. Virgo, "The structural role of phosphorus in silicate melts," *American Mineralogist*, **66** 106-17 (1981).

²⁴ B. O. Mysen, D. Virgo, and C. M. Scarfe, "Relations between the anionic structure and viscosity of silicate melts-a Raman spectroscopic study," *American Mineralogist*, **65** 690-710 (1980). ²⁵ N. R. Bimalendu, "Spectroscopic analysis of the structure of silicate glasses along the joint xMAlO₂-(1–x)SiO₂(M = Li, Na, K, Rb, Cs)," *Journal of the American Ceramic Society*, **70**[3] 183-92 (1987).

²⁶ B.G. Parkinson, D. Holland, M.E. Smith, C. Larson, J. Doerr, M. Affatigato, S.A. Feller, A.P. Howes, and C.R. Scales, "Quantitative measurement of Q(3) species in silicate and borosilicate glasses using Raman spectroscopy", *Journal of Non-Crystalline Solids* **354** 1936-1942 (2008).

²⁷ S. Peuget, E.A. Maugeri, T. Charpentier, C. Mendoza, M. Moskura, T. Fares, O. Bouty and C. Jégou, "Comparison of radiation and quenching rate effects on the structure of a sodium borosilicate glass", *Journal of Non-Crystalline Solids* **378** 201-212 (2013).

²⁸ P. W. McMillan, B. Piriou, and A. Navrotsky, "A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate", *Geochimica et Cosmochimica Acta* **46** 2021-2037 (1982).

²⁹ P. W. McMillan, "Structural Studies of Silicate Glasses and Melts-applications and limitations of Raman spectroscopy," *American Mineralogist*, **69** 622-44 (1984).

³⁰ B. N. Meera and J. Ramakrishna, "Raman Spectral Studies of Borate Glasses," *Journal of Non-Crystalline Solids*, **159** [1-2] 1-21 (1993).

³¹ H. Li, Y. Su, L. Li, and D. M. Strachan, "Raman Spectroscopic Study of Gadolinium(III) in Sodium-aluminoborosilicate Glasses," *Journal of Non-Crystalline Solids* **292**[1-3] 167-76 (2001).

³² T. Furukawa, K. Fox and W.B. White, Journal of Chemical Physics **75** 3226 (1981).

³³ P. McMillan, B. Piriou, and R. Couty "a Raman study of pressure-densified vitreous silica",
Journal of Chemical Physics 81 4234-4236 (1984).

³⁴ A.J.G. Ellison and P.C. Hess, "Raman study of potassium silicate-glasses containing Rb^+ , Sr^{2+} , Y^{3+} and Zr^{4+} - Implications for cation solution mechanisms in multicomponent liquids", *Geochimica Et Cosmochimica Acta* **58** 1877-1887 (1994).

³⁵ A. J. G. Ellison and P. C. Hess, "Vibrational Spectra of High-silica Glasses of the System K₂O-SiO₂-La₂O₃," *Journal of Non-Crystalline Solids*, **127** [3] 247-58 (1991).

³⁶ E. Molières, F. Angeli, P. Jollivet, S. Gin, T. Charpentier, O. Majerus, P. Barboux, D. De Ligny, O. Spalla, *International Journal of Applied Glass Science* 1-12 (2013).