

Microbial Influenced Corrosion of passive alloys in natural or industrial waters and test methodology.

D. Feron

To cite this version:

D. Feron. Microbial Influenced Corrosion of passive alloys in natural or industrial waters and test methodology.. FRC-CORR2017 - Fukushima Research Conference on corrosion prediction and mitigation for key components of Fukushima Daiichi NPS, Nov 2017, Sendai, Japan. cea-02417241

HAL Id: cea-02417241 <https://cea.hal.science/cea-02417241>

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MICROBIAL INFLUENCED CORROSION OF PASSIVE ALLOYS IN NATURAL OR INDUSTRIAL WATERS AND TEST METHODOLOGY.

| Damien Féron, CEA-Den, Université Paris-Saclay, Gif-sur-Yvette, France

Fukushima Research Conference on "corrosion prediction and mitigation for key components of Fukushima Daiichi NPS", FRC-CORR2017 Fukushima Prefecture - November 27-28, 2017

PARIS-SACLAY

universite

C22 den MICROBIAL INFLUENCED CORROSION - CONTENT

Background

MIC & biofilms MIC, bacteria & radiation

Passive alloys

Aerobic conditions

Seawater, natural waters, aerated soils

Anaerobic environments

Sulfur Reducing Bacteria (SRBs), de-aerated environments

Mixed conditions

Scenarios / natural & industrial environments

Conclusion

BACKGROUND

MIC & BIOFILMS

ceaden

MICROBIAL INFLUENCED CORROSION

Microbial corrosion Interactions Material / Media / Microorganisms

C22 den SPECIFICITY OF THE BIOFILM

Biofilm Heterogeneity

Domains where biofilms have been found

Biofilm

- Interface between alloy & media
- Found « everywhere »
- Complex
- Heterogeneous
- Large evolution (4 dimensions)

CEA – Damien Féron | November 2017 | PAGE 5

C22 den HETEROGENEITY OF THE BIOFILM

Biofilms & corrosion in a mixed environment

Figure 2.2 Schematic of prominent aspects and processes pertinent to biocorrosion in a mixed aerobic and anoxic environment; ROS (reactive oxygen species); SRP (sulphatereducing prokaryotes); SOB (sulphur-oxidizing bacteria); MOB (metal-oxidizing bacteria); MRB (metal-reducing bacteria); APB (acid-producing bacteria).

1- Catalysis of cathodic reaction

2-Electrochemical cells

The concept of electroactive biofilms comes from bacterial fuel cells

Figure 5.2 Benthic cell = first proof that bacteria are able to exchange electrons with a conductive material. Oxidation of organic matter from sediment at the anode and reduction of dissolved oxygen from seawater at the cathode.

CEA – Damien Féron | November 2017 | PAGE 7

C22 den ELECTROACTIVE BIOFILMS MECHANISMS

Figure 5.3 The three types of interactions between electroactive bacteria and conductive materials: (a) via endogenous mediators, (b) via membrane redox proteins and (c) via conductive pili.

Electron transfert between conductive surface and bacteria

Electron acceptor : increase of the cathodic reaction kinetic Electron donor: cathodic protection

Figure 4.6 Direct and reverse electron flow between SRBs and electrode/metal surface: (a) electron flow from the electrode to the cell; (b) electron flow from the cell to the electrode.

The double aspects of SRBs

Figure 5.9 Schematic representation of how biofilm, grown on a stainless steel surface, modifies the cathodic branch and its consequence on the open circuit potential (OCP) of the sample.

Effect of aerobic biofilms

CEA – Damien Féron | November 2017 | PAGE 9

BACKGROUND

MIC, BACTERIA & RADIATION

MIC & SPENT FUEL PONDS

Areas where biofilm have been found in spent fuel ponds G. Galès, PhD Thesis, 2004, Université d'Aix-Marseille

- Biofilms observed in extreme conditions (high radioactive levels, very low nutrient concentrations)
- Other reports in USA (Savannah River) and in Spain
- Autotrophic population able to oxidize $H₂$ as energy source, using $O₂$ as electron acceptor and $CO₂$ as carbon source (*Ralstonia sp. & Burkholderia sp.)*
- High potentials up to +400 mV/SCE observed

Fig. 2. Evidence of connections between hydrogenase activity and hydrogen/oxygen uptake in autotrophic conditions for Ralstonia sp. GGLH002

G. Galès & Al., FEMS microbiology letters, 240 (2004) 155-162

CEA – Damien Féron | November 2017 | PAGE 11

ceaden **MIC & SPENT NUCLEAR FUEL CLADDING**

Microbial activity and biofilms on irradiated spend nuclear fuel cladding

- SRB activity has been found on Magnox sludge from corroding magnesium clad fuel elements C.R. Gregson & Al., JNM 412 (2011) 145-156
- Microbial biofilm growth experienced in laboratory long term tests on irradiated stainless steel SNF cladding.
- Various bacteria, including SRBs, can survive with a total absorbed dose of 3,2 103 Gy.

ENHANCEMENT OF CATHODIC REACTION BY ceaden **BACTERIA IN HYDROGEN ENVIRONMENTS**

Under irradiation, hydrogen is produced by water radiolysis and may be used by bacteria to reduce some oxidant

CEA – Damien Féron | November 2017 | PAGE 13

PASSIVE ALLOYS

AEROBIC CONDITIONS

NATURAL AERATED ENVIRONMENTS

Aerobic Biofilms in natural waters

In aerated natural waters, the free corrosion potential on stainless steels increases with exposure time. This evolution is linked to the biofilm formation.

CEA – Damien Féron | November 2017 | PAGE 15

ceaden

Aerobic Biofilms in natural waters

In aerated natural waters, the free corrosion potential on passive alloys increases with exposure time. This evolution is linked to the biofilm formation.

Corrosion potentials observed after 30 days in natural sea water.

A.Bergel, D.Féron, A.Mollica *Electrochem. Comm*. **7** (2005) 900 - 904

Biofilm formed in seawater on stainless steel at constant potential -0.2 V/SCE \rightarrow Current densities up to 1.3 A/m², with $[O_2] = 0.24$ mM

CEA – Damien Féron | November 2017 | PAGE 17

Natural seawater: 74% of the specimens are corroded - 1 month of exposure

Biosynthetic seawater (glucose oxydase addition) at 20°C: 91% after only 5 days

- **good reproduction and acceleration of the MIC**
- **proposal of an ISO standard by TC156**

RIVER OR GROUND WATERS : IMPORTANCE OF ceaden **THE CHEMISTRY**

Influence of the concentrations of chloride on the pitting behavior of 304 & 316 stainless steels

Electroactive biofilms (bacteria) may increase the corrosion potential above the pitting potential or above the repassivation potential, leading respectively to pit initiation or propagation | November 2017 | PAGE 19

ELECTROACTIVE BIOFILMS: FROM BIOFUEL CELL TO BIOCATHODIC PROTECTION

ceaden

Stainless steel electrodes (0.12 m2) located in aerated seawater and in the mud

Potential of the cathode lower than 0.0mV/Ag.AgCl instead of +300mV/Ag.AgCl (free corrosion potential)

=> Cathodic protection

Summary

- Increase of the free corrosion potential of passive alloys is linked to the formation of a biofilm
	- Biocatalysis of the cathodic reaction by the biofilm (EA biofilm)
- **This may lead to inititation and then propagation of the pits or** crevice corrosion
- A methodology based on enzyme mechanisms may help for the choice of an alloy or for the determination of the localized corrosion risk for an alloy already in place

CEA – Damien Féron | November 2017 | PAGE 21

PASSIVE ALLOYS

ANAEROBIC CONDITIONS

SRB versus SULPHIDE ?

Investigations in anaerobic environments (suphate reducing bacteria) based on the **breakdown potentials** (crevice corrosion / pitting potentials) of passive alloys (stainless steels)

ceaden

ANAEROBIC BIOFILMS

Evolution of breakdown potentials with and without SRBs

Cumulative distributions of breakdown potentials for 316L (EN 1.4404) in SRB culture and in aerated sterile seawater

Cumulative distributions of breakdown potentials for 316L (EN 1.4404) in SRB culture and in de-aerated seawater added with Na2S

\triangleright Sulphides added as Na₂S simulate the effect of SRBs on the breakdown potential of stainless steels

SUMMARY - STAINLESS STEEL BEHAVIOUR

316L stainless steel (EN 1.4404)

ceaden

ceaden

SYNERGY OF AEROBIC AND ANAEROBIC BIOFILMS

Test methodology to simulate of a biofilm with aerobic and anaerobic areas

CONCLUSION 1- Electroactive biofilms can be formed and developed even under irradiation.

2- Aerobic biofilms increase the rate of the cathodic reaction on passive alloys (stainless steels, nickel based alloys, titanium,…)

The effect of aerobic bacteria can be simulated by adding glucose oxidase and glucose to sterile seawater.

3- SRBs biofilms lead to decrease breakdown potentials of passive alloys.

The effect of anaerobic bacteria can be simulated by adding Na2S to sterile de-aerated seawater.

4- The settlement of aerobic bacteria and the presence of active SRB bacteria act in synergistic way as promoters of corrosion onset:

- **cathodic reaction(s) accelerated by the aerobic biofilm.**
- **anodic resistance locally decreased (i.e. anodic reaction accelerated) by the anaerobic biofilm.**

CEA – Damien Féron | November 2017 | PAGE 27

CONCLUSIVE COMMENTS (2/2): MIC MITIGATIONceaden

- **1. Biocides**
- **2. Materials: alloy adapted at its environments and the evolutions linked with bacteria**
- **3. Conception: no stagnant waters / surface cleaning**
- **4. Coatings: isolation of the alloy from the media**
- **5. Cathodic protection: sacrificial anodes**

transformateur
redresseur ∃∭≋⊺ ≡π anodes inertes

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay **|** 91191 Gif-sur-Yvette Cedex Damien Féron T. +33 (0)1 69 08 20 65**|** F. +33 (0)1 69 08 15 86 damien.feron@cea.fr

Etablissement public à caractère industriel et commercial **|** RCS Paris B 775 685 019

Direction de l'Energie Nucléaire Département de Physico-Chimie Service de la Corrosion et du Comportement des Matériaux dans