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Abstract

Within the framework of damage mechanic, numerous anisotropic damage models

have been proposed in the literature with the aim to represent the anisotropic degrada-

tion of quasi-brittle materials. The benefits from such models arise from the fact they

are consistent with the principles of the continuum mechanics enabling easy numerical

implementation in the majority of finite element codes. Despite the wealth of anisotropic

models in the literature, further developments are needed to simulate correctly the re-

sponses involving phenomena related to crack closure. The present paper proposes a new

class of anisotropic damage models characterized by its capabilities to describe non linear

progressive stiffness recovery with the possibility to introduce permanent strains. The

theoretical framework takes benefits from some results of the operator function theory.

Further mathematical features are established for sets of functions, which are termed

opening (closure) cracking functions. These features are useful to control the material

behavior when the tensile or the compressive strains are activated (deactivated) with more

or less smoothness. The thermodynamical admissibility condition is fulfilled, as long as

the damage variable and the cracking functions satisfy further conditions. The robustness

associated with the time integration of the proposed class of models is illustrated by a

structural case study.
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Nomenclature

Rn Real space of n dimensions

Sn Space of second order symmetric tensors on the space Rn

S+
n Space of positive second order symmetric tensors on the space Rn

I Identity second order tensor on Rn

ϵ Strain tensor

σ Stress tensor

D Second order damage tensor

H Second order integrity tensor

◦ Schur product (Hadamard product)

tr (·) Trace operator

∥·∥ Bound norm

∥·∥2 Frobeinus norm

⟨·, ·⟩ Scalar product on Rn

C+ Set of opening cracking functions

C− Set of closure cracking functions

D̃x The differential operator with respect to the variable x

E Young’s modulus

ρ Mass density

ν Poisson’s ratio

η Material parameter controlling the unilateral effect

ϵ̂ Mazars’s equivalent strain

κ0 Damage threshold

λ, µ Lamé’s coefficients

ψ Free Helmohltz energy

s Triaxiality exponent

S Damage strength

TX Stress triaxiality

2



1. Introduction

Within the framework of structural design, efficient numerical analysis requires robust

constitutive material models to predict satisfactorily the non linear behavior of structures

under static or dynamic loading. In the case of quasi-brittle materials, the defects evolve

and have preferential orientation due to mechanical boundary conditions and shrinkage

effects. The evolution of these micro-defects results in stiffness degradation which itself

leads to a non linear response of the structure [1]. When compressive loading is applied,

the cracks close or partially close (if the permanent strains are considered), leading to

the stiffness recovery. This phenomenon is known as the unilateral effect and has to

be considered in the numerical computations when dealing with cyclic loads. Although

many damage models, especially isotropic ones ([2, 3, 4, 5, 6, 7]), have been developed to

reproduce the crack closure effect, further efforts still need be made to simulate correctly

the structure response under cyclic loads. Besides this specific feature, additional ones

can be summarized as follows:

1. stiffness degradation due to the development of the defects,

2. anisotropic behavior in the sense that the degradation depends on the directions,

3. dissymmetry between tension and compressive response,

4. permanent strains when unloading,

5. continuity of stress with respect to both strain and damage variables,

6. single damage variable to describe the damage process whatever the complexity of

the loading path [8].

7. Regularized unilateral effect defined as a smooth crack opening/closing behavior

(see also [6]).

The concept of continuum damage mechanics has been developed to describe the ma-

terial degradation in an equivalent continuous media, by means of internal variables which

deteriorate the material stiffness. This is generally achieved by using a scalar damage vari-

able when a random distribution of micro-cracks is assumed or using a more or less com-

plex variable (tensor) leading to a more realistic representation of the material anisotropy.

As reported by several researchers, elasticity coupled with damage is generally sufficient

to describe the concrete behavior, especially when the tension is the main cause of struc-

tural failure. During the last decades, several anisotropic models have been proposed

in the literature. The anisotropy is generally introduced either by a fourth-order tensor

[9, 10, 11, 12, 13] or a second-order damage tensor [8, 14, 15, 16, 17, 18, 19, 20, 21, 22].
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However, the second-order formulations still remains the most popular due to its sim-

plicity to represent three orthogonal families of microcracks and its capabilities to model

in a realistic way the behavior of metals or quasi-brittle materials. One of the earliest

development concerns the extension of the concept of equivalence between fictitious un-

damaged configuration and the real damaged configuration in three dimensions suggested

by Murakami [15] leading to the definition of an effective stress tensor using a symmetric

second order damage tensor. Based upon the effective stress concept, Lemaitre et al. [17]

proposed one of the most popular damage-based anisotropic model for metallic materials

established within the framework of the strain equivalence principle, where the elasticity

is written through a partition technique between the deviatoric part and the hydrostatic

part of the elastic energy. However, the relations controlling the damage evolution does

not prevent the damage variables from evolving beyond the unity and losing their phys-

ical meaning. Consequently, additional improvements have been proposed recently by

Desmorat [8] where the damage state is described using the integrity tensor instead of

the damage tensor. An attempt to couple the hysteretic effects (due to frictional mecha-

nisms between the lips of the cracks) with anisotropic damage has been suggested by Halm

et al. [19], using a spectral decomposition. Nonetheless, some thermodynamical inconsis-

tencies reflected by the non uniqueness of the potential have been reported by Cormery

et al. [23]. Similar drawbacks were expressed regarding the anisotropic model developed

by Chaboche [24]. In order to move forward, enhancements of the original Halm’s model

have been proposed by Bargellini et al. [18] using fixed micro-crack directions in such a

way that the damage evolution is controlled by functions, called micro-crack densities.

Although the majority of existing anisotropic damage models focus on the description of

the anisotropic character of quasi-brittle materials, many formulations which take into

account the unilateral effect may be found in the literature [10, 25, 26, 20]. For the

majority of the anisotropic model, the unilateral effect is mainly introduced by a decom-

position technique (or projection technique) into positive and negative part of the strain

or the stress tensor. As observed by Chaboche [10], some models have been developed

using the latter technique suffer from some inconsistency regarding the symmetry of the

secant stiffness. Moreover, the use of the projection technique results in a discontinuous

secant stiffness leading to an abrupt crack closure and some difficulties of convergence as

observed by Jefferson and Mihai [6].

In order to ensure the boundedness of the damage tensor (generally bounded by unity

in norm) and to keep a physical meaning of the results, different strategies can be founded

in the literature. One of the easiest options is to control the rate of the integrity tensor
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H = (I −D)
− 1

2 or the pseudo-logarithmic damage tensor instead of the damage tensorD

(see [27, 28, 8]). An other strategy using the characteristic function has been suggested

by Badel et al. [20]. In general, the damage evolution is controlled by an associated

tensor which can be expressed in the form ϕ = (I −D)
p
, where p is a real (see also

[16, 29, 30, 31]). It is seen that the rate ϕ̇ depends on the exponent p and, in many cases,

there is no equivalence between the positivity of ϕ̇ and Ḋ, i.e. for instance if p = − 1
2 the

positivity of ϕ̇ does not imply the positivity of Ḋ. This issue is also discussed farther in

the paper.

Despite the wealth of the proposed second order damage formulations, in our knowl-

edge none takes into account simultaneously a progressive smooth crack opening/closing

behavior (the regularized unilateral effect) and the irreversible strains. In this regard, the

paper aims to present a family of second order anisotropic damage models for quasi-brittle

materials which satisfy the properties (1) to (7) described above. In the following, the

paper is organized into three parts. The first part reviews some notions and basic results

related to the operator and trace function theories. The second part is devoted to the

construction of a new class of damage models characterized by its abilities to take into

account the unilateral effect with the possibility to introduce permanent strains. Fur-

ther fundamentals mathematical results concerning the well-posedness of the boundary

problem at fixed damage state as well as the thermodynamical consistency in the sense

of distributions are shown. The relation between the rates associated with the damage

tensor and different form of the integrity tensor is also investigated. The last part is

focused on the numerical examples to highlight the robustness of the model regarding

smoothing of the crack opening-closing behavior and introducing permanent strains.

2. Operator and trace functions: definitions and basic results

The space Sn can be endowed with a partial order on Sn as follows: the tensor A ∈ Sn
is said to be positive semi-definite if:

⟨x,Ax⟩ ≥ 0 ∀ x ∈ Rn (1)

and we write A ≥ 0. A is said positive definite if the inequality (1) is strict for all

x ̸= 0 in Rn and we write A > 0. Finally, the space Sn is partially ordered by defining

A ≥ B as A−B ≥ 0.

Two tensors A and B from Sn are equivalent if there exists a non-singular tensor

R ∈ Sn, not necessary symmetric, such that:
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A = RTBR (2)

As a consequence of the equation (2), if the tensor B is positive (resp. negative) then

A is also positive (resp. negative), and conversely.

Let f be a real function on an interval J . If A ∈ Sn, with its eigenvalues, denoted

α1, ..., αn, are in J , we define the operator function f in Sn by:

f(A) =

n∑
i=1

f(αi) Pi (3)

where Pi are the spectral projections of A. For any orthonormal basis, says {e1, ..., en},

the trace function, defined on Sn, and associated with the function f is given by:

tr(f(A)) =

n∑
i=1

⟨ei, f(A)ei⟩ (4)

f is said to be a monotone operator function if for any tensors A and B such that

A ≥ B, we have f(A) ≥ f(B).

Let J = (a, b) be an interval and f a continuously differentiable function on J . If

A ∈ Sn, with its eigenvalues, denoted α1, ..., αn, are in J , then the trace function defined

above is also continuously differentiable whose differential is given by:

D̃A tr(f(A))(H̃) = tr
(
f

′
(A)H̃

)
(5)

Generally, if L∗ is the adjoint of a linear operator L defined on Sn then:

D̃A tr(f(L(A))) = L∗(f
′
(L(A))) (6)

As an example which will be used later, let L(A) = KAK for any symmetric tensor

K ∈ Sn, then L is symmteric and L = L∗.

Remark The relation between the convexity of f and tr(f(.)) is the most interesting

feature of this class of functions. An immediate corollary of the Peierls’s Inequality

[32] shows that if f is convex (resp. strictly convex) then A → tr(f(A)) is convex

(resp. strictly convex). Furthermore if the map is assumed convex, a practical inequality

implying the Peierls Inequality states that for any unitary vector u:

f (⟨u,Au⟩) ≤ ⟨u, f (A)u⟩ (7)

where the eigenvalues of A belong to the domain of f .
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3. A new class of damage models and fundamental results

3.1. Motivations and definition of cracking functions

The unilateral effect is considered as an intrinsic feature of quasi-brittle materials

such concrete. This phenomenon is described by the majority of isotropic (or anisotropic)

damage models using a split technique between the compressive and the tension behaviors

by means of the positive part function x 7−→ ⟨x⟩+ = max (x, 0). This function is generally

introduced into the stress or strain tensor in order to distinguish the compressive strain

(stress) from the tension strain (stress). Nonetheless, the lack of differentiability at x = 0

may cause numerical issues when (the secant) stiffness matrix is updated. Indeed, when

the positive part function is applied to a tensor A, in the sense of the definition (3), it

is seen that the resulting tensor, denoted ⟨A⟩+, is positive and belongs to S+
n . It may

be checked that A 7−→ ⟨A⟩+ is differentiable if and only if A is non singular. Thus, the

stiffness operator is only meaningful for this set of tensors. Moreover, some references

[33, 6] have discussed, from a numerical point of view, the benefits of smoothing the

behavior of crack closure against an abrupt crack closure.

Given the aforementioned shortcomings, the aim of the following parts is to introduce

new families of functions, called opening cracking functions (resp. closure cracking func-

tions) playing a similar role as the function x 7−→ ⟨x⟩+ (resp. x 7−→ ⟨x⟩− = min (x, 0))

enjoying more valuable features in term of smoothness as detailed later.

3.1.1. Opening cracking functions

Definition Let C+ be the set of the opening cracking real-valued functions f defined on

R, i.e., dom(f) = R, and satisfying the following properties:

1. f is convex on R,

2. lim
x→+∞

(f (x)− x) is finite,

3. f is integrable in the neighborhood of −∞.

C+ is clearly convex and not empty since the function f (x) = max (x, 0) fulfills all the

aforementioned items. It will be shown that, in addition to the statements (1), (2) and

(3), valuable features characterizing the opening cracking functions can be derived which

provide new information on the regularity of such functions or their behaviors at −∞.

Recall that the interest of such functions is to build, not a single, but a class of elastic

damage models that fit into the thermodynamic framework and satisfy some classical

properties such as the positivity of the potential energy and the convexity with respect to

the strain tensor. Since no regularity is imposed, each model from the previous class may
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differ from each other in terms of capabilities of smoothing the responses when switching

from tension to compression. Further properties of the opening cracking functions are

given in the following proposition.

Proposition 3.1. Let f be of C+, then:

1. f belongs to C0 (R), i.e., f is continuous on R,

2. f is a non decreasing positive function and lim
x→−∞

f (x) = 0,

3. F (x) =
∫ x
−∞ f (u) du is a convex positive function,

4. f is a 1-Lipschitz function.

Proof :

1. The continuity results from the convexity of f [34].

2. Let (xn)n be a strictly non increasing sequence such that lim
n→+∞

xn = −∞. If there

exists an integer p ≥ 1 such as f(xp+1) ≥ f(xp), then (f(xn))n≥p is non decreasing

sequence. Indeed, since xp+2 < xp+1 < xp, there exists t ∈]0, 1[ such xp+1 = t xp +

(1−t)xp+2. Thus, using the convexity of f , we conclude that (f(xp+2)− f(xp+1)) ≥
t

(1−t) (f(xp+1)− f(xp)) ≥ 0. By induction, the result remains valid for all n ≥ p.

In all cases, it is seen that (f(xn))n admits a limit l ∈ R which is not necessary

finite when n goes to +∞. The next step consists in establishing that two sequences

(pn)n and (qn)n of the same nature as (xn)n have the same limit. For this purpose,

we build another sequence (zn)n of the same nature as (xn)n such that (z2n)n

and (z2n+1)n are sub-sequences of (pn)n and (qn)n, respectively (this is possible by

construction). It is clear that (zn)n has at least two adherent points in R which

are the limits of (pn)n and (qn)n. Moreover, (zn)n converges (since (zn)n shares

the same properties of (xn)n) with a unique adherent point. Thus, both sequences

(pn)n and (qn)n have the same limit l as (xn)n which is evidently the limit of f

when x→ −∞ since f is continuous. Moreover, if l ̸= 0 then the function f cannot

be integrable in the neighborhood of −∞ which contradicts the definition of C+.

Hence, for all (x, y) ∈ R2 we have:

f (x)− f (y)

x− y
≥ lim
z→−∞

f (z)− f (y)

z − y
= 0 (8)

In the equation (8), we use the fact that the map x 7−→ f(x)−f(y)
x−y increases with

x (classical result from the convex function theory). Given this result, we deduce

that f is a non decreasing positive function since f (x) ≥ f (−∞) = 0.
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3. Since f is positive, then F (x) =
∫ x
−∞ f (u) du ≥ 0. Moreover, the monotony of f ,

previously demonstrated, implies the convexity of F .

4. Using the assumption lim
x→+∞

(f (x)− x) < +∞, we infer:

1 = lim
z→+∞

f (z)− f (y)

z − y
≥ f (x)− f (y)

x− y
≥ 0 (9)

Thus,

|f (x)− f (y)| ≤ |x− y| (10)

□

Before going further, same comments on the physical interpretation of the previous

proposition can be given. Since the present model is built using the Helmohltz free energy

(expressed in term of the strain tensor), the continuity of the opening cracking functions

is needed to ensure the continuity of the stress tensor with respect to the strain tensor,

as highlighted later. The second property shows, in conjunction with the role played

by the positive part function, that any function from this family is deactivated once the

compressive strains become sufficiently large. The third property is useful to build a

positive convex free energy with respect to the strain tensor using the primitives of the

form F (x) =
∫ x
−∞ f (u) du. Finally, the assertion 4 implies that f is differentiable almost

everywhere in the sense of Lebesgue measure. This is also a direct consequence of a deeper

result in the convex analysis (see [34]). For practical applications, we restrict ourselves

to smooth functions that belong, at least, to the space C1 (R) except for a finite set of

points.

From a physical point of view, the second assumption of the above definition indicates

that the term f(x) is approximately equal to x up to a constant when the tension strains

are sufficiently significant. This condition, when considered without further assumptions,

is not sufficient to conclude that f ′(x) is close to 1 when x is sufficiently large and thus

to provide information on the behavior of the secant stiffness for a fixed damage state. In

order to achieve a better convergence of the Hessian operator, it is necessary to control

the behavior of the derivative at (±∞) in order to satisfy similar properties as the ones

fulfilled in case of the positive part function. In this case, the derivative of each function

should converge to unity for important tension strains and vanish (or converge to 0) for

compressive strains. This is ensured by the following proposition:
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Proposition 3.2. Let f be an element of C+, which is differentiable except in finite

number of points, then:

lim
x→+∞

f
′
(x) = 1 (11a)

lim
x→−∞

f
′
(x) = 0 (11b)

Proof :

We restrict ourselves to the first assertion since the second holds by analogy. For n ∈ N

sufficiently large, using the mean value theorem, there exists an increasing sequence (ξn)n

such that n < ξn < n+ 1 and:

f (n+ 1)− f (n)

n+ 1− n
= f

′
(ξn) (12)

Taking into account the fact that f is convex, f
′
is an increasing function, which

means that lim
x→+∞

f
′
(x) exits and equals to lim

n→+∞
f

′
(ξn).

In other hand, we have:

f (n)− n = c+ ◦ (1) (13)

for some constant c. Thus, using the above relation for n and n+ 1, respectively, we

deduce f
′
(ξn) =

f(n+1)−f(n)
n+1−n = 1 + ◦ (1). □

Remark :

Because f
′
increases with x and f

′
(−∞) = 0, the derivative f

′
is non-negative which

means that the function F is convex (since F
′′

= f
′
) as claimed by the proposition

3.1. Moreover, it should be noted that the relations (11a) and (11b) do not always hold

without the convexity assumption. □

3.1.2. Closure cracking functions

In the same spirit, we define C−, the set of the closure cracking functions f satisfying

the following properties:

� f is concave on R,

� lim
x→−∞

f (x)− x is finite,

� f is integrable in the neighborhood of +∞.

From the definition above, the set C− is also convex characterized by the following

properties:
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Proposition 3.3. Let f be of C−, then:

1. f belongs to C0 (R), i.e., f is continuous on R,

2. f is a non decreasing negative function and lim
x→+∞

f (x) = 0,

3. F (x) =
∫ x
+∞ f (u) du is a convex positive function,

4. f is a 1-Lipschitz function.

Proof : similar to proposition 3.1 □

Furthermore, if each function f ∈ C− belongs to C1 (R) except in a finite set of points,

then:

Proposition 3.4. Let f be an element of C−, which verifies the above assumption, then:

lim
x→+∞

f
′
(x) = 0 (14a)

lim
x→−∞

f
′
(x) = 1 (14b)

Proof : similar to proposition 3.2 □

3.2. The free energy expression

One of the challenges encountered in the thermodynamical formulation for quasi-

brittle material models is the description of the unilateral effect using single damage

variable [35]. In this section, the free energy associated with the new class of damage

models is elaborated by means of the cracking functions, introduced in section 3.1. The

unilateral effect is taken into account by splitting the free energy, denoted ψ (ϵ,H), into

two different parts. The first part affected by the second order integrity tensor H, related

to the damage tensorD and defined byH = (I−D)−
1
2 as pointed out in the introduction,

describes the behavior of the material as long as the tension strains are activated. The

second part, partially affected by the second order damage tensor, describes the behavior

when compressive strains are activated. Theoretical results from the previous section are

used to describe the main properties of the free energy, regarding to the smoothness and

the convexity character. Further mathematical results concerning the boundary value

problem are also investigated.

Let ϵ be the strain tensor andH the integrity tensor, the free energy potential ψ (ϵ,H)

is defined by:

ψ (ϵ,H) = ψ+
F+,G+ (ϵ,H) + ψ−

F−,G− (ϵ) (15)
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where,

ρψ+
F+,G+ (ϵ,H) = 2µ tr

(
F+

(
H− 1

2 ϵH− 1
2

))
+ λ

3

tr
(
H2
) G+ (tr (ϵ)) (16)

and,

ρψ−
F−,G− (ϵ,H) = 2µ (1− η ∥D∥) tr

(
F− (ϵ)

)
+ λ G− (tr (ϵ)) (17)

where F+ : x 7−→
∫ x
−∞ f+ (u) du and G+ : x 7−→

∫ x
−∞ g+ (u) du, where f+ and g+ are

the opening cracking functions selected from the set C+, while F− : x 7−→
∫ x
+∞ f− (u) du

and G− : x 7−→
∫ x
+∞ g− (u) du where f− and g− are the closure cracking functions se-

lected from the set C−. The functions F+ and F− are viewed as operator functions (see

definitions (3) and (4)). The parameters λ and µ are the Lamé coefficients for undamaged

material and η is a positive parameter selected between 0 and 1. As mentioned above,

the potential ψ+
F+,G+ (ϵ,H) represents the behavior affected by the damage controlled by

the tensor H, while ψ−
F−,G− (ϵ) represents the behavior partially affected by the damage.

As will be highlighted later in the numerical examples, the parameter η has been intro-

duced to control the degree of the unilateral effect which is total when η = 1 and partial

when η < 1. Note that the non linearity of the cracking functions has the advantage

to reproduce a progressive crack opening that match the experimental observations [36].

Moreover, smoothing the behavior has also the benefit to improve the numerical conver-

gence comparing with the damage models with abrupt contact as reported by [6]. This

can be achieved by selecting sufficiently smooth cracking functions, at least of class C1,

to ensure the continuous differentiability of the functional ψ (ϵ,H) in one hand and the

continuity of the corresponding Hessian tensor on the other hand.

Note that the tensor H− 1
2 ϵH− 1

2 in the relation (16) is equivalent to the strain tensor

ϵ following the definition given in section 2. Thus, it is clear that if the tensor ϵ is

negative semi-definite (i.e. −ϵ est positive semi-definite), the stress tensor related to the

damaged part tends to vanish when the eigenvalues of ϵ are negatives and sufficiently

high. Conversely, if ϵ is positive, the stress tensor related to the undamaged (or partially

damaged) part becomes inactive when the eigenvalues of ϵ are positive and sufficiently

large.

Remark : The concept of special positive part of the stress tensor, denoted σ+, has

been proposed by Ladevèse [16] which is built using the positive part of eigenvalues of

the tensor Hσ. Indeed, it can be verified that the previous definition is related to the

positive part function (see Appendix A) by:
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tr
(
H1σ

+H1σ
+
)
= tr

((〈
H

1
2
1 σH

1
2
1

〉+)2
)

(18)

□

One can notice that the proposed Helmholtz free energy ψ has the property to be

independent on the basis in which it is expressed. In other words, one can observe that

ψ (ϵ,H) = ψ
(
UT ϵU ,UTHU

)
for all orthogonal tensor U in the special orthogonal

group. The convexity with respect to the strain tensor is ensured for all of cracking

functions (see the remark in section 2), while the strict convexity can be ensured if one

the functions F+ or F− is strictly convex. It is worth noticing that the strict convexity

of the potential is generally essential (of course with further assumptions) to construct

a one to one and onto operator between the strain and the stress tensor spaces. Due

to thermodynamic requirement (see section 3.3), the function F+ can only be strictly

convex in R+. This constraint, combined with a weak assumption on F−, provides a

strict convexity of the potential as stated by the proposition 3.5.

Proposition 3.5. If f+ and f− are strictly monotone on R+ and R−, respectively; then

the potential ψ is strictly convex on Sn for a fixed H.

Proof : see Appendix B

The stress tensor can be derived using the expression of the free energy (15). Here,

we assume that the stress tensor is related to the damage tensor H and the strain tensor

ϵ by:

σ(ϵ,H) = D̃ϵψ(ϵ,H)

= 2µH− 1
2 f+

(
H− 1

2 ϵH− 1
2

)
H− 1

2 + λ
3

tr
(
H2
) g+ (tr (ϵ)) I (19)

+2µ (1− η ∥D∥) f− (ϵ) + λ g− (tr (ϵ)) I

The first term is obtained using the equation (6) with the linear operator L(ϵ) =

H− 1
2 ϵH− 1

2 whereas the other terms are derived straightforwardly using the equation

(5). It should be noticed that the stress tensor is continuous with respect to the damage

and strain tensors, since the cracking functions and the norm ∥.∥ are continuous. The

proposition 3.6 shows that the stress tensor, when considered as an operator, is Liptchiz

with respect to the strain tensor.

Proposition 3.6. We claim:
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� Each function f ∈ C+ ∪ C− satisfies ∥f (A)− f(B)∥2 ≤ ∥A−B∥2 for any couple

(A,B) ∈ (Sn)2.

� The operator D̃ϵψ(.,H) is Lipschitz with respect to ϵ and we have, for some constant

C(H, λ, µ) that is continuous with respect to H for every λ and µ:∥∥∥D̃ϵψ(ϵ2,H)− D̃ϵψ(ϵ1,H)
∥∥∥
2
≤ C ∥ϵ2 − ϵ1∥2

for all (ϵ1, ϵ2) ∈ (Sn)2.

Proof :

The proof of the first assertion focus on the set C+ (similar proof is applied to C−)

and can be achieved in two steps:

Step 1: The set C+ ∩ C∞ (R) is dense in C+ with respect to the uniform norm.

Let f ∈ C+ and ρc ∈ C∞ (R) a positive function such supp(ρc) ⊂ (−1, 1) and
∫
R ρcdx =

1. We introduce a sequence of infinitely differentiable functions (fn)n defined on R by:

fn(x) =
∫
R ρc (n (x− y)) f (y) dy

We claim that fn belongs to C+ ∩ C∞ (R) for each n. Indeed, we have fn(x) =∫
R ρc (ny) f (x− y) dy. Using the definition of the convexity and the positivity of ρc, it

is clear that fn is convex. Since x 7−→ fn(x) − x is convex, the limit lim
x→+∞

(fn (x)− x)

exists. In addition, we have fn(x)−x =
∫
R ρc (n (x− y)) (f (y)−f (x))dy+f(x)−x. It is

seen that the last term is bounded due to the definition of f and the first is also bounded

by
∣∣∫

R ρc (n (x− y)) (f (y)− f (x))dy
∣∣ ≤ ∫

R ρc (n (x− y)) |x− y| dy ≤ 1
n . Thus the limit

lim
x→+∞

(fn (x)− x) is finite. The integrability of fn in the neighborhood of −∞ is a direct

consequence of the Fubini’s theorem.

To conclude we have:

|fn(x)− f(x)| =
∣∣∣∣∫

R
ρc (n (x− y)) (f (y)− f (x))dy

∣∣∣∣ ≤ 1

n
(20)

which leads to lim
n→+∞

|fn − f |∞ = 0.

Step 2: Let f ∈ C+ and (fn)n be the sequence defined in step 1 which converges

uniformly to f . For each couple (A,B) ∈ (Sn)2 we have:

fn (B)− fn (A) =

∫ 1

0

D̃fn (B + t(B −A)) (B −A) dt (21)

Using theorem in [37], it is easy to check that:

∥fn (A)− fn(B)∥2 ≤ sup
t∈R

∣∣∣f ′

n (t)
∣∣∣ ∥A−B∥2 (22)
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Taking into account the property 4 in proposition 3.1 we deduce supt∈R

∣∣∣f ′

n (t)
∣∣∣ ≤ 1.

Taking the limit to infinity, we obtain the result.

The proof of the second assertion is a consequence of the previous one. Indeed, each

function from C+ ∪ C− is 1-Lipschitz. As a consequence, there exists a constant C with

the desired features such as for all couple (ϵ1, ϵ2) ∈ (Sn)2, we have:

∥∥∥D̃ϵψ(ϵ2,H)− D̃ϵψ(ϵ1,H)
∥∥∥
2
≤ C(H) ∥ϵ2 − ϵ1∥2 (23)

□

For small strains, the strain tensor ϵ is the linear operator defined on a displacement

field vector u, such as ϵ(u) = 1
2

(
∇u+∇Tu

)
. Let Prigid be the vector space defined by

Prigid =
{
u ∈

(
W 1,2 (Ω)

)n
/u (x) = a+ b× x

}
which represents the rigid-body motions.

Let Ω be bounded and open domain characterized by a Lipschitz boundary Γ divided

into disjoint parts Γu, Γτ and T . Γu, Γτ are open while T has a measure equal to

zero. Let W and P be the vector spaces defined by W =
{
u ∈

(
W 1,2 (Ω)

)n
/u |Γu= 0

}
and P = W ∩ Prigid. P is a finite dimensional space and consequently, admits and

orthogonal complement P⊥ in W . Assuming that H is an element of the space VH =

{X ∈ L∞ (Ω,Sn) / X ≥ I}.

Now, we consider the following problem (P ∗). Find u ∈
(
W 1,2 (Ω)

)n
such as:


∫
Ω

tr(σ (ϵ (u) ,H) ϵ (v))dx = fext (v) ∀v ∈ P⊥

u |Γu
= ug |Γu

(24)

Here, we assume that the vector ug ∈
(
W 1,2 (Ω)

)n
and fext ∈

[(
W 1,2 (Ω)

)n]∗
(topo-

logical dual space). fext represents the sum of the body forces and of the external forces

applied on Γτ .

Theorem 3.7. Let f+ and f− such as the ones defined in proposition 3.5. Then, there

exists one unique solution of the problem (P ∗).

Proof :

The existence is simply based on the classical argument: coercivity + lower semi-

continuity = existence.

Let’s define the function T on P⊥ by:

T (u) =

∫
Ω

ψ (ϵ (u+ ug) ,H) dx− fext (u) (25)
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Step 1: T is well defined, bounded in the neighborhood of each element of P⊥ and

strictly convex on P⊥. In particular, T is continuous on P⊥.

As a consequence of the convexity of ψ, for each v ∈
(
W 1,2 (Ω)

)n
we have:

∫
Ω

ψ (ϵ (v) ,H) dx ≤
∫
Ω

ψ (0,H) dx+

∫
Ω

tr
(
D̃ϵψ (ϵ (v) ,H) ϵ (v)

)
dx (26)

The first term on the right side of the inequality is well defined since H ∈ VH . Using

the Lipschitz property of the operator D̃ϵψ demonstrated in proposition 3.6 and the

assumption on H, we can find a constant C such as:

∫
Ω

tr
(
D̃ϵψ (ϵ (v) ,H) ϵ (v)

)
dx ≤ C

∫
Ω

∥ϵ (v)∥2 (1 + ∥ϵ (v)∥2) dx (27)

From the continuity of the operator ϵ(.) = 1
2

(
∇(.) +∇T (.)

)
on P⊥, we conclude that

T is well defined and bounded in the neighbourhood of each element of P⊥.

The convexity of ψ leads to the convexity of T . The strict convexity can be seen as

follow: Let u1 and u2 from P⊥ and r ∈ (0, 1) such T (ru1 + (1− r)u2) = r T (u1) + (1−

r)T (u2). We deduce ϵ (u1) = ϵ (u2) almost-everywhere or simply (a.e.).

The well-known Korn’s inequality provides us with:

∥u1 − u2∥W 1,2 ≤ C

(∫
Ω

∥ϵ (u1)− ϵ (u2)∥22 dx
) 1

2

(28)

where ∥.∥W 1,2 is the norm associated with the space (W 1,2 (Ω))n. Thus u1 = u2.

Step 2: T is coercive, i.e., T (u) → +∞ as ∥u∥W 1,2 → ∞

Let f be function of C+. From proposition 3.1, the existence of a constant c1 such as

f(x) ≥ x+ c1 is ensured. This implies that
∫ x
−∞ f(y) dy ≥ x2

2 + c1x for each positive x.

For sake of simplification, let K = H− 1
2 and ϵ(u) is simply denoted ϵ. We deduce

that:

∫
Ω

tr
(
F+ (KϵK)

)
dx ≥ 1

2

∫
Ω

∥∥∥⟨KϵK⟩+
∥∥∥2
2
dx+

c1

∫
Ω

tr
(
⟨KϵK⟩+

)
dx

(29)

Similarly, for some constant c2, we have:

∫
Ω

tr
(
F− (ϵ)

)
dx ≥ 1

2

∫
Ω

∥∥∥⟨ϵ⟩−∥∥∥2
2
dx + c2

∫
Ω

tr
(
⟨ϵ⟩−

)
dx (30)

On the other hand, we have:
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∫
Ω

tr
(
(KϵK)

2
)
dx =

∫
Ω

tr

((
⟨KϵK⟩+

)2)
dx +

∫
Ω

tr

((
⟨KϵK⟩−

)2)
dx (31a)

≤
∫
Ω

tr

((
⟨KϵK⟩+

)2)
dx +

∫
Ω

tr

(
K
(
⟨ϵ⟩−

)2
K

)
dx (31b)

≤
∫
Ω

tr

((
⟨KϵK⟩+

)2)
dx +

∫
Ω

tr

((
⟨ϵ⟩−

)2)
dx (31c)

The first line (31a) is clear. The second line (31b) is deduced from corollary 4.27 in [38]

since K is contractive, i.e., the eigenvalues of K are bounded by unity (of course almost

everywhere) following the definition adopted in ([37]), and the function h : x 7→
(
⟨x⟩−

)2
is convex on R with h(0) = 0. The last line (31c) is again obtained using the fact that K

is contractive.

Let LK : (ϵ1, ϵ2) 7→
∫
Ω
tr
(
K2ϵ1K

2ϵ2
)
dx be the continuous bilinear function on

L2 (Ω,Sn) × L2 (Ω,Sn). Given the assumption on H, it is easy to see that LK is coer-

cive, i.e.,
∫
Ω
tr
(
(KϵK)

2
)
dx = LK(ϵ, ϵ) ≥ c3

∫
Ω
tr
(
(ϵ)

2
)
dx for some strictly positive

constant c3. We conclude that strictly positive constants C3 and C4 exist such as:

∫
Ω

tr
(
F+

(
H− 1

2 ϵH− 1
2

))
dx +

∫
Ω

(1− η ∥D∥) tr
(
F− (ϵ)

)
dx ≥

C3

∫
Ω

∥ϵ∥22 dx − C4

∫
Ω

∥ϵ∥2 dx
(32)

Applying this to the definition of T and using the Korn inequality we may find other

strictly positive constants still denoted C3, C4 and C5 such as:

T (u) ≥ C3 ∥u∥2W 1,2 − C4 ∥u∥W 1,2 − C5 (33)

Therefore, we have T (u) → +∞ as ∥u∥W 1,2 → ∞.

Step 3: T achieves its minimum at P⊥ at a unique point.

P⊥ is reflexive since it is a closed subspace of the reflexive space
(
W 1,2 (Ω)

)n
. More-

over, T is proper lower semi-continuous (since T is well defined and continuous). We

deduce (see for example Corollary 3.23 in [39]) that the minimum of T is achieved for

some u0. The uniqueness is a consequence of the strict convexity of T ( cf. step 1).

Step 4: limt→0
T (u0+tv)−T (u)

t =
∫
Ω
tr(σ (ϵ (u0 + ug)) ϵ (v))dx− f (v) = 0

Let g(t) = ψ (ϵ (u0 + ug) + tϵ (u) ,H). g is differentiable and g′ is a Lipschitz func-

tion. From proposition 3.6 we can write:

|g(t)− g(0)− g′(0)t| ≤M ∥ϵ (v)∥22 t
2 (a.e. in Ω) (34)

For some constant M ; Using the previous inequality we deduce the result.
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Step 5: The vector u = u0 + ug is the unique solution of the problem (P ∗). The

uniqueness is also a consequence of the strict convexity of T ( cf. step 1). □

The well-posedness of the problem (P ∗) established above shows that any evolution

of the damage variable leads to a unique solution as soon as the damage variable and the

external loading satisfy the conditions of the theorem 3.7. In particular, when the domain

behaves with a fixed damage state, the response is unique. This suggests to prescribe

a damage evolution such as the tensor H remains bounded, except in a set with a null

measure. As pointed out in the introduction, the damage evolution adopted in this work

is controlled by the same relations as the ones proposed by Desmorat and investigated

in detail in section 3.4. Next section focuses on the positivity of the intrinsic dissipation.

3.3. Positivity of the intrinsic dissipation

As required by the second principle of thermodynamics, the rate of energy dissipation

must be non-negative to ensure the irreversibility of damage process. By definition,

the rate of energy dissipation is written as the difference between the mechanical power

and the variation of the Helmholtz energy under isothermal condition. Moreover, the

thermodynamical consistency condition is given by the Clausius-Duhem inequality which

takes the following form:

tr(σϵ̇)− ρψ̇ ≥ 0 (35)

where the time derivatives are in the sense of distributions [40]. It is noteworthy that,

for practical cases, the internal variables may be smooth with respect to the time variable

through an interval [0, T ], except in a set of points with zero measure. For instance, when

suddenly the internal variables stop flowing which can occur at the unloading points, i.e.,

the variable Ḣ or Ḋ may be discontinuous at this points. For that reason, we should

select the tensors ϵ and H in appropriate spaces which take into account this feature in

order to verify the above inequality. It should also be highlighted that, even if the strain

tensor and the internal variables are differentiable with respect to the time variable, the

Helmholtz energy ψ can be not always differentiable with respect to the time variable, in

the classical sense, due to the presence of the term ∥D∥ which is not always differentiable

with respect to D.

Let Lp((0, T ),Sn) be the space of all strongly measurable functions X : (0, T ) 7−→ Sn
for which the norm ∥X∥Lp((0,T ),Sn)

=
(∫ T

0
∥X∥p2

) 1
p

is finite, where 1 ≤ p < ∞. For

p = ∞, L∞((0, T ),Sn) is the space of measurable functions X : (0, T ) 7−→ Sn such
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∥X(t)∥2 ≤ C (a.e.) for some constant C equipped with the norm ∥X∥L∞((0,T ),Sn)
=

inf {C; ∥X(t)∥2 ≤ C (a.e.)}. Similarly, let W 1,p((0, T ),Sn) be the space of all mea-

surable functions X : (0, T ) 7−→ Sn for which the norm ∥X∥W 1,p((0,T ),Sn)
=(∫ T

0
∥X∥p2 +

∫ T
0

∥∥∥Ẋ∥∥∥p
2

) 1
p

is finite, where Ẋ stands for the time derivative of X in the

sense of the distribution. The following lemma, considered as a starting point to prove

the positivity of the dissipation, shows that a weak assumption on the rate Ḣ is sufficient

to ensure a continuous growth of the principal damage variables.

Lemma 3.8. Let’s assume that H belongs to the space W 1,1((0, T ),Sn) such as Ḣ ≥ 0

(a.e.). Then the eigenvalues of D(t) can be represented by continuous and non decreasing

functions. In other words, non decreasing continuous functions D1(t),...,Dn(t) such that,

for t (a.e.), are the eigenvalues of D(t) exist. Moreover, if H(t = 0) = I, then the

eigenvalues of D(t) belong to [0, 1] for all times t ≥ 0.

Proof :

Since H ∈ W 1,1((0, T ),Sn), H can be represented by a continuous function on the

compact [0, T ] with respect to the norm ∥.∥2, denoted also H.

Let
(
H↓
i (t)

)
1≤i≤n

be the eigenvalues of H(t) arranged in decreasing order, i.e., H↓
n ≤

... ≤ H↓
1 . Since H(t) is Hermitian, the Weyls perturbation theorem ensures that for all

(t1, t2) ∈ [0, T ]
2
:

max
i

∣∣∣H↓
i (t1)−H↓

i (t2)
∣∣∣ ≤ ∥H(t1)−H(t2)∥ (36)

where ∥.∥ is the bound norm. Given the equivalence between the norms ∥.∥ and ∥.∥2,

the continuity of the function H(t) and the norm ∥.∥, we deduce that the functions H↓
i (t),

1 ≤ i ≤ n, are continuous using the previous equation (36).

Let’s assume that t1 ≤ t2, the hypotheses on H(t) allow us to write:

H(t2)−H(t1) =

∫ t2

t1

Ḣ(t) dt ≥ 0 (37)

which is equivalent to write for all x ∈ Rn such as ∥x∥ = 1:

⟨x,H(t1)x⟩ ≤ ⟨x,H(t2)x⟩ (38)

For all i such as 1 ≤ i ≤ n, the well-known Minmax principle yields:

H↓
i (t) = max

M ⊂ Rn

dim(M) = k

min
x ∈ M

∥x∥ = 1

⟨x,H(t)x⟩ (39)
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Combining the equation (39) with the inequality (38), we deduce H↓
i (t1) ≤ H↓

i (t2).

For 1 ≤ i ≤ n, let Di(t) = 1 −
(
H↓
i (t)

)−2

. It is clear that (Di(t))1≤i≤n are the

eigenvalues of D(t) (a.e.) which are, according to the above results, represented by non

decreasing continuous functions. Moreover, if H(0) = I, then Di(t) are positive and

bounded by the unity. □

Lemma 3.9. Let f be an operator function of class C1(J), where J is an interval. If

H ∈ W 1,1((0, T ),Sn) such as the eigenvalues of H(t) are in J for all t then f(H(t)) ∈

W 1,1((0, T ),Sn) and the weak derivative is equal to D̃f (H)
(
Ḣ(t)

)
. Moreover, for the

couple (t1,t2) (a.e.) we have:

f(H (t2))− f(H (t1)) =

∫ t2

t1

D̃f (H)
(
Ḣ(t)

)
dt (40)

Proof :

From the The continuous differentiability of f(.), it is clear that f(X(t)) and

D̃f(X(t))(Y (t)) are measurable, for all measurable functions X(t) and Y (t) on (0, T ).

Since H ∈ W 1,1 ((0, T ) ,Sn), then H(t) is bounded (a.e.). In this case, it is straight-

forward that f(H) ∈ L1 ((0, T ) ,Sn) using the mean theorem. The continuous differ-

entiability of f(.) implies that D̃f(H(.)) is bounded on (0, T ) (a.e.). We deduce that

D̃f(H)(Ḣ) ∈ L1 ((0, T ) ,Sn).

Since C1
c (R,Sn) is dense in W 1,1 ((0, T ) ,Sn), we can choose a sequence of smooth

functions that converges to H in W 1,1 ((0, T ) ,Sn). Taking into account the continuous

injection W 1,1((0, T ),Sn) ⊂ L∞((0, T ),Sn) and the dominated convergence theorem, the

result follows immediately. □

Remark Following the proof of Lemma 3.5, each element of W 1,1 ((0, T ) ,Sn) can be

represented by a continuous function. We can assume, henceforth, that H is continuous

on [0, T ] but not necessary with continuous first derivative.

□

Proposition 3.10. Let F+, G+, F− and G− be the functions defined above. Let’s as-

sume that ϵ ∈ W 1,1 ((0, T ) ,Sn) and H ∈ W 1,1 ((0, T ) ,Sn) ∩ C0 ([0, T ] ,Sn). If Ḣ ≥ 0

(a.e.) such H(0) = I and f+ = 0 within the interval ]−∞, 0], then σϵ̇− ρψ̇ ≥ 0.

Proof :

In order to prove the inequality (35), it is sufficient to show that:
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∫ T

0

(
tr(σϵ̇)− ρψ̇

)
φdt ≥ 0 ∀φ ∈ D = C∞

c ((0, T )) φ ≥ 0 (41)

It is clear that
∫ T
0
tr(σϵ̇) is well defined since σ ∈ L∞((0, T ),Sn) ∼=

(
L1 ((0, T ) ,Sn)

)∗
,

following the definition (19) and the continuous injection W 1,1((0, T ),Sn) ⊂

L∞((0, T ),Sn).

The relation D = I − H−2 is well defined since Ḣ ≥ 0 and H(0) = I. Lemma

3.9 and the continuity of H show that D ∈ W 1,1 ((0, T ) ,Sn). Moreover, t 7−→ ∥D(t)∥ is

absolutely continuous, given that | ∥D(t2)∥−∥D(t1)∥ |≤ ∥D(t2)−D(t1)∥ ≤
∫ t2
t1

∥∥∥Ḋ∥∥∥ dt,
we conclude that the function t 7−→ ∥D(t)∥ has a pointwise defined (a.e.) derivative which

is integrable on (0, T ). Moreover, the eigenvalues of D are non decreasing with respect

to the time (in the sense of the representations) provided that Ḣ remains positive (a.e.)

as stated in lemma 3.8. Thus, the derivative of ∥D(t)∥ is positive, i.e.,
∫ T
0

d∥D∥
dt φ =

limh→0

∫ T
0

∥D(t+h)∥−∥D(t)∥
h φ ≥ 0.

The integral
∫ T
0
ρψφ̇ is well defined. It can be shown that, in the sense of distributions,

we have
〈
ψ̇, φ

〉
D∗,D

=
∫ T
0
ψ̇φdt. Indeed, it is sufficient to assume that H and ϵ are

differentiable with respect to the time in the classical sense, then we conclude by density

argument and the dominated convergence theorem using the continuity feature of the

cracking functions. Using this last argument and the relation (19), we end up with the

following development:

∫ T

0

(
tr(σϵ̇)− ρψ̇

)
φdt = −ρ

∫ T

0

(
D̃Hψ

+
F+,G+ (ϵ,H)

(
Ḣ
)
− η

d ∥D∥
dt

)
φdt (42)

each term of the above integral can be written as:

∫ T

0

D̃Htr
(
F+

(
H− 1

2 ϵH− 1
2

))(
Ḣ
)
φdt =

−
∫ T

0

tr
(
H− 1

2h
(
H− 1

2 ϵH− 1
2

)
H− 1

2 Ḣ
)
φdt (43)

and:

∫ T

0

D̃H
1

tr
(
H2
) (Ḣ)φdt = −2

∫ T

0

tr(HḢ)(
tr
(
H2
))2φdt (44)

where h is the operator function defined by h : x 7−→ xf+ (x), which is non-negative.

From the assumptions on the tensor H we conclude that
∫ T
0

(
tr(σϵ̇)− ρψ̇

)
φdt ≥ 0 using

the equivalence property and Fejer’s theorem.
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□

3.4. Damage evolution

Generally, the damage evolution law is classically ensured by the normality rule, such

as the damage rate belongs to the normal cone of a convex set bounding the elastic domain.

The initial Desmorat’s model [41] uses simply the hyperplane to define the elastic domain

as Φ(D) = tr
(
D(⟨ϵ⟩+)α

)
, where α is a damage exponent. Thus, the evolution law reads

Ḋ = λ̇ ⟨(ϵ⟩+)α. The last version of the model [8] is based upon a flow rule of the form

Ḣ = λ̇ ⟨ϵ̃⟩+, where ⟨ϵ̃⟩+ is the effective strain. Despite the fact that both relations lead to

a non decreasing damage principal variables in the sense of the representations discussed

in lemma 3.8, it should be pointed out there is no equivalence between the positivity of

the tensor rates when they are sufficiently smooth. Indeed, we claim:

Lemma 3.11. Let’s consider ϕ = (I −D)
p
, where −1 < p < 0 then the positivity of the

rate Ḋ implies the positivity of the rate ϕ̇. The converse is not true.

Proof :

It is sufficient to prove that if D1 > D2 then ϕ(D1) > ϕ(D2). Indeed, we have

I − D1 < I − D2 and x 7−→ x−p is a monotone operator function (see [37]), then

(I − D1)
−p < (I − D2)

−p and (I − D1)
p > (I − D2)

p. The converse is not true. In

fact, let’s h : x 7−→ (1 + x)−
1
p defined on the real line [0,+∞[. h cannot be a monotone

operator function since h is not concave (see theorem V.2.5 [37]), then positive tensors

A1 and A2 such as A1 > A2 and (I +A1)
− 1

p ̸≥ (I +A2)
− 1

p exist. Let’s be ϕ1 = (I +A1)

and ϕ2 = (I + A2) and ϕ(t) = (1 − t)ϕ2 + tϕ1 for 0 ≤ t ≤ 1. It is clear that ϕ̇ ≥ 0 but

Ḋ ̸≥ 0 because D(t = 1) ̸≥ D(t = 0). □

In this work, the damage evolution is governed, almost, by the same equations as

the ones proposed in [8, 41]. Indeed, the integrity tensor rate Ḣ is proportional to the

positive part of the real strain tensor instead of the positive part of the effective strain

tensor, as suggested in [8]. The damage criterion is given by:

f = ϵ̂− κ ≤ 0 (45)

where ϵ̂ =

√
tr
(
⟨ϵ⟩+ ⟨ϵ⟩+

)
is the Mazars’s equivalent strain [42] and κ is called the

consolidation function which is linear with respect to tr(H):

κ = κ0 + SRsν (tr(H)− 3) (46)
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Here, κ0 is the damage threshold, S the damage strength and s the triaxiality ex-

ponent. The triaxiality function Rν is written in term of the stress triaxiality TX and

bounded by a material constant B as follows:

Rν = min

[
1 + 8

1− 2ν

1 + ν
⟨−TX⟩2 , B

]
TX =

tr(σ)

3σeq
(47)

where σeq is the von Mises equivalent strain.

3.5. Numerical implementation

The integration procedure is quite simple and follows the same steps as the ones

proposed by Desmorat in [8] without the need to compute the effective strain and the

effective stress tensors. The time discretization of the damage evolution equation is

performed using an Euler explicit scheme. One can summarize the integration process in

Algorithm 1.

Algorithm 1: Time integration algorithm to compute the stress tensor σn

Input : strain tensor ϵn, equivalent strain ϵ̂n =
∥∥∥⟨ϵn⟩+∥∥∥

2
, κn−1, Rν,n−1 and

Dn−1

Output: σn, Dn and Rν,n

Hn−1 = (I −Dn−1)
− 1

2 ;

Hn = Hn−1;

if f = ϵ̂n − κn−1 ≤ 0 then
△λ = 0;

else

tr(Hn) = 3 + ϵ̂n−κ0

SRs
ν,n−1

;

△λ = tr(Hn)−tr(Hn−1)

tr(⟨ϵn⟩+)
;

κn = ϵ̂n;

end

Hn = Hn−1 +∆λ ⟨ϵn⟩+;

Dn = I −H2
n;

σ+
n = 2µH

− 1
2

n f+
(
H

− 1
2

n ϵnH
− 1

2
n

)
H

− 1
2

n + λ 3
tr(H2

n)
g+ (tr (ϵn)) I;

σ−
n = 2µ (1− η ∥Dn∥) f− (ϵn) + λ g− (tr (ϵn)) I;

σn = σ+
n + σ−

n ;

TX,n = tr(σn)
3σeq,n

;

Rν,n = min
[
1 + 9

2
1−2ν
1+ν ⟨−TX,n⟩2 , B

]
;
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With the aim to control the mesh dependency effects, an integral nonlocal regulariza-

tion approach ([43, 44]) is adopted to ensure numerical convergence to physical solutions.

In the following, the approach adopted in [43] is used and consists in substituting the

local equivalent strain by its nonlocal value obtained by averaging over the space domain

as follow:

ϵ̂eq(x) =
1

Vr (x)

∫
V

α0

(
∥x− ξ∥
lc

)
ϵ̂(ξ) dξ (48)

where Vr(x) is given by:

Vr (x) =

∫
V

α0

(
∥x− ξ∥
lc

)
dξ (49)

The quantity Vr is the representative volume and plays the role of a normalizing

coefficient. The function α0 is called the nonlocal weight function which often selected

to be the Gaussian function α0 (ξ) = exp
(
− 1

2ξ
2
)
or bell shaped function [45]. lc is the

characteristic length, generally assumed to be correlated with the aggregate size following

the relation lc ≈ 3da, where da is the maximum aggregate size (see for instance [46]).

Others studies have reported the relation lc = 8mm [47] or use only lc = 1.1mm [48].

Thereafter, the criterion function is substituted by:

f = ϵ̂eq − κ ≤ 0 (50)

4. Numerical examples

In order to assess the numerical robustness of the proposed model, several tests are

carried out using different cracking functions satisfying the conditions mentioned in sec-

tion 3.1 with less or more regularity properties. In this work, three different opening

cracking functions f+1 , f+2 and f+3 are considered:


f+1 (x) =max (0, x)

f+2 (x) =max
(
0, x exp

(
−c1
x

))
f+3 (x) =

1

c2
ln (1 + exp (c2x))

(51)

where ci i ∈ {1, 2} are positive constants. It can be checked that the smooth functions

(f+2 and f+3 ) are convex by studying the sign of the second derivative. Moreover, the

functions f+2 and f+3 are infinitely differentiable in the neighborhood of 0, unlike the

function f+1 , leading to a smooth recovering of stiffness. It is interesting to notice that
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the functions f+2 and f+3 converge pointwise to f+1 when the parameters c1 and c2 are

close to 0 and infinity, respectively. Similarly, we define three closure cracking functions

f−1 , f−2 and f−3 as:


f−1 (x) =min (0, x)

f−2 (x) =min
(
0, x exp

(c1
x

))
f−3 (x) =− 1

c2
ln (1 + exp (−c2x))

(52)

4.1. Uniaxial loading path

The first example concerns the classical uniaxial test by considering one multilinear

cubic element of the size equal to the unity. The mechanical properties are selected close

the those adopted in [8], such as: the Young’s modulus E = 36000 MPa, the Poisson’s

ratio ν = 0.2 , damage threshold κ0 = 5× 10−5, the damage strength S = 1× 10−4, the

triaxiality exponent s = 5, and the material constant B = 5
3 . The parameters ci have

to be chosen in such a way that the cracking functions are sufficiently close to the line

x 7−→ x, up to a constant. They are chosen such as c1 = 10−5, c2 = 104.

In figure 1(a), the response under tension and compression are shown. We can no-

tice that the results are consistent with the experimental evidences, in particular, the

responses exhibit a softening behavior with asymmetry between tension and compres-

sion. The failure surface is plotted in Figure 1 (b). It is worth noticing that the same

curve would have been obtained using the Desmorat’s model, since the damage criterion,

in the proposed model, remains unchanged (see section 3.4) and the new model behaves

approximately linearly close to the peak stresses.

[Figure 1 about here.]

The effect of the regularity is shown in Figure 2, for η = 0.5. The non regular case is

obtained by selecting f+ = f+1 , g+ = f+3 , f− = f−1 and g− = f−3 whereas the regular case

is obtained by selecting f+ = f+2 , g+ = f+3 , f− = f−2 and g− = f−3 . During the elastic

undamaged stage, the behavior is clearly non linear due to the nature of the used cracking

functions. Moreover, the regular functions bring smoothness in the response with residual

strains when unloading, whereas the non regular functions exhibit an abrupt change of

the slope.

As depicted in Figure 3(a), when the parameter η is modified using the proposed

regular functions with c1 = 10−5 c2 = 7 × 103, it is seen that the stiffness recovery is

influenced by the parameter η . As expected, the secant modulus is totally recovered
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for η = 0 and partially recovered for η = 0.5 and η = 1. Moreover, the fact that the

brittleness increases with η may be expected since the stiffness is further weakened in

the directions where the compressive strains are activated. The effect of the constant c2

is shown in Figure 3 (b) using only η = 0.5. One can notice that the residual strains

increase when the parameter c2 decreases. Heuristically, this can be explained by the

fact that the coefficient associated with the function g−, in the equation (19), becomes

more significant than the coefficient associated with the function g+ when the damage is

activated. As consequence, the normal stress needed to ”close the crack”, i.e., ϵ ≈ 0, is

of order − ln(2)λ
c2

(
1− 3

tr(H2)

)
< 0, which decreases in magnitude with c2 and increases

in magnitude with the damage (see also Figure 4). The fact that the irreversible strains

increase with the damage is an interesting feature that matches with the experimental

observations (see for instance [33]).

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

The effectiveness of the regularized nonlocal approach following the nonlocal field

function (48) is tested on an elementary tensile failure problem of a three-dimensional

straight bar of length L = 4m with uniform mesh as illustrated in Figure 5 (a). The bar

is splitted into finite number of 8-node hexahedron elements with three different meshes:

Nel=21, 42 and 84, where Nel denotes the number of the elements along the bar. In

order to concentrate the damage at the middle of the beam, the Young’s modulus of the

elements located at the middle have been weakened 100 times. Figures 5 (b) and (c)

shows the load-displacement curves and the damage profiles along the bar for the three

meshes using a particular value of the characteristic length lc = 0.2m. It is seen that

the different curves are almost close which means that the nonlocal approach minimize

the spurious effects due to the mesh dependency. Moreover, It is seen that the curves

associated with the medium (Nel=42) and fine (Nel=84) meshes coincide comparing with

the coarse mesh (Nel=21) which means that the solution seems to converge as long as

the mesh is refined.

[Figure 5 about here.]

4.2. Pure distorsion

Regarding the case of a pure distortion loading, the results obtained by the proposed

model are illustrated in Figure 6 using this family of cracking functions: f+ = f+2 ,
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g+ = f+3 , f− = f−2 and g− = f−2 with the following parameters: E = 36000 MPa,

ν = 0.2 , κ0 = 5 × 10−5, S = 1 × 10−4, s = 5, B = 5
3 , c1 = 10−10 and c2 = 3 × 104.

Despite the fact that the responses are quite different with respect to η, it is easy to check

that each curve follows an asymptote characterized by a positive slope equal to (1− η)µ,

when the strain increases indefinitely. Especially, the case η = 1 leads to softening

behavior with indefinitely decreasing stresses while the other cases exhibit softening at

the beginning but, sooner or later, the stress stops increasing. Equivalent results, for the

cases η < 1, have been observed by Carol et al. following their proposed anisotropic model

[27]. According to the same authors, this behavior can be explained, from a physical point

of view, by the fact that the increase of compression exceeds the decrease in tension since

the damage is only developed in one direction [28] (like in the present model). The last

case η = 1 exhibits a different behavior compared with the previous cases but which is

similar to the majority of the anisotropic (or isotropic) damage models proposed in the

literature. Because of the lack of experimental results, it is difficult to decide which of

the previous responses is the right one, i.e., with softening or hardening.

Paying attention to cyclic loading, the results are shown in Figure 7 with restriction

to the case η = 1. It is observed that the stiffness is almost completely recovered when

the direction of loading is reversed after the first softening stage. This result can not be

obtained using isotropic models for which the slope is unchanged after the inversion of the

sign of the loading. For this particular loading case, it can be verified that the damage and

the strain tensor have the same eigenvectors due to the proportionality relation entailing

that the first principle damage variable D1 grows while the second D2 remains equal to

zero during the first loading stage. The roles are reversed when the strain flows in the

negative direction except that D1 is constant but no more equal to zero.

[Figure 6 about here.]

[Figure 7 about here.]

4.3. Willam’s test

Unlike isotropic damage models, it is well-known that anisotropic models no longer

ensure that the principal directions between the stress and the strain tensors are the

same when the damage starts flowing. In order to investigate this effect, the plane stress

problem proposed by Willam et al. is considered following two loading stages. The first

step consists in applying tensile strain in the x-direction combined with lateral contraction

in the y-direction in the proportions (1, ν) when the peak of the uniaxial stress-strain
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law is reached, combination of strain components ϵzz, ϵxx and ϵxz are prescribed in the

proportions (0.5, 0.75, 1).

The parameters adopted in this example are: E = 36000 MPa, ν = 0.2 , κ0 = 8×10−5,

S = 5×10−5, s = 5 and B = 5
3 . Figure 8 (a) illustrates the evolution of the different stress

components using regular functions with η = 1, c1 = 10−10 and c2 = 104. Before reaching

the peaks, the normal stress responses are elastic. It is observed that the component σxx

exceeds σzz at some point during the softening response whereas the shear stress evolves

with negative values after a small positive peak with respect to the other components. The

response of isotropic models would be very different regarding the two previous aspects

as observed by Carol et al. in [28], i.e., the shear stress keeps on evolving with positive

value and the component σxx remains always below the evolution of σzz.

The evolution of the principal direction angles θϵ, θσ and θD associated with the strain,

the stress and the damage tensors, respectively, are shown in Figure 8 (b). It is seen that

the rotation of the damage principle directions follows the ones of the strain tensor with

a slight difference while the rotation of the stress principal directions is widely significant.

It is interesting to emphasize that similar results have been reported by Carol et al. in

[28]. A similar gap seems to be related primarily to the fact the stress is recovered by the

principal axis that correspond to the stiffer part.

[Figure 8 about here.]

4.4. Single edge notched concrete beam

The following test is the three-point bending test. It is carried out using a beam with

a square cross section with height a = 0.07 cm and length equal to 4a. The beam is

characterized by a Young modulus E = 36000 MPa and a Poisson’s ratio ν = 0.2 . The

other parameters are chosen as follow: κ0 = 8 × 10−5, S = 9 × 10−5, s = 5, B = 5
3 ,

c1 = 10−10 and c2 = 3×104. A notch of depth a
2 and thickness e = 3mm has been added

in the middle of the specimen. Progressive displacement is prescribed at the upper center

of the beam with one cycle. The aims is to check whether the model is able to recover

the stiffness when the cracks close.

The numerical analysis is carried out using a plane stress assumption. Figure 9 (a)

illustrates the mesh that is composed of linear triangular elements of the size varying from

1 mm to 10 mm. The finite element solution is computed using the non local strategy,

using lc = 3 mm to avoid the spurious mesh-dependent effects.

[Figure 9 about here.]
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[Figure 10 about here.]

Figure 9 (b) illustrates the response for two different values of η. First, it is seen, as

expected, that the brittleness increases while the peak load decreases with η. Secondly, the

effect of initial micro-cracks are represented by a nonlinear stage at the pre peak regime. In

both cases, irreversible strains are introduced and the stiffness is recovered with a smooth

transition as desired when the loading switches from tension to compression. As expected,

the full recovery is obtained for the case η = 0, where slope almost equal to the initial one.

Contours of the different components of the damage tensors are shown in Figure 10 at the

maximum damage state. From a quantitative point view, the component D11 describing

microcracks density caused by tensions direction 1 is more significant compared with

other components. Especially, the component D12 is too small. This shows that the

crack paths are mainly developed in directions 1 and 2.

4.5. Tensile test for double edge notched concrete specimen

The above developments are also validated in case of a tensile test carried out on a

double edge notched specimen, as described in [49] where the off-set value is restricted to

10 mm. The mesh, depicted in Figure 11, is composed of 1228 linear triangular elements

with a minimum size mesh equal to 1 mm. The characteristic length is lc = 2 mm and

the thickness of the specimen is taken to be equal to 10 mm. The following test consists

in prescribing a displacement on the top of the specimen while the bottom edge is fixed.

The material properties are: E = 36000 MPa, ν = 0.2, κ0 = 1 × 10−4, S = 1.3 × 10−4,

s = 5, B = 5
3 , c1 = 10−10 and c2 = 3× 104.

[Figure 11 about here.]

[Figure 12 about here.]

The load/displacement curves are presented in Figure 11 (b) for different values of

η. Similarly to the previous example, the softening increases with the parameter η and

the irreversible strains are introduced. Moreover, it is seen that the initial stiffness slope

is completely or partially recovered with smooth transition according to the choice of

η. Once again, the damage contours, plotted in Figure 12, show that the predominant

cracks appear in the direction 2, where the patterns are similar to the experimental ones

discussed in the reference [50]. Finally, we should stress that using the iterative solver

with updating the secant stiffness has improved the computational cost 10 times, i.e.,

the CPU time is reduced 10 times, comparing with the classical iterative solver (without

updating the secant stiffness).
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5. Conclusions

A class of damage models based upon the second order integrity tensor has been

developed by means of family of functions called here opening (closure) cracking func-

tions. The unilateral effect is taken into account by a split between the damaged part

and the undamaged (or partially damaged) part, where the transition between open and

close cracking state could be smoothed using the cracking functions. The model has

also the property to introduce irreversible strains during the unloading regime. As re-

quired by the thermodynamic principles, the positivity of the intrinsic dissipation has

been demonstrated rigorously. The Clausius-Duhem inequality is satisfied in the sense of

distributions.

A well posedness result has also been established, for a given damage state where

the damage tensor should be strictly bounded by unity, in the sense of the bound norm,

in the whole domain except in a set of zero measure. The relationship between the

integrity tensor rate and the damage tensor rate has been analyzed. It turns out that

no equivalence between the rate positivity can be established for a wide class of integrity

tensors frequently used in the literature. Despite this drawback, it has been shown that

the damage principle values could be represented by non decreasing positive functions,

strictly bounded by unity provided that the integrity tensor satisfies some weak positivity

assumptions. The damage flow rule proposed by Desmorat has been adopted in this work

which satisfy all the requirements cited above. The time integration procedure is similar

to the one that proposed by Desmorat. Its implementation does not require to iterate in

order to compute the multiplier associated with damage rate. The nonlocal approach has

also been introduced to limit the mesh dependency effects.

Numerical examples have been performed to demonstrate the robustness of the model.

The dissymmetry between tension and compression behaviors has been highlighted using

the uniaxial test. The pure distortion test has shown that the stiffness is almost recovered

when the load is switched from one direction to the opposite one. The Willam’s test

exhibits similar results to the ones obtained in the work of Carol et al.. The last tests

carried out on the notched specimens have shown qualitative results which are similar to

that observed during the experiments.

Although the dissymmetry between tension and compressive is well represented, it

should be stressed that the behavior under the compressive strain, for a cyclic tension-

compression test, still depends on the loading history in the tension direction due to

the adopted flow rule. A suggested improvement will be to consider the active damage
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strategy (Souid et al., 2009). Future works will also focus on the calibration of the

model’s parameters by considering reinforced structures under cyclic loading and mixed

mode tests such as Nooru-Mohamed test.
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Appendix A

A general quadratic form of the elastic potential coupled with anisotropic damage

proposed by Ladevèse [16] for composite materials can be written in term of stress tensor

σ using four damage variable H1 = (I −D1)
1
2 , H2 = (I −D2)

1
2 (Ladevèse’s tensor)

and d1, d2 (scalar) as:

a1tr
(
H1σ

+H1σ
+ +H2σ

−H2σ
−)+ a2tr


(
⟨σ⟩+

)
1− d1

2

+

(
⟨σ⟩−

)
1− d2

2
 (53)

Here, the tensor σ+ (σ−), called the special positive (negative) part of σ, is built using

the eigenvectors and the positive part of eigenvalues of the tensor Hσ which is of course

diagonalisable [16]. In addition, we can show that the relation (53) can be expressed by

other means using solely the positive and the negative part functions. In fact, the tensor

Hσ = H
1
2H

1
2σ is similar to H

1
2σH

1
2 (AB and BA are similar for all tensors A and

B), given the positivity of H (not necessary positive definite) and the symmetry of σ .

Using the similarity property, one can notice that:

tr
(
H1σ

+H1σ
+
)
= tr

((〈
H

1
2
1 σH

1
2
1

〉+)2
)

(54)

and:

tr
(
H2σ

+H2σ
+
)
= tr

((〈
H

1
2
2 σH

1
2
2

〉+)2
)

(55)

Therefore, we can observe that the model is also built by means of the equivalent

stress tensor σH = H
1
2σH

1
2 and a specific set of the cracking functions making some

similarities with the model developed in this paper. However, the Ladevèse’s model is

considered inappropriate to predict the behavior of monolithic materials, such as concrete

material, subjected to one damage mechanism [17] for which a single damage variable has

to be used.
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Appendix B

Proof of proposition 3.5:

Step 1 : Let x > 0, then for real y, we have F+(x+y2 ) < F+(x)+F+(y)
2 . Similarly, if

x < 0 then for each real y we have F−(x+y2 ) < F−(x)+F−(y)
2 .

Indeed, if 0 < x < y, the result is obvious using the convexity of F+. Since F+ is

convex we have for each real x1 such x1 < x : f+ (x1) ≤ F+(x)−F+(x1)
x−x1

. If the equality

holds, then there exists (using the mean value theorem) a real x0 ∈ I = (x1, x) such

f+ (x1) = f+ (x0). Given the monotony of f+, we have f+ (x1) = f+ (y) for all y ∈

[x1, x0]. Let x2 < x1, such that x1 = tx2 + (1− t)x0 for 0 < t < 1, then by the convexity

of f+, we have f+ (x1) ≤ 1
2 (f

+ (x2) + f+ (x0)) which means f+ (x1) ≤ f+ (x2). But

x2 < x1 and f+ (x2) ≤ f+ (x1) then f+ (x1) = f+ (x2) = f+ (y) for all y ∈ [x2, x0].

Taking x2 to −∞, we get f+ (x1) = 0 and, hence, F+ (x) = F+ (x1). This is absurd since

F+ is strictly monotone on R+. Thus f+ (x1) <
F+(x)−F+(x1)

x−x1
. Put x1 = x+y

2 , we have

also f+ (x1) (y − x1) ≤ (F+ (y) − F+ (x1)). Summing the two previous inequalities, we

obtain the result. The case related to F− is proved by analogy.

Step 2: In the following, we use the terminology matrix instead of tensor. The purpose

of this step is to proof that if A and B are symmetric matrices such as ψ(A+B
2 ) =

ψ(A)
2 + ψ(B)

2 , then A = B.

First, let us observe that the convexity of the functions involved in the po-

tential imposes that tr(F+(K(A+B)K
2 )) = 1

2 (tr(F
+(KAK)) + tr(F+(KBK))) and

tr(F−(A+B
2 )) = tr(F

−(A)
2 ) + tr(F

−(B)
2 ) since (1− η ∥D∥) > 0 by the relation between

H and D, where K = H− 1
2 (note that the matrix K is positive definite).

Let {e1, ..., en} be an orthonormal basis consisting on eigenvectors of A+B
2 and λAB =

(λ
(1)
AB , ..., λ

(n)
AB) are the associated eigenvalues arranged in nondecreasing order. Then, we

have:

tr(F−(
A+B

2
)) =

∑
i

F−
(〈

ei,
A+B

2
ei

〉)
(56a)

≤
∑
i

1

2

(
F− (⟨ei,Aei⟩) + F− (⟨ei,Bei⟩)

)
(56b)

≤
∑
i

1

2

(〈
ei, F

− (A) ei
〉
+
〈
ei, F

− (B) ei
〉)

(56c)

=
1

2

(
tr
(
F− (A)

)
+ F− (B)

)
(56d)

In the previous inequality, we use the fact that F− is convex and F− (⟨u,Au⟩) ≤

⟨u, F− (A)u⟩ for each unitary vector u. The equality between the first and the last term
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implies that F− (⟨ei,Aei⟩) = ⟨ei, F− (A) ei⟩ and F− (⟨ei,Bei⟩) = ⟨ei, F− (B) ei⟩ for all

i. Let λA = (λ
(1)
A , ..., λ

(n)
A ) and λB = (λ

(1)
B , ..., λ

(n)
B ) be the eigenvalues associated with A

and B, respectively, arranged in nondecreasing order.

First, let us observe that it is sufficient to study three cases:

� case 1: λ
(1)
AB < 0 and λ

(n)
AB > 0

� case 2: λ
(n)
AB ≤ 0

� case 3: λ
(1)
AB ≥ 0

Now, let us consider case 1.

#Claim 1: Let i ∈ J1, nK such that
〈
ei,

A+B
2 ei

〉
< 0, then ∃j ∈ J1, nK and ∃l ∈ J1, nK

such that:
〈
ei,

A+B
2 ei

〉
= ⟨ei,Aei⟩ = ⟨ei,Bei⟩ = λ

(j)
A = λ

(l)
B

Proof of the claim:

Since
〈
ei,

A+B
2 ei

〉
< 0, one may deduce from Step 1 that

〈
ei,

A+B
2 ei

〉
= ⟨ei,Aei⟩ =

⟨ei,Bei⟩.

Moreover, there exists a doubly stochastic matrix (aαβ)1≤α,β≤n such that ⟨eα,Aeα⟩ =∑n
β=1 aαβλ

(β)
A for each α ∈ J1, nK. Given the fact that F− (⟨ei,Aei⟩) =

F−
(∑n

β=1 aiβλ
(β)
A

)
= ⟨ei, F− (A) ei⟩ =

∑n
β=1 aiβF

−
(
λ
(β)
A

)
and

∑n
β=1 aiβ = 1 (by the

definition of a doubly stochastic matrix), this forces, using again Step 1 , that ∃j ∈ J1, nK

such that
〈
ei,

A+B
2 ei

〉
= λ

(j)
A . A similar proof can be applied to the matrix B to deduce

that ∃l ∈ J1, nK such that
〈
ei,

A+B
2 ei

〉
= λ

(l)
A . This achieves the proof of the claim.

#Claim 2: Let j ∈ J1, nK such that λ
(j)
A < 0, then ∃i ∈ J1, nK such that

〈
ei,

A+B
2 ei

〉
=

⟨ei,Aei⟩ = ⟨ei,Bei⟩ = λ
(j)
A . The same result holds for the matrix B.

Proof of the claim:

First, let us observe that for each j ∈ J1, nK, ∃i ∈ J1, nK such that aij > 0, where

(aαβ)1≤α,β≤n is again the doubly stochastic matrix used in the proof of the previous

claim. Indeed, this result holds when (aαβ)1≤α,β≤n is a permutation matrix, then it

also holds for each doubly stochastic matrix since the set of the permutation matrices

are the extreme points of the convex compact set of the the doubly stochastic matrices.

Therefore, using the same argument as in the proof of the previous claim, we obtain the

desired result.

From the claims 1 and 2, it is seen that the matrices A+B
2 , A and B share the same

strictly negative eignevalues, assumed to be
{
λ
(1)
AB = λ

(1)
A = λ

(1)
B , ..., λ

(p)
AB = λ

(p)
A = λ

(p)
B

}
(p ≤ n). Moreover, {e1, ..., ep} are also the eigenvectors of A associated with λ

(1)
A , ..., λ

(p)
A ,

respectively. The same result remains true for the matrix B. In fact, we have
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〈
e1, (A− λ

(1)
A I)e1

〉
= 0, since A − λ

(1)
A I ≥ 0, then e1 ∈ ker(A − λ

(1)
A I). Since

vect {e2, ..., en} = vect{e1}⊥, on may conclude that vect {e2, ..., en} is an invariant sub-

space of A. Repeating consecutively the same argument, if necessary, on vect {ek, ..., en}

(k ≤ p) we obtain the desired result. Let W− be the subspace vect {e1, ..., ep}.

Now, assume that
〈
ep+1,

A+B
2 ep+1

〉
= 0, then we necessarily have ⟨ep+1,Aep+1⟩ = 0

and ⟨ep+1,Bep+1⟩ = 0 using Step 1. Moreover, vect {ep+1, ..., en} is an invariant subspace

of A and ⟨u,Au⟩ ≥ 0 for each unitary vector u ∈ vect {ep+1, ..., en}. We conclude

Aep+1 = 0. By analogy, we have Bep+1 = 0. Therefore, ker(A+B
2 ) ⊆ ker(A) and

ker(A+B
2 ) ⊆ ker(B).

Let us observe that the claims 1 and 2 achieve the proof in case 2. Indeed, the

matrices A and B coincide on the subspaces W− and ker(A+B
2 ). Moreover, the equality

Rn =W− ⊕ ker(A+B
2 ) implies A = B.

Let {f1, ..., fn} be an orthonormal basis consisting on eigenvectors of K(A+B)K
2 and

γAB = (γ
(1)
AB , ..., γ

(n)
AB) are the associated eigenvalues arranged in nondecreasing order.

Following similar arguments as before and using the convexity feature of the function

F+, one may conclude that the matrices K(A+B)K
2 , KAK and KBK share the same

strictly positive eigenvalues chosen to be (γ
(n−p′+1)
AB , ..., γ

(n)
AB) (p

′ ≥ 1) and the associated

eigenvectors are {fn−p′+1, ..., fn}. In particular, by analogy with the case 2, it is easy to

conclude the proof in case 3 using the non singularity of K. Let W+ be the subspace

vect {f1, ..., fp}.

Before going further, let us observe that we have proved that the matrices A and B

coincide on the following spaces W−, ker(A+B
2 ) and KW+. To conclude the proof, it is

sufficient to establish that Rn =W− ⊕ ker(A+B
2 )⊕KW+.

#Claim 3: dim(KW+) = dim(W+) = dim(Rn)− dim(W−)− dim(ker(A+B
2 ))

Proof of the claim:

The minmax principle together with the non singularity of K ensure that:

γ
(k)
AB = max

M ⊂ Rn

dim(M) = n− k + 1

min
x ∈ M

x ̸= 0

〈
x, K(A+B)K

2 x
〉

∥x∥2
(57a)

= max
M ⊂ Rn

dim(M) = n− k + 1

min
x ∈ M

x ̸= 0

〈
x, (A+B)

2 x
〉

∥Kx∥2
(57b)

From the equation (57b) and the non singularity of K, one may notice that

card{k ∈ J1, nK /γ(k)AB < 0} = card{k ∈ J1, nK /λ(k)AB < 0}. Moreover, using again
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the non singularity of K, we have dim(ker(K(A+B)K
2 )) = dim(ker(A+B

2 )). There-

fore, card{k ∈ J1, nK /γ(k)AB > 0} = card{k ∈ J1, nK /λ(k)AB > 0}. In particular, we have

dim(KW+) = dim(W+) = dim(Rn)− dim(W−)− dim(ker(A+B
2 ))

#Claim 4: Rn =W− ⊕ ker(A+B
2 )⊕KW+

Proof of the claim:

Indeed, let (u1, u2, u3) ∈W−×ker(A+B
2 )×W+ such that u1+u2+Ku3 = 0. We have,〈

(u1 + u2),
A+B

2 (u1 + u2)
〉
≤ 0 and

〈
(Ku3),

A+B
2 (Ku3)

〉
≥ 0. Since Ku3 = −u1 − u2,

one may deduce that
〈
(Ku3),

A+B
2 (Ku3)

〉
= 0 and

〈
(u1 + u2),

A+B
2 (u1 + u2)

〉
= 0.

Given the invariant feature and the definition of the spaceW+, we necessary have u3 = 0.

Moreover, we have u1+u2 ∈ ker(A+B
2 ) which implies that u1 = 0 sinceW−∩ker(A+B

2 ) =

{0}. As a consequence, we have u2 = 0.

Using claim 3, we have dim(Rn) = dim(W−) + dim(ker(A+B
2 )) + dim(KW+).

This achieves the proof of the claim and the proof of the proposition 3.5.

□
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Figure 1: Local responses in uni-axial and bi-axial loading.
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Figure 2: Effect of the regularity of the opening (closure) cracking functions on the uniaxial response.
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Figure 3: Effect of the parameter η and the constant c2 on the uniaxial response.
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Figure 4: Cyclic response of the model using η = 1, c2 = 104 and c1 = 10−5.
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Figure 5: The finite element mesh for the three-dimensional bar (a). The uniaxial responses (b) and the
damage profiles (c) for different meshes: Nel=21,42 and 84.
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Figure 6: Effect of the parameter η on the shear response.
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Figure 7: Shear response for cyclic loading path -proposed model.
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Figure 8: Stress and angle evolutions for Willam’s test using the proposed model.
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(a) Mesh with 1186 elements.
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Figure 9: Finite element mesh and reaction curve (three point bending test).
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Figure 10: Damage isovalues for each component for η = 0.
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(a) Mesh with 1228 triangular elements.
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Figure 11: Finite element mesh and reaction curve (Shi’s test).
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Figure 12: Damage isovalues for each component in the neighborhood of the notches for η = 0.
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