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Abstract

Within the framework of damage mechanic, numerous anisotropic damage models

have been proposed in the literature with the aim to represent the anisotropic degrada-

tion of quasi-brittle materials. The benefits from such models arise from the fact they

are consistent with the principles of the continuum mechanics enabling easy numerical

implementation in the majority of finite element codes. Despite the wealth of anisotropic

models in the literature, further developments are needed to simulate correctly the re-

sponses involving phenomena related to crack closure. The present paper proposes a new

class of anisotropic damage models characterized by its capabilities to describe non linear

progressive stiffness recovery with the possibility to introduce permanent strains. The

theoretical framework takes benefits from some results of the operator function theory.

Further mathematical features are established for sets of functions, which are termed

opening (closure) cracking functions. These features are useful to control the material

behavior when the tensile or the compressive strains are activated (deactivated) with

more or less smoothness. The thermodynamical admissibility condition is fulfilled, as

long as the damage variable and the cracking functions satisfy further conditions. The

robustness associated with the time integration of the proposed class of models is illus-

trated by a structural case study.
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Nomenclature

◦ Schur product (Hadamard product)

‖·‖ Bound norm

‖·‖2 Frobeinus norm

〈·, ·〉 Scalar product on R
n

C+ Set of opening cracking functions

C− Set of closure cracking functions

D Second order damage tensor

D̃x The Fréchet derivative with respect to the variable x

E Young’s modulus

η Material parameter

ǫ̂ Mazars’s equivalent strain

ǫ Strain tensor

H Second order integrity tensor

I Identity matrix

κ0 Damage threshold

λ, µ Lamé’s coefficients

ν Poisson’s ratio

ψ Free Helmohltz energy

R
n Real space of n dimensions

s Triaxiality exponent

S Damage strength

Sn Space of symmetric (n× n) matrices

S+
n Space of positive symmetric (n× n) matrices

σ Stress tensor

tr (·) Trace operator

TX Stress triaxiality

2



1. Introduction

Within the framework of structural design, efficient numerical analysis requires robust

constitutive material models to predict satisfactorily the non linear behavior of structures

under static or cyclic loading. As one of the most commonly used materials, concrete

is viewed as a complex heterogeneous medium, characterized by significant density of

micro-cracks with different orientations, generally normal to the extension strains. The

evolution of these micro-defects results in the degradation of the modulus which itself

leads to a non linear response of the structure [1]. When compressive loading is applied,

the cracks close, leading to the stiffness recovery. This phenomenon is known as the

unilateral effect and has to be considered in the numerical computations when dealing

with cyclic loads. Although many damage models, especially isotropic ones ([2, 3, 4, 5,

6, 7]), have been developed to reproduce the crack closure effect, further efforts still need

be made to simulate correctly the structure response under cyclic loads. Besides this

specific feature, additional ones can be summarized as follows:

• stiffness degradation due to the rise of defects in the micro-structure,

• anisotropic behavior in the sense that the degradation depends on the directions,

• dissymmetry between tension and compressive response,

• permanent strains when unloading,

• continuity of stress with respect to both strain and damage variables,

• single damage variable to describe the damage process whatever the complexity of

the loading path [8].

The concept of continuum damage mechanics has been developed to describe the

material degradation in an equivalent continuous media, by means of internal variables

that decrease the elastic modulus. This is generally achieved by using a scalar dam-

age variable when a random distribution of micro-cracks is assumed or using a more

or less complex variable (tensor) leading to a more realistic representation of the ma-

terial anisotropy. As reported by several researchers, elasticity coupled with damage is

generally sufficient to describe the concrete behavior, especially when the tension is the
3



main cause of structural failure. During the last decades, several anisotropic models have

been proposed in the literature. One of the earliest development concerns the extension

of the concept of equivalence between fictitious undamaged configuration and the real

damaged configuration in three dimensions suggested by Murakami [9] leading to the

definition of an effective stress tensor using a symmetric second order damage tensor.

Based upon the effective stress concept, Lemaitre et al. [10] proposed one of the most

popular damage-based anisotropic model established within the framework of the strain

equivalence principle, where the elasticity is written through a partition technique be-

tween the deviatoric part and the hydrostatic part of the elastic energy. However, the

relations controlling the damage evolution does not prevent the damage variables from

evolving beyond the unity and losing their physical meaning. Consequently, additional

improvements have been proposed recently by Desmorat [8] where the damage state is

described using the integrity tensor instead of the damage tensor. An attempt to cou-

ple the hysteretic effects (due to frictional mechanisms between the lips of the cracks)

with anisotropic damage has been suggested by Halm et al. [11], using a spectral de-

composition. Nonetheless, some thermodynamical inconsistencies reflected by the non

uniqueness of the potential have been reported by Cormery et al. [12]. Similar draw-

backs were expressed regarding the anisotropic model developed by Chaboche [13]. In

order to move forward, enhancements of the original Halm’s model have been proposed

by Bargellini et al. [14] using fixed micro-crack directions in such a way that the damage

evolution is controlled by functions, called micro-crack densities. Despite the wealth of

the proposed formulations, further developments are still needed to build a consistent

thermodynamical model.

The paper aims to present a family of anisotropic damage models for quasi-brittle

materials characterized by (more or less) regular stiffness recovery to describe a more

realistic unilateral effect. The model is based upon a second order integrity tensor as a

damage variable and is built using two classes of functions defined here as the opening

(closure) cracking functions which generalize the notion of positive (negative) part func-

tions. Theoretical results related to the cracking functions are established to ensure the

thermodynamical consistency of the model on one hand and to point out some valuable

features of the proposed formulation on the other hand. The mathematical developments
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take advantage of existing results associated with the operator function theory and have

been extensively studied by several investigators since the beginning of the 20th century

and becomes popular thanks to the works of K. Löwner [15], J. Bendat and S. Sher-

man [16] and A. Korányi [17]. Following the discussion presented above, it is assumed

the damage evolution is driven by a second order tensor for all loading paths. This is

generally achieved by imposing a particular evolution of the rate of the tensor D or an

associated tensor f(D), where f is a matrix function. Ensuring the boundedness of the

damage variable is one of the crucial conditions to keep a physical meaning of the results.

The recent developments proposed by Desmorat [8] uses the rate of the Cordebois tensor

H = (I −D)
− 1

2 instead of the classical tensor D to obtain the desired boundedness. A

specific attention is paid to this issue in this paper and it will shown later that weak

assumptions on the regularity of H with additional conditions are sufficient to guaranty

that the damage eigenvalues can be represented by continuous non decreasing positive

functions bounded by unity. Many tensorial representations of the damage variable can

be found in the literature satisfying the above properties which, in general, can be ex-

pressed in the form φ = (I −D)
p
, where p is a real (see for instance [18] [19] [20] [21]).

It is seen that the rate φ̇ depends on the exponent p and, in many cases, there is no

equivalence between the positivity of φ̇ and Ḋ, i.e. for instance if p = − 1
2 the positivity

of φ̇ does not imply the positivity of Ḋ. This issue is also discussed in the present.

The paper is organized into three parts. The first part reviews some notions and

basic results related to the matrix function theory. The second part is devoted to the

construction of a new class of damage models characterized by its abilities to take into

account the unilateral effect with the possibility to introduce permanent strains. Fur-

ther fundamentals mathematical results concerning the well-posedness of the boundary

problem at fixed damage state as well as the thermodynamical consistency in the sense

of distributions are shown. The relation between the rates associated with the damage

tensor and different form of the integrity tensor is also investigated. The last part is

focused on the numerical examples to highlight the robustness of the model.
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2. Trace functions background

2.1. Definitions and notations

Let Sn denote the space of n×n symmetric matrices, equipped either with the bound

norm ‖.‖ or the Frobeinus norm ‖.‖2. The identity matrix is denoted I. There is a

natural partial order on Sn, a matrix A is said to be positive semi-definite in case:

xTAx ≥ 0 ∀ x ∈ R
n (1)

and we write A ≥ 0. A is said positive definite if the inequality (1) is strict for all

x 6= 0 in R
n and we write A > 0. Finally, the space Sn is partially ordered by defining

A ≥ B as A−B ≥ 0. The subset of positive matrices is convex and is denoted by S+
n .

Let f be a real function on an interval J . If A is a symmetric matrix, with its

eigenvalues, denoted α1, ..., αn, are in J , we define the operator function f in Sn by:

f(A) =
n∑

i=1

f(αi) Pi (2)

where Pi are the spectral projections ofA. For any orthonormal basis, says {e1, ..., en},

the trace function, defined on Sn, and associated with the function f is given by:

tr(f(A)) =

n∑

i=1

〈ei, f(A)ei〉 (3)

where 〈., .〉 is the inner product on R
n.

f is said to be a monotone matrix function if for any symmetric matrices A and B

such that A ≥ B, we have f(A) ≥ f(B).

Finally, two matrices A and B from Sn are equivalent if there exist a non-singular

matrix R, not necessary symmetric, such that:

A = RTBR (4)

As a consequence of the equation (4), if the matrix B is positive (resp. negative) then

A is also positive (resp. negative), and conversely.
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2.2. Basic results

Let J =]a, b[ be an interval and f a continuously differentiable function on I. Then

we denote by f [1] the function defined on J × J such as [22]:





f [1] (x, y) =
f(x)− f(y)

x− y
if x 6= y

f [1] (x, x) =f
′

(x)

(5)

If K is a diagonal matrix with diagonal entries d1, ..., dn which are selected from I,

we denote by f [1](K) the n× n symmetric matrix whose (i, j)-entries are f [1](di, dj). If

A is a symmetric matrix and A = QTKQ, denote f [1](A) = QT f [1](K)Q. The map f is

Fréchet differentiable at A and is given by:

D̃f(A)(H̃) = lim
t→0

f(A+ tH̃)− f(A)

t
= QT

[
f [1](K) ◦QH̃QT

]
Q (6)

where ◦ denotes the Schur-product. Recall that the Schur product (or the Hadamard

product) of two matrices A and B is defined to be as the matrix A ◦B whose (i, j)-entry

is aijbij .

The trace function defined above is also Fréchet differentiable at A and its derivative

is given by:

D̃ tr(f(A))(H̃) = tr
(
f

′

(A)H̃
)

(7)

Generally, if L∗ is the adjoint of a linear operator L defined on Sn then:

D̃ tr(f(L(A))) = L∗(f
′

(L(A))) (8)

As an example which will be used later, let L(A) = KAK for any symmetric matrix

K, then L is symmteric and L = L∗.

The relation between the convexity of f and tr(f(.)) is the most interesting feature

of this class of functions. An immediate corollary of the Peierls’s Inequality [23] shows

that if f is convex (resp. strictly convex) then A → tr(f(A)) is convex (resp. strictly

convex). Furthermore if the map is assumed convex, a practical inequality implying the

Peierls Inequality states that for any unitary vector u:
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f (〈u,Au〉) ≤ 〈u, f (A)u〉 (9)

where the eigenvalues of A belong to the domain of f .

3. A new class of damage models and fundamental results

3.1. Motivations and definition of cracking functions

The unilateral effect is considered as an intrinsic feature of quasi-brittle materials

such concrete. This phenomenon is described by the majority of isotropic (or anisotropic)

damage models using a split technique between the compressive and the tension behaviors

by means of the positive part function x 7−→ 〈x〉
+
= max (x, 0). This function is generally

introduced into the stress or strain tensor in order to distinguish the compressive strain

(stress) from the tension strain (stress). Nonetheless, the lack of differentiability at x = 0

may cause serious numerical issues when the tangent (or the secant) stiffness matrix is

updated. Indeed, when the positive part function is applied to a symmetric matrix A,

in the sense of the definition (2), it is seen that the resulting matrix, denoted 〈A〉
+
, is

positive and belongs to S+
n . According to relation (6), one may infer that A 7−→ 〈A〉

+

is differentiable if and only if A is non singular. Thus, the stiffness operator is only

meaningful for this set of matrices. In addition to this drawback, such function cannot

represent the non linear progressive behavior of the material during the stiffness recovery

stage.

Given the aforementioned shortcomings, the aim of the following parts is to introduce

new families of functions, called opening cracking functions (resp. closure cracking func-

tions) playing a similar role as the function x 7−→ 〈x〉
+

(resp. x 7−→ 〈x〉
−
= min (x, 0))

enjoying more valuable features in term of smoothness as detailed later.

3.1.1. Opening cracking functions

Definition Let C+ be the the set of the opening cracking real-valued functions f defined

on R and satisfying the following properties:

1. f is convex on R,

2. lim
x→+∞

(f (x)− x) is finite,
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3. f is integrable in the neighborhood of −∞.

C+ is clearly convex and not empty since the function f (x) = max (x, 0) fulfills all the

aforementioned items. It will be shown that, in addition to the statements (1), (2) and

(3), valuable features characterizing the opening cracking functions can be derived which

provide new information on the regularity of such functions or their behaviors at −∞.

Recall that the interest of such functions is to build, not a single, but a class of elastic

damage models that fit into the thermodynamic framework and satisfy some classical

properties such as the positivity of the potential energy and the convexity with respect to

the strain tensor. Since no regularity is imposed, each model from the previous class may

differ from each other in terms of capabilities of smoothing the responses when switching

from tension to compression. Further properties of the opening cracking functions are

given in the following proposition.

Proposition 3.1. Let f be of C+, then:

1. f belongs to C0 (R), i.e., f is continuous on R,

2. f is a non decreasing positive function and lim
x→−∞

f (x) = 0,

3. F (x) =
∫ x
−∞

f (u) du is a convex positive function,

4. f is a 1-Lipschitz function.

Proof :

1. The continuity results from the convexity of f [24].

2. Let (xn)n be a strictly non increasing sequence such that lim
n→+∞

xn = −∞. If

there exist an integer p ≥ 1 such as f(xp+1) ≥ f(xp), then (f(xn))n≥p is non

decreasing sequence. Indeed, since xp+2 < xp+1 < xp, there exist t ∈]0, 1[ such

xp+1 = t xp + (1 − t)xp+2. Thus, using the convexity of f , we conclude that

(f(xp+2)− f(xp+1)) ≥ t
(1−t) (f(xp+1)− f(xp)) ≥ 0. By induction, the result re-

mains valid for all n ≥ p.

In all cases, it is seen that (f(xn))n admits a limit l ∈ R which is not necessary

finite when n goes to +∞. The next step consists in establishing that two sequences

(pn)n and (qn)n of the same nature as (xn)n have the same limit. For this purpose,

we build another sequence (zn)n of the same nature as (xn)n such that (z2n)n and
9



(z2n+1)n are sub-sequences of (pn)n and (qn)n, respectively (this is possible by

construction). It is clear that (zn)n has at least two adherent points in R which

are the limits of (pn)n and (qn)n. Moreover, (zn)n converges (since (zn)n shares

the same properties of (xn)n) with a unique adherent point. Thus, both sequences

(pn)n and (qn)n have the same limit l as (xn)n which is evidently the limit of f

when x→ −∞ since f is continuous. Moreover, if l 6= 0 then the function f cannot

be integrable in the neighborhood of −∞ which contradicts the definition of C+.

Hence, for all (x, y) ∈ R
2 we have:

f (x)− f (y)

x− y
≥ lim
z→−∞

f (z)− f (y)

z − y
= 0 (10)

In the equation (10), we use the fact that the map x 7−→ f(x)−f(y)
x−y increases with

x (classical result from the convex function theory). Given this result, we deduce

that f is a non decreasing positive function since f (x) ≥ f (−∞) = 0.

3. Since f is positive, then F (x) =
∫ x
−∞

f (u) du ≥ 0. Moreover, the monotony of f ,

previously demonstrated, implies the convexity of F .

4. Using the assumption lim
x→+∞

(f (x)− x) < +∞, we infer:

1 = lim
z→+∞

f (z)− f (y)

z − y
≥
f (x)− f (y)

x− y
≥ 0 (11)

Thus,

|f (x)− f (y)| ≤ |x− y| (12)

�

Before going further, same comments on the physical interpretation of the previous

proposition can be given. Since the present model is built using the Helmohltz free

energy (expressed in term of the strain tensor), the continuity of the opening cracking

functions is needed to ensure the continuity of the stress tensor with respect to the strain

tensor, as highlighted later. The second property shows, in conjunction with the role

played by the positive part function, that any function from this family is deactivated

once the compressive strains become sufficiently large. The third property is useful to

build a positive convex free energy with respect to the strain tensor using the primitives
10



of the form F (x) =
∫ x
−∞

f (u) du. Finally, the assertion 4 implies that f is differentiable

almost everywhere in the sense of Lebesgue measure. This is also a direct consequence

of a deeper result in the convex analysis (see [24]). For practical applications, we restrict

ourselves to smooth functions that belong, at least, to the space C1 (R) except for a finite

set of points.

From a physical point of view, the second assumption of the above definition indicates

that the term f(x) is approximately equal to x up to a constant when the tension strains

are sufficiently significant. This condition, when considered without further assumptions,

is not sufficient to conclude that f ′(x) is close to 1 when x is sufficiently large and thus to

provide information on the behavior of the tangent stiffness for a fixed damage state. In

order to achieve a better convergence of the Hessian operator, it is necessary to control

the behavior of the derivative at (±∞) in order to satisfy similar properties as the ones

fulfilled in case of the positive part function. In this case, the derivative of each function

should converge to unity for important tension strains and vanish (or converge to 0) for

compressive strains. This is ensured by the following proposition:

Proposition 3.2. Let f be an element of C+, which is differentiable except in finite

number of points, then:

lim
x→+∞

f
′

(x) = 1 (13a)

lim
x→−∞

f
′

(x) = 0 (13b)

Proof :

We restrict ourselves to the first assertion since the second holds by analogy. For n ∈ N

sufficiently large, using the mean value theorem, there exist an increasing sequence (ξn)n

such that n < ξn < n+ 1 and:

f (n+ 1)− f (n)

n+ 1− n
= f

′

(ξn) (14)

Taking into account the fact that f is convex, f
′

is an increasing function, which

means that lim
x→+∞

f
′

(x) exits and equals to lim
n→+∞

f
′

(ξn).

In other hand, we have:

f (n)− n = c+ ◦ (1) (15)
11



for some constant c. Thus, using the above relation for n and n+ 1, respectively, we

deduce f
′

(ξn) =
f(n+1)−f(n)

n+1−n = 1 + ◦ (1). �

Remark :

Because f
′

increases with x and f
′

(−∞) = 0, the derivative f
′

is non-negative which

means that the function F is convex (since F
′′

= f
′

) as claimed by the proposition

3.1. Moreover, it should be noted that the relations (13a) and (13b) do not always hold

without the convexity assumption. �

3.1.2. Closure cracking functions

In the same spirit, we define C−, the set of the closure cracking functions f satisfying

the following properties:

• f is concave on R,

• lim
x→−∞

f (x)− x is finite,

• f is integrable in the neighborhood of +∞.

From the definition above, the set C− is also convex characterized by the following

properties:

Proposition 3.3. Let f be of C−, then:

1. f belongs to C0 (R), i.e., f is continuous on R,

2. f is a non decreasing positive function and lim
x→+∞

f (x) = 0,

3. F (x) =
∫ x
+∞

f (u) du is a convex positive function,

4. f is a 1-Lipschitz function.

Proof : similar to proposition 3.1 �

Furthermore, if each function f ∈ C− belongs to C1 (R) except in a finite set of

points, then:

Proposition 3.4. Let f be an element of C−, which verifies the above assumption, then:

12



lim
x→+∞

f
′

(x) = 0 (16a)

lim
x→−∞

f
′

(x) = 1 (16b)

Proof : similar to proposition 3.2 �

3.2. The free energy expression

One of the challenges encountered in the thermodynamical formulation for quasi-

brittle material models is the description of the unilateral effect using single damage

variable [25]. In this section, the free energy associated with the new class of damage

models is elaborated by means of the cracking functions, introduced in section 3.1. The

unilateral effect is taken into account by splitting the free energy, denoted ψ (ǫ,H), into

two different parts. The first part affected by the second order integrity tensor H, related

to the damage tensorD and defined byH = (I−D)−
1
2 as pointed out in the introduction,

describes the behavior of the material as long as the tension strains are activated. The

second part, partially affected by the second order damage tensor, describes the behavior

when compressive strains are activated. Theoretical results from the previous section are

used to describe the main properties of the free energy, regarding to the smoothness and

the convexity character. Further mathematical results concerning the boundary value

problem are also investigated.

Let ǫ be the strain tensor and H the integrity tensor, the free energy potential ψ (ǫ,H)

is defined by:

ψ (ǫ,H) = ψ+
F+,G+ (ǫ,H) + ψ−

F−,G−
(ǫ) (17)

where,

ρψ+
F+,G+ (ǫ,H) = 2µ tr

(
F+

(
H− 1

2 ǫH− 1
2

))
+ λ

3

tr (H2)
G+ (tr (ǫ)) (18)

and,

ρψ−
F−,G−

(ǫ) = 2µ (1− η ‖D‖) tr
(
F− (ǫ)

)
+ λ G− (tr (ǫ)) (19)

13



where F+ : x 7−→
∫ x
−∞

f+ (u) du and G+ : x 7−→
∫ x
−∞

g+ (u) du, where f+ and g+ are

the opening cracking functions selected from the set C+, while F− : x 7−→
∫ x
+∞

f− (u) du

and G− : x 7−→
∫ x
+∞

g− (u) du where f− and g− are the closure cracking functions

selected from the set C−. The norm ‖.‖ is the bound norm or the norm associated

with the inner product 〈., .〉 on R
n. The parameters λ and µ are the Lamé coefficients

for undamaged material and η is a positive parameter selected between 0 and 1. As

mentioned above, the potential ψ+
F+,G+ (ǫ,H) represents the behavior affected by the

damage controlled by the tensor H, while ψ−
F−,G−

(ǫ) represents the behavior partially

affected by the damage. When the parameter η is equal to 1 the unilateral effect is

total as will be shown later. Note that the non linearity of the cracking functions has

the advantage to reproduce a progressive crack opening that match the experimental

observations [26]. Moreover, smoothing the behavior has also the benefit to improve

the numerical convergence comparing with the damage models with abrupt contact as

reported by [27]. This can be achieved by selecting sufficiently smooth cracking functions,

at least of class C1, to ensure the continuous differentiability of the functional ψ (ǫ,H)

in one hand and the continuity of the corresponding Hessian matrix on the other hand.

Note that the matrix H− 1
2 ǫH− 1

2 in the relation (18) is equivalent to the strain tensor

ǫ following the definition given in section 2. Thus, it is clear that if the tensor ǫ is

negative semi-definite (i.e. −ǫ est positive semi-definite), the stress tensor related to the

damaged part tends to vanish when the eigenvalues of ǫ are negatives and sufficiently

high. Conversely, if ǫ is positive, the stress tensor related to the undamaged (or partially

damaged) part becomes inactive when the eigenvalues of ǫ are positive and sufficiently

large.

Remark : The concept of special positive part of the stress tensor, denoted σ+, has

been proposed by Ladevèse [18] which is built using the positive part of eigenvalues of

the matrix Hσ. Indeed, it can be verified that the previous definition is related to the

positive part function (see Appendix A) by:

tr
(
H1σ

+H1σ
+
)
= tr

((〈
H

1
2

1 σH
1
2

1

〉+)2
)

(20)

�
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One can notice that the proposed Helmholtz free energy ψ has the property to be

independent on the basis in which it is expressed. In other words, one can observe that

ψ (ǫ,H) = ψ
(
UT ǫ U, UTH U

)
for all orthogonal matrix U . The convexity is ensured for

all of cracking function, while the strict convexity can be ensured if one the functions F+

or F− is strictly convex. It is worth noticing that the strict convexity of the potential

is generally essential (of course with further assumptions) to construct a one to one and

onto operator between the strain and the stress tensor spaces. Due to thermodynamic

requirement (see section 3.3), the function F+ can only be strictly convex in R
+. This

constraint, combined with a weak assumption on F−, provides a strict convexity of the

potential as stated by the proposition 3.5.

Proposition 3.5. If f+ and f− are strictly monotone on R
+ and R

−, respectively; then

the potential ψ is strictly convex on Sn

Proof : The proof is divided into two steps:

Step 1 : Let x > 0, then for real y, we have F+(x+y2 ) < F+(x)+F+(y)
2 . Similarly, if

x < 0 then for each real y we have F−(x+y2 ) < F−(x)+F−(y)
2 .

Indeed, if 0 < x < y, the result is obvious using the convexity of F+. Since F+

is convex we have for each real x1 such x1 < x : f+ (x1) ≤ F+(x)−F+(x1)
x−x1

. If the

equality holds, then there exist (using the mean value theorem) a real x0 ∈ I = (x1, x)

such f+ (x1) = f+ (x0). Given the monotony of f+, we have f+ (x1) = f+ (y) for

all y ∈ [x1, x0]. Let x2, such x2 = 2x1 − x0 then by the convexity of f+, we have

f+ (x1) ≤ 1
2 (f

+ (x2) + f+ (x0)) which means f+ (x1) ≤ f+ (x2). But x2 < x1 and

f+ (x2) ≤ f+ (x1) then f+ (x1) = f+ (x2) = f+ (y) for all y ∈ [x2, x0]. Let (xn)n≥0

a sequence such as xn+2 = 2xn+1 − xn. By recurrence, one may infer that f+ (xn) =

f+ (x0) = f+ (y) for all y ∈ [xn, x0]. Since (xn)n≥0 is arithmetic, xn → −∞ and

f+ (−∞) = 0, we conclude that F+ (x) = F+ (x1). This is absurd since F+ is strictly

monotone on R
+. Thus f+ (x1) <

F+(x)−F+(x1)
x−x1

. Put x1 = x+y
2 , we have also f+ (x1) (y−

x1) ≤ (F+ (y)− F+ (x1)). Summing the two previous inequalities, we obtain the result.

The case related to F− is proved by analogy.

Step 2: If A and B are symmetric matrices such as ψ(A+B
2 ) = ψ(A)

2 + ψ(B)
2 , then

A = B.
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First, let us observe that the convexity of the functions involved in the potential im-

poses that tr(F+(K(A+B)K
2 )) = 1

2 (tr(F
+(KBK))+tr(F+(KBK))) and tr(F−(A+B

2 )) =

tr(F
−(A)
2 ) + tr(F

−(B)
2 ), where K = H− 1

2 (note that the matrix K is positive definite).

Let {e1, ..., en} be an orthonormal basis consisting on eigenvectors of A+B
2 . Then, we

have:

tr(F−(
A+B

2
)) =

∑

i

F−

(〈
ei,

A+B

2
ei

〉)
(21a)

≤
∑

i

1

2

(
F− (〈ei, Aei〉) + F− (〈ei, Bei〉)

)
(21b)

≤
∑

i

1

2

(〈
ei, F

− (A) ei
〉
+
〈
ei, F

− (B) ei
〉)

(21c)

=
1

2

(
tr
(
F− (A)

)
+ F− (B)

)
(21d)

In the previous inequality, we use the fact that F− is convex and F− (〈u,Au〉) ≤

〈u, F− (A)u〉 for all unitary vector. The equality between the first and the last term

implies that F− (〈ei, Aei〉) = 〈ei, F
− (A) ei〉 and F− (〈ei, Bei〉) = 〈ei, F

− (B) ei〉 for

all i. Let λA = (λA1, ..., λAn) be the eigenvalues of A, then there exist a doubly

stochastic matrix (aij) such F−
(∑n

j=1 aijλAj

)
= F− (〈ei, Aei〉) = 〈ei, F

− (A) ei〉 =
∑n
j=1 aijF

− (λAj). Since for all j, there exists σ (j) such as aσ(j)j 6= 0, then the strict

convexity of F− on R
− implies that we have aσ(j)j = 1 and akj = 0 for any k 6= σ (j)

as soon as λAj < 0. In this case, we have 〈ei, Aei〉 = λAj . From the equality between

the first and the second lines of the equation (21), one can notice that we have necessary
〈
ei,

A+B
2 ei

〉
= 〈ei, Aei〉 = 〈ei, Bei〉 once 〈ei, Aei〉 < 0 or 〈ei, Bei〉 < 0. Consequently, the

matrices A and B take the following expression in the basis {e1, ..., en}:

A =


 λ− 0

0 XA


 B =


 λ− 0

0 XB


 (22)

where λ− is a negative definite diagonal matrix, XA and XB are positive submatrices.

We deduce that A and B have the same restriction on the subspace in which the both

matrices are strictly negative, that is denoted here W .

Now, we use the same strategy on the function F+. The matrices KAK and KBK

can be expressed in some basis {u1, ..., un} such as:
16



KAK =


 YA 0

0 λ+


 KBK =


 YB 0

0 λ+


 (23)

where λ+ is a positive definite diagonal matrix, XA and XB are negative matrices.

From (23), the matrices KAK and KBK coincide on the subspace where both matrices

are strictly positive and coincide on the subspace where both matrices are strictly nega-

tive, which is K−1(W ). From this, we deduce that both matrices have the same kernel,

which leads to the fact that KAK = KBK or A = B because K is non singular. �

The stress tensor can be derived using the expression of the free energy (17). Here,

we assume that the stress tensor is related to the damage tensor H and the strain tensor

ǫ by:

σ(ǫ,H) = D̃ǫψ(ǫ,H)

= 2µ H− 1
2 f+

(
H− 1

2 ǫH− 1
2

)
H− 1

2 + λ
3

tr (H2)
g+ (tr (ǫ)) I (24)

+2µ (1− η ‖D‖) f− (ǫ) + λ g− (tr (ǫ)) I

The first term is obtained using theequation (8) with the linear operator L(ǫ) =

H− 1
2 ǫH− 1

2 whereas the other the terms are derived straightforwardly using the equation

7. It should benoticed that the stress tensor is continuous with respect to the damage

and strain tensors, since the cracking functions and the norm ‖.‖ are continuous. The

proposition 3.6 shows that the stress tensor, when considered as an operator, is Liptchiz

with respect to the strain tensor.

Proposition 3.6. We claim:

• Each function f ∈ C+ ∪ C− satisfies ‖f (A)− f(B)‖2 ≤ ‖A−B‖2 for any couple

(A,B) ∈ (Sn)
2
.

• The operator D̃ǫψ(., H) is Lipschitz with respect to ǫ and we have, for some constant

C that depends on H, λ and µ:

∥∥∥D̃ǫψ(ǫ2, H)− D̃ǫψ(ǫ1, H)
∥∥∥
2
≤ C ‖ǫ2 − ǫ1‖2

for all (ǫ1, ǫ2) ∈ (Sn)
2.

17



Proof :

The proof of the first assertion focus on the set C+ (similar proof is applied to C−)

and can be achieved in two steps:

Step 1: The set C+ ∩ C∞ (R) is dense in C+ with respect to the uniform norm.

Let f ∈ C+ and ρc ∈ C∞ (R) a positive function such supp(ρc) ⊂ (0, 1) and
∫
R
ρc = 1.

We introduce a sequence of infinitely differentiable functions (fn)n defined on R by:

fn(x) =
∫
R
ρc (n (x− y)) f (y) dy

We claim that fn belongs to C+ ∩ C∞ (R) for each n. Indeed, we have fn(x) =
∫
R
ρc (ny) f (x− y) dy. Using the definition of the convexity and the positivity of ρc, it

is clear that fn is convex. Since x 7−→ fn(x) − x is convex, the limit lim
x→+∞

(fn (x)− x)

exists. In addition, we have fn(x) − x =
∫
R
ρc (n (x− y)) (f (y) − f (x))dy + f(x) − x.

It is seen that the last term is bounded due to the definition of f and the first is also

bounded by
∣∣∫

R
ρc (n (x− y)) (f (y)− f (x))dy

∣∣ ≤
∫
R
ρc (n (x− y)) |x− y| dy ≤ 1

n
. Thus

the limit lim
x→+∞

(fn (x)− x) is finite. The integrability of fn in the neighborhood of −∞

is a direct consequence of the Fubini theorem.

To conclude we have |fn(x)− f(x)| =
∣∣∫

R
ρc (n (x− y)) (f (y)− f (x))dy

∣∣ ≤ 1
n
which

leads to lim
n→+∞

|fn − f |∞ = 0

Step 2: Let f ∈ C+ and (fn)n be the sequence defined in step 1 which converges

uniformly to f . For each couple (A,B) ∈ (Sn)
2
we have:

fn (B)− fn (A) =

∫ 1

0

D̃fn (B + t(B −A)) (B −A) dt (25)

Using expression (6), it is easy to check that:

‖fn (A)− fn(B)‖2 ≤ sup
t∈R

∣∣∣f
′

n (t)
∣∣∣ ‖A−B‖2 (26)

Taking into account the proposition 3.2 we deduce supt∈R

∣∣∣f ′

n (t)
∣∣∣ ≤ 1. Taking the

limit to infinity, we obtain the result.

The proof of the second assertion is a consequence of the previous one. Indeed, each

function from C+ ∪C− is 1-Lipschitz. As a consequence, there exists a constant C that

depends only on λ and µ such as for all couple (ǫ1, ǫ2) ∈ (Sn)
2
, we have:

18



∥∥∥D̃ǫψ(ǫ2, H)− D̃ǫψ(ǫ1, H)
∥∥∥
2
≤ C(H) ‖ǫ2 − ǫ1‖2 (27)

�

For small strains, the strain tensor ǫ is the linear operator defined on a displacement

field vector u, such as ǫ(u) = 1
2

(
∇u+∇Tu

)
. Let Prigid be the vector space defined by

Perigid =
{
u ∈

(
W 1,2 (Ω)

)n
/u (x) = a+ b× x

}
which represents the rigid-body motions.

Let Ω be bounded and open domain characterized by a Lipschitz boundary Γ devided

into disjoint parts Γu, Γτ and T . Γu, Γτ are open while T has a measure equal to

zero. Let W and P be the vector spaces defined by W =
{
u ∈

(
W 1,2 (Ω)

)n
/u |Γu

= 0
}

and P = W ∩ Prigid. P is a finite dimensional space and consequently, admits and

orthogonal complement P⊥ in W . Assuming that H is an element of the space VH ={
X ∈ (W∞ (Ω))

n×n
/Xij = Xji and X ≥ I

}
.

Now, we consider the following problem (P ∗). Find u ∈
(
W 1,2 (Ω)

)n
such as:





∫

Ω

tr(σ (ǫ (u) , H) ǫ (v)) = fext (v) ∀v ∈ P⊥

u |Γu
= ug |Γu

(28)

Here, we assume that the vector ug ∈
(
W 1,2 (Ω)

)n
and fext ∈

(
W−1,2 (Ω)

)n
. fext

represents the sum of the body forces and of the external forces applied on Γτ .

Theorem 3.7. Let f+ and f− such as the ones defined in proposition 3.5. Then, there

exists one unique solution of the problem (P ∗).

Proof :

Let’s define the function T on P⊥ by:

T (u) =

∫

Ω

ψ (ǫ (u+ ug) , H)− f (u) (29)

Step 1: T is well defined and strictly convex on P⊥. In particular, T is continuous

on P⊥.

As a consequence of the convexity of ψ, for each v ∈
(
W 1,2 (Ω)

)n
we have:

∫

Ω

ψ (ǫ (v) , H) ≤

∫

Ω

ψ (0, H) +

∫

Ω

tr
(
D̃ǫψ (ǫ (v) , H) ǫ (v)

)
(30)
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The first term on the right side of the inequality is well defined since H ∈ VH . Using

the Lipschitz property of the operator D̃ǫψ demonstrated in proposition 3.6 and the

assumption on H, we can find a constant C such as:

∫

Ω

tr
(
D̃ǫψ (ǫ (v) , H) ǫ (v)

)
≤ C

∫

Ω

‖ǫ (v)‖2 (1 + ‖ǫ (v)‖2) (31)

From the continuity of the operator ǫ(.) = 1
2

(
∇(.) +∇T (.)

)
, we conclude that T is

well defined.

The convexity of ψ leads to the convexity of T . Let u1 and u2 from P⊥ and r ∈ (0, 1)

such T (r u1 + (1− r)u2) = r T (u1) + (1− r)T (u2). We deduce ǫ (u1) = ǫ (u2) a.e..

The well-known Korn’s inequality provides us with:

‖u1 − u2‖W 1,2(Ω) ≤ C

(∫

Ω

‖ǫ (u1)− ǫ (u2)‖
2
2

) 1
2

(32)

where ‖.‖W 1,2 is the norm associated with the space (W 1,2 (Ω)
n
. Thus u1 = u2.

Step 2: T is coercive, i.e., T (u) → +∞ as ‖u‖W 1,2(Ω) → ∞

Let f be function of C+. From proposition 3.1, the existence of a constant c1 such as

f(x) ≥ x+ c1 is ensured. This implies that
∫ x
−∞

f(y) dy ≥ x2

2 + c1x for each positive x.

From this result, we deduce that:

∫

Ω

tr
(
F+

(
H− 1

2 ǫH− 1
2

))
≥

1

2

∫

Ω

∥∥∥∥
〈
H− 1

2 ǫH− 1
2

〉+∥∥∥∥
2

2

+ c1

∫

Ω

tr

(〈
H− 1

2 ǫH− 1
2

〉+)
(33)

Similarly, for some constant c2, we have:

∫

Ω

tr
(
F− (ǫ)

)
≥

1

2

∫

Ω

∥∥∥〈ǫ〉−
∥∥∥
2

2
+ c2

∫

Ω

tr
(
〈ǫ〉

−
)

(34)

Since H ∈ VH there exist a positive constant C∞ such ‖H(x)‖ ≤ C∞ (a.e.). Let A

and B be two symmetric matrices such as B > 0; then we have either ‖A‖ =
∥∥∥〈A〉−

∥∥∥ or

‖BAB‖ =
∥∥∥〈BAB〉

+
∥∥∥ when ‖A‖ =

∥∥∥〈A〉+
∥∥∥. Furthermore, we have

∫
Ω

∥∥∥H− 1
2 ǫH− 1

2

∥∥∥
2

2
≥

1
C2

∞

∫
Ω
‖ǫ‖

2
2 and (1− η ‖D(x)‖) ≥ (1− η(1− 1

C2
∞

)) (a.e.). We conclude using the equiva-

lence between the norms that strictly positive constants C3 and C4 exist such as:

∫

Ω

tr
(
F+

(
H− 1

2 ǫH− 1
2

))
+

∫

Ω

(1− η ‖D‖) tr
(
F− (ǫ) (x)

)
≥

C3

∫

Ω

‖ǫ‖
2
2 − C4

∫

Ω

‖ǫ‖2

(35)
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Applying this to the definition of T and using the Korn inequality we may find other

strictly positive constants still denoted C3, C4 and C5 such as:

T (u) ≥ C3 ‖u‖
2
W 1,2(Ω) − C4 ‖u‖W 1,2(Ω) − C5 (36)

Therefore, we have T (u) → +∞ as ‖u‖W 1,2(Ω) → ∞.

Step 3: T achieves its minimum at P⊥ at a unique point.

P⊥ is reflexive since it is a closed subspace of the reflexive space
(
W 1,2 (Ω)

)n
. More-

over, T is proper lower semi-continuous (since T is well defined and continuous). We

deduce (see for example Corollary 3.23 in [28]) that the minimum of T is achieved for

some u0. The uniqueness of u0 is a consequence of the strict convexity of T ( cf. step 1).

Step 4: limt→0
T (u0+tv)−T (u)

t
=
∫
Ω
tr(σ (ǫ (u0 + ug)) ǫ (v))− f (v) = 0

Let g(t) = ψ (ǫ (u0 + ug) + tǫ (v) , H). g is differentiable and g′ is a Lipschitz function.

From proposition 3.6 we can write:

|g(t)− g(0)− g′(0)t| ≤M ‖ǫ (v)‖
2
2 t

2 (a.e. in Ω) (37)

For some constant M ; Using the previous inequality we deduce the result.

Step 5: The vector u = u0 + ug is the unique solution of the problem (P ∗). �

The well-posedness of the problem (P ∗) established above shows that any evolution

of the damage variable leads to a unique solution as soon as the damage variable and

the external loading satisfy some regularity conditions. In particular, when the domain

behaves with a fixed damage state, the response is unique. This suggests to prescribe

a damage evolution such as the tensor H remains bounded, except in a set with a null

measure. As pointed out in the introduction, the damage evolution adopted in this work

is controlled by the same relations as the ones proposed by Desmorat and investigated

in detail in section 3.4. Next section focuses on the positivity of the intrinsic dissipation.

3.3. Positivity of the intrinsic dissipation

As required by the second principle of thermodynamics, the rate of energy dissipation

must be non-negative to ensure the irreversibility of damage process. By definition, the

rate of energy dissipation is written as the difference between the mechanical power
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and the variation of the Helmholtz energy under isothermal condition. Moreover, the

thermodynamical consistency condition is given by the Clausius-Duhem inequality which

takes the following form:

σǫ̇− ρψ̇ ≥ 0 (38)

where the time derivatives are in the sense of distributions [29]. It is noteworthy that,

for practical cases, the internal variables may be smooth with respect to the time variable

through an interval [0, T ], except in a set of points with zero measure. For instance, when

suddenly the variables stop flowing. For that reason, we should select the tensors ǫ and

H in appropriate spaces which take into account this feature in order to verify the above

inequality. It should also be highlighted that, even if the strain tensor and the internal

variables are differentiable with respect to the time variable, the Helmholtz energy ψ can

be not always differentiable with respect to the time variable, in the classical sense, due

to the presence of the term ‖D‖ which is not always differentiable with respect to D.

Let Lp((0, T ), Sn) be the space of all strongly measurable functions X : (0, T ) 7−→ Sn

for which the norm ‖X‖Lp((0,T ),Sn)
=
(∫ T

0
‖X‖

p
2

) 1
p

is finite, where 1 ≤ p < ∞. For

p = ∞, L∞((0, T ), Sn) is the space of measurable functions X : (0, T ) 7−→ Sn such

‖X(t)‖2 ≤ C a.e. for some constant C equipped with the norm ‖X‖L∞((0,T ),Sn)
=

inf {C; ‖X(t)‖2 ≤ C (a.e.)}. Similarly, let W 1,p((0, T ), Sn) be the space of all mea-

surable functions X : (0, T ) 7−→ Sn for which the norm ‖X‖W 1,p((0,T ),Sn)
=

(∫ T
0
‖X‖

p
2 +

∫ T
0

∥∥∥Ẋ
∥∥∥
p

2

) 1
p

is finite, where Ẋ stands for the time derivative of X in the

sense of the distribution. The following lemma, considered as a starting point to prove

the positivity of the dissipation, shows that a weak assumption on the rate Ḣ is sufficient

to ensure a continuous growth of the principal damage variables.

Lemma 3.8. Let’s assume that H belongs to the space W 1,1((0, T ), Sn) such as Ḣ ≥ 0

a.e.. Then the eigenvalues of D(t) can be represented by continuous and non decreasing

functions. In other words, non decreasing continuous functions D1(t),...,Dn(t) such that,

for t a.e., are the eigenvalues of D(t) exist. Moreover, if H(t = 0) = I, then the

eigenvalues of D(t) belong to [0, 1] for all times t ≥ 0.

Proof :
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Since H ∈ W 1,1((0, T ), Sn), H can be represented by a continuous function on the

compact [0, T ] with respect to the norm ‖.‖2, denoted also H.

Let
(
H↓
i (t)

)

1≤i≤n
be the eigenvalues of H(t) arranged in decreasing order, i.e., H↓

n ≤

... ≤ H↓
1 . Since H(t) is Hermitian, the Weyls perturbation theorem ensures that for all

(t1, t2) ∈ [0, T ]
2
:

max
i

∣∣∣H↓
i (t1)−H↓

i (t2)
∣∣∣ ≤ ‖H(t1)−H(t2)‖ (39)

where ‖.‖ is the bound norm. Given the equivalence between the norms ‖.‖ and ‖.‖2,

the continuity of the function H(t) and the norm ‖.‖, we deduce that the functions H↓
i (t),

1 ≤ i ≤ n, are continuous using the previous equation (39).

Let’s assume that t1 ≤ t2, the hypotheses on H(t) allow us to write:

H(t2)−H(t1) =

∫ t2

t1

Ḣ(t) dt ≥ 0 (40)

which is equivalent to write for all x ∈ R
n such as ‖x‖ = 1:

〈x,H(t1)x〉 ≤ 〈x,H(t2)x〉 (41)

For all i such as 1 ≤ i ≤ n, the well-known Minmax principle yields:

H↓
i (t) = max

M ⊂ Sn

dim(M) = k

min
x ∈ M

‖x‖ = 1

〈x,H(t)x〉 (42)

Combining the equation (42) with the inequality (41), we deduce H↓
i (t1) ≤ H↓

i (t2).

For 1 ≤ i ≤ n, let Di(t) = 1 −
(
H↓
i (t)

)−2

. It is clear that (Di(t))1≤i≤n are the

eigenvalues of D(t) a.e. which are, according to the above results, represented by non

decreasing continuous functions. Moreover, if H(0) = I, then Di(t) are positive and

bounded by the unity. �

Lemma 3.9. Let f be an operator function of class C1(J), where J is an interval. If

H ∈ W 1,1((0, T ), Sn) such as the eigenvalues of H(t) are in J for all t then f(H(t)) ∈

W 1,1((0, T ), Sn) and the weak derivative is equal to D̃f (H)
(
Ḣ(t)

)
, where D̃f (H) is

given by the equation (6). Moreover, for the couple (t1,t2) (a.e.) we have:
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f(H (t2))− f(H (t1)) =

∫ t2

t1

D̃f (H)
(
Ḣ(t)

)
dt (43)

Proof :

From the The continuous differentiability of f(.), it is clear that f(X(t)) and

D̃f(X(t))(Y (t)) are measurable, for all measurable functions X(t) and Y (t) on (0, T ).

Since H ∈ W 1,1 ((0, T ) , Sn), then H(t) is bounded (a.e.). In this case, it is straight-

forward that f(H) ∈ L1 ((0, T ) , Sn) using the mean theorem. The continuous differ-

entiability of f(.) implies that D̃f(.) is bounded on H((0, T )) (a.e.). We deduce that

D̃f(H) ∈ (L1 ((0, T ) , Sn))
∗ and D̃f(H)(Ḣ) ∈ L1 ((0, T ) , Sn).

Since C1
c (R, Sn) is dense in H ∈ W 1,1 ((0, T ) , Sn), we can choose a sequence that

converges to H in W 1,1 ((0, T ) , Sn). Taking into account the continuous injection

W 1,1((0, T ), Sn) ⊂ L∞((0, T ), Sn) and the dominated convergence theorem, the result

follows immediately. �

Remark Following the proof of Lemma 3.5, each element of W 1,1 ((0, T ) , Sn) can be

represented by a continuous function. We can assume, henceforth, that H is continuous

on [0, T ] but not necessary with continuous first derivative. �

Proposition 3.10. Let F+, G+, F− and G− be the functions defined above. Let’s

assume that ǫ ∈ W 1,1 ((0, T ) , Sn) and H ∈ W 1,1 ((0, T ) , Sn) ∩ C
0 ([0, T ] , Sn). If Ḣ ≥ 0

a.e. such H(0) = I and f+ = 0 within the interval ]−∞, 0], then σǫ̇− ρψ̇ ≥ 0.

Proof :

In order to prove the inequality (38), it is sufficient to show that:

∫ T

0

(
tr(σǫ̇)− ρψ̇

)
ϕ ≥ 0 ∀ϕ ∈ D = C∞

c (]0, T [) ϕ ≥ 0 (44)

It is clear that
∫ T
0
tr(σǫ̇) is well defined since σ ∈ L∞((0, T ), Sn) =

(
L1 ((0, T ) , Sn)

)∗
,

following the definition (24) and the injection W 1,1((0, T ), Sn) ⊂ L∞((0, T ), Sn).

The relation D = I − H−2 is well defined since Ḣ ≥ 0 and H(0) = I. Lemma 3.9

and the continuity of H show that D ∈ W 1,1 ((0, T ) , Sn). Moreover, t 7−→ ‖D(t)‖ is

absolutely continuous, given that | ‖D(t2)‖−‖D(t1)‖ |≤ ‖D(t2)−D(t1)‖ ≤
∫ t2
t1

∥∥∥Ḋ
∥∥∥, we

conclude that the function t 7−→ ‖D(t)‖ has a pointwise defined (a.e.) derivative which
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is integrable on (0, T ). Moreover, the eigenvalues of D are non decreasing with respect

to the time (in the sense of the representations) provided that Ḣ remains positive (a.e.)

as stated in lemma 3.8. Thus, the derivative of ‖D(t)‖ is positive, i.e.,
∫ T
0

∂‖D‖
∂t

ϕ =

limh→0

∫ T
0

‖D(t+h)‖−‖D(t)‖
h

ϕ ≥ 0.

The integral
∫ T
0
ρψϕ̇ is well defined. It can be shown that, in the sense of distributions,

we have
〈
ψ̇, ϕ

〉

D∗,D
=
∫ T
0
ψ̇ϕdt. Indeed, it is sufficient to assume that H and ǫ are

differentiable with respect to the time in the classical sense, then we conclude by density

argument and the dominated convergence theorem using the continuity feature of the

cracking functions. Using this last argument and the relation (24), we end up with the

following development:

∫ T

0

(
σǫ̇− ρψ̇

)
ϕ = −ρ

∫ T

0

(
D̃Hψ

+
F+,G+ (ǫ,H)

(
Ḣ
)
− η

∂ ‖D‖

∂t

)
ϕ (45)

each term of the above integral can be written as:

∫ T

0

D̃Htr
(
F+

(
H− 1

2 ǫH− 1
2

))(
Ḣ
)
ϕ = −

∫ T

0

tr
(
H− 1

2h
(
H− 1

2 ǫH− 1
2

)
H− 1

2 Ḣ
)
ϕ

(46)

and:

∫ T

0

D̃H

1

tr (H2)

(
Ḣ
)
ϕ = −2

∫ T

0

tr(HḢ)

(tr (H2))
2ϕ (47)

where h is the matrix function defined by h : x 7−→ xf+ (x), which is non-negative.

From the assumptions on the tensor H we conclude that
∫ T
0

(
σǫ̇− ρψ̇

)
ϕ ≥ 0 using the

equivalence property and Fejer’s theorem (see section 2). �

3.4. Damage evolution

Generally, the damage evolution law is classically ensured by the normality rule, such

as the damage rate belongs to the subdifferential of a convex set bounding the elastic

domain. The initial Desmorat’s model [30] uses simply the hyperplan to define the elastic

domain as Φ(D) = tr (D 〈(ǫ〉
+
)α), where α is a damage exponent. Thus, the evolution

law reads Ḋ = λ̇ 〈(ǫ〉
+
)α. The last version of the model [8] is based upon a flow rule of the

form Ḣ = λ̇ 〈ǫ̃〉
+
, where 〈ǫ̃〉

+
is the effective strain. Despite the fact that both relations
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lead to a non decreasing damage principal variables in the sense of the representations

discussed in lemma 3.8, it should be pointed out there is no equivalence between the

positivity of the tensor rates when they are sufficiently smooth. Indeed, we claim:

Lemma 3.11. Let’s consider φ = (I −D)
p
, where −1 < p < 0 then the positivity of the

rate Ḋ implies the positivity of the rate φ̇. The converse is not true.

Proof :

It is sufficient to prove that if D1 > D2 then φ(D1) > φ(D2). Indeed, we have

I − D1 < I − D2 and x 7−→ x−p is a monotone matrix function (see [22]), then (I −

D1)
−p < (I −D2)

−p and (I −D1)
p > (I −D2)

p. The converse is not true. In fact, let’s

h : x 7−→ (1 + x)−
1
p defined on the real line [0,+∞[. h cannot be a monotone matrix

function since h is not concave (see theorem V.2.5 [22]), then positive matrices A1 and

A2 such as A1 > A2 and (I + A1)
− 1

p 6≥ (I + A2)
− 1

p exist. Let’s be φ1 = (I + A1) and

φ2 = (I +A2) and φ(t) = (1− t)φ2 + tφ1 for 0 ≤ t ≤ 1. It is clear that φ̇ ≥ 0 but Ḋ 6≥ 0

because D(t = 1) 6≥ D(t = 0). �

In this work, the damage evolution is governed, almost, by the same equations as

the ones proposed in [8, 30]. Indeed, the integrity tensor rate Ḣ is proportional to the

positive part of the real strain tensor instead of the positive part of the effective strain

tensor, as suggested in [8]. The damage criterion is given by:

f = ǫ̂− κ ≤ 0 (48)

where ǫ̂ =

√
tr
(
〈ǫ〉

+
〈ǫ〉

+
)
is the Mazars’s equivalent strain [31] and κ is called the

consolidation function which is linear with respect to tr(H):

κ = κ0 + SRsν (tr(H)− 3) (49)

Here, κ0 is the damage threshold, S the damage strength and s the triaxiality ex-

ponent. The triaxiality function Rν is written in term of the stress triaxiality TX and

bounded by a material constant B as follows:

Rν = min

[
1 + 8

1− 2ν

1 + ν
〈−TX〉

2
, B

]
TX =

tr(σ)

3σeq
(50)
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3.5. Numerical implementation

The integration procedure is quite simple and follows the same steps as the ones

proposed by Desmorat in [8] without the need to compute the effective strain and the

effective stress tensors. The time discretization of the damage evolution equation is

performed using an Euler explicit scheme. One can summarize the integration process

in Algorithm 1.

Algorithm 1: Time integration algorithm to compute the stress tensor σn

Input : strain tensor ǫn, equivalent strain ǫ̂n =
∥∥∥〈ǫn〉+

∥∥∥
2
, κn−1, Rν,n−1 and

Hn−1

Output: stress tensor σn

Hn = Hn−1;

if f = ǫ̂n − κn−1 ≤ 0 then

△λ = 0;

else

tr(Hn) = 3 + ǫ̂n−κ0

SRs

ν,n−1

;

△λ = tr(Hn)−tr(Hn−1)

tr(〈ǫn〉+)
;

κn = ǫ̂n;

end

Hn = Hn−1 +∆λ 〈ǫn〉
+
;

Dn = I −H2
n;

σ+
n = 2µ H

− 1
2

n f+
(
H

− 1
2

n ǫnH
− 1

2
n

)
H

− 1
2

n + λ 3
tr(H2

n
) g

+ (tr (ǫn)) I;

σ−
n = 2µ f− (ǫn) + λ g− (tr (ǫn));

σn = σ+
n + σ−

n ;

TX,n = tr(σn)
3σeq,n

;

Rν,n = min
[
1 + 9

2
1−2ν
1+ν 〈−TX,n〉

2
, B
]
;

With the aim to control the mesh dependency effects, an integral non-local regulariza-

tion approach ([32, 33]) is adopted to ensure numerical convergence to physical solutions.

It consists in replacing the local equivalent strain by its non-local value obtained by av-

eraging over the space domain as follow:
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ǫ̂eq(x) =
1

Vr (x)

∫

V

α0

(
‖x− ξ‖

lc

)
ǫ̂(ξ) dξ (51)

where Vr(x) is given by:

Vr (x) =

∫

V

α0

(
‖x− ξ‖

lc

)
dξ (52)

The quantity Vr is the representative volume and plays the role of a normalizing

coefficient. The function α0 is called the nonlocal weight function which often selected

to be the Gaussian function α0 (ξ) = exp
(
− 1

2ξ
2
)
or bell shaped function [34]. lc is the

characteristic length. As a result, the criterion function is substituted by:

f = ǫ̂eq − κ ≤ 0 (53)

4. Numerical examples

In order to assess the numerical robustness of the proposed model, several tests are

carried out using different cracking functions satisfying the conditions mentioned in sec-

tion 3.1 with less or more regularity properties. In this work, three different opening

cracking functions f+1 , f+2 and f+3 are considered:





f+1 (x) =max (0, x)

f+2 (x) =max
(
0, x exp

(
−
c1
x

))

f+3 (x) =
1

c2
ln (1 + exp (c2x))

(54)

where ci i ∈ {1, 2} are positive constants. It can be checked that the smooth func-

tions (f+2 and f+3 ) are convex by studying the sign of the second derivative. Moreover,

the functions f+2 and f+3 are infinitely differentiable in the neighborhood of 0, unlike

the function f+1 , leading to a smooth tangent modulus when cracks open or to close.

Similarly, we define three closure cracking functions f−1 , f−2 and f−3 as:





f−1 (x) =min (0, x)

f−2 (x) =min
(
0, x exp

(c1
x

))

f−3 (x) =−
1

c2
ln (1 + exp (c2x))

(55)
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4.1. Uniaxial loading path

The first example concerns the classical uniaxial test by considering one multilinear

cubic element of the size equal to the unity. The mechanical properties are selected as

the ones adopted in [8], such as: the Young’s modulus E = 36000 M Pa, the Poisson’s

ratio ν = 0.2 , damage threshold κ0 = 9 × 10−5, the damage strength S = 1.45 × 10−4,

the triaxiality exponent s = 4.9, and the material constant B = 5
3 . The parameters ci

have to be chosen in such a way that the cracking functions are sufficiently close to the

line x 7−→ x, up to a constant. They are chosen such as c1 = 10−10, c2 = 104.

In figure 1(a), the response under tension and compression are shown. We can notice

that the results are consistent with the experimental evidences, in particular, the re-

sponses exhibit a softening behavior with asymmetry between tension and compression.

The failure surface is plotted in Figure 1 (b). It is worth noticing that the same curve

would have been obtained using the Desmorat’s model, since the damage criterion, in

the proposed model, remains unchanged (see section 3.4) and the new model behaves

approximately linearly close to the peak stresses.

[Figure 1 about here.]

The effect of the regularity is shown in Figure 2, for η = 1. The non regular case

is obtained by selecting f+ = g+ = f+1 and f− = g− = f−1 , whereas the regular case

is obtained by selecting f+ = f+2 , g+ = f+3 , f− = f−2 and g− = f−3 . During the

elastic undamaged stage, the behavior is slightly non linear due to the nature of the used

cracking functions. Moreover, the regular functions bring smoothness in the response

with residual strains when unloading, whereas the non regular functions reverse abruptly

the behavior around the origin, from tension to compression, with discontinuous tangent

modulus.

As depicted in Figure 3(a), when the parameter η is modified using the proposed

regular functions, it is seen that thestiffness recovery is influenced by the parameter η .

As expected, the secant modulus is totally recovered for η = 0 and partially recovered

for η = 0.5 and η = 1. The effect of the constant c2 is shown in Figure 3 (b) using

only η = 1. One can notice that the residual strains increase when the parameter c2

decreases. Obviously, this can be explained by the fact that the coefficient associated

29



with the function g−, in the equation (24), becomes more significant than the coefficient

associated with the function g+ when the damage is activated. Thus, the proposed

model gives some flexibility regarding the unilateral effect and the opportunity to include

residual strains.

[Figure 2 about here.]

[Figure 3 about here.]

4.2. Pure distorsion

Regarding the case of a pure distortion loading, the results obtained by the proposed

model are illustrated in Figure 8 using the same parameters as the ones used before and

the following family of cracking functions: f+ = f+2 , g+ = f+3 , f− = f−2 and g− = f−2 ,

for various values of η are used. Despite the fact that the responses are quite different,

it is easy to check that each curve follows an asymptote characterized by a positive slope

equal to (1− η)µ, when the strain increases indefinitely. Especially, the case η = 1 leads

to softening behavior with indefinitely decreasing stresses while the other cases exhibit

softening at the beginning but, sooner or later, the stress stops increasing. Equivalent

results, for the cases η < 1, have been observed by Carol et al. following their proposed

anisotropic model [35]. According to the same authors, this behavior can be explained,

from a physical point of view, by the fact that the increase of compression exceeds the

decrease in tension since the damage is only developed in one direction [36] (like in

the present model). The last case η = 1 exhibits a different behavior compared with

the previous cases but which is similar to the majority of the anisotropic (or isotropic)

damage models proposed in the literature. Because of the lack of experimental results, it

is difficult to decide which of the previous responses is the right one, i.e., with softening

or hardening.

Paying attention to cyclic loading, the results are shown in Figure 5 with restriction

to the case η = 1. It is observed that the stiffness is almost completely recovered when

the direction of loading is reversed after the first softening stage. This result can not

be obtained using isotropic models for which the slope is unchanged after the inversion

of the sign of the loading. For this particular loading case, it can be verified that the

damage and the strain matrices have the same eigenvectors due to the proportionality
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relation entailing that the first principle damage variable D1 grows while the second D2

remains equal to zero during the first loading stage. The roles are reversed when the

strain flows in the negative direction except that D1 is constant but no more equal to

zero.

[Figure 4 about here.]

[Figure 5 about here.]

4.3. Willam’s test

Unlike isotropic damage models, it is well-known that anisotropic models no longer

ensure that the principal directions between the stress and the strain tensors are the

same when the damage starts flowing. In order to investigate this effect, the plane stress

problem proposed by Willam et al. is considered following two loading stages. The first

step consists in applying tensile strain in the x-direction combined with lateral contraction

in the y-direction in the proportions (1, ν) when the peak of the uniaxial stress-strain

law is reached, combination of strain components ǫzz, ǫxx and ǫxz are prescribed in the

proportions (0.5, 0.75, 1).

Figure 6 (a) illustrates the evolution of the different stress components using regular

functions with η = 1 and c2 = 104. Before reaching the peaks, the normal stress responses

are elastic. It is observed that the component σxx exceeds σzz at some point during the

softening response whereas the shear stress evolves with negative values after a small

positive peak with respect to the other components. The response of isotropic models

would be very different regarding the two previous aspects as observed by Carol et al. in

[36], i.e., the shear stress keeps on evolving with positive value and the component σxx

remains always bellow the evolution of σzz.

The evolution of the principal direction angles associated with different quantities are

shown in Figure 6 (b). It is seen that the rotation of the damage principle directions

follows the ones of the strain tensor while the rotation of the stress principal directions is

widely significant. It is interesting to emphasize that similar results have been reported

by Carol et al. in [36]. A similar gap seems to be related primarily to the fact the stress

is recovered by the principal axis that correspond to the stiffer part.
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However, the lack of experimental results remains a major drawback to determine if

the response is physical or not.

[Figure 6 about here.]

4.4. Single edge notched concrete beam

The following test is the three-point bending test. It is carried out using a beam with

a square cross section with height a = 0.07 cm and length equal to 4a. The beam is

characterized by a Young modulus E = 36000 M Pa and a Poisson’s ratio ν = 0.2 . The

parameters related to the damage model remain the same as the ones used in previous

examples. A notch of depth a
2 and thickness e = 3mm has been added in the middle

of the specimen. Progressive displacement is prescribed at the upper center of the beam

with one cycle. The aims is to check whether the model is able to recover the stiffness

when the cracks close.

The numerical analysis is carried out using a plane stress assumption. Figure 7 (a)

illustrates the mesh that is composed of linear triangular elements of the size equal to

5 mm. The characteristic length is lc = 2 cm. The finite element solution is computed

using the non local strategy, using c = 10 mm to avoid the spurious mesh-dependent

effects.

[Figure 7 about here.]

[Figure 8 about here.]

Figure 7 (b) illustrates the response for two different values of η. In the both cases, it

is seen that stiffness recovery occurs with a smooth transition when the loading switches

from tension to compression. As expected, the full recovery is obtained for the case

η = 0, where slope almost equal to the initial one. Contours of the different components

of the damage tensors are shown in Figure 8 at the maximum damage state. From a

quantitative point view, the component D11 describing microcracks density caused by

tensions direction 1 is more significant compared with other components. Especially,

the component D12 is too small. This shows that the crack paths are only developed in

directions 1 and 2.
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4.5. Tensile test for double edge notched concrete specimen

The above developments are also validated in case of a tensile test carried out on a

double edge notched specimen, as described in [37] where the off-set value is restricted

to 10 mm. The mesh, depicted in Figure 9, is composed of linear triangular elements of

the size equal to 5 mm with 672 elements. The characteristic length is lc = 1 cm. The

following test consists in prescribing a displacement on the top of the specimen while the

bottom edge is fixed. The material properties are the same as the ones adopted in the

previous examples.

[Figure 9 about here.]

[Figure 10 about here.]

The load/displacement curves are presented in Figure 9 (b) for different values of η.

After the softening response, it is seen that the initial stiffness slope is completely or

partially recovered with smooth transition according to the choice of η. Once again, the

damage contours, plotted in Figure 10, show that the predominant cracks appear in the

direction 2 and this seems meaningful.

5. Conclusions

A class of damage models based upon the second order integrity tensor has been

developed by means of family of functions called here opening (closure) cracking func-

tions. The unilateral effect is taken into account by a split between the damaged part

and the undamaged (or partially damaged) part, where the transition between open and

close cracking state could be smoothed using the cracking functions. The model has

also the property to introduce irreversible strains during the unloading regime. As re-

quired by the thermodynamic principles, the positivity of the intrinsic dissipation has

been demonstrated rigorously. The Clausius-Duhem inequality is satisfied in the sense

of distributions.

A well posedness result has also been established, for a given damage state where

the damage tensor should be strictly bounded by unity, in the sense of the bound norm,

in the whole domain except in a set of zero measure. The relationship between the
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integrity tensor rate and the damage tensor rate has been analyzed. It turns out that

no equivalence between the rate positivity can be established for a wide class of integrity

tensors frequently used in the literature. Despite this drawback, it has been shown that

the damage principle values could be represented by non decreasing positive functions,

strictly bounded by unity provided that the integrity tensor satisfies some weak positivity

assumptions. The damage flow rule proposed by Desmorat has been adopted in this work

which satisfy all the requirements cited above. The time integration procedure is similar

to the one that proposed by Desmorat. Its implementation does not require to iterate in

order to compute the Lagrange multiplier associated with damage rate. The non-local

approach has also been introduced to limit the mesh dependency effects.

Numerical examples have been performed to demonstate the robustness of the model.

The dissymmetry between tension and compression behaviors has been highlighted using

the uniaxial test. The pure distortion test has shown that the stiffness is almost recovered

when the load is switched from one direction to the opposite one. The Willam’s test

exhibits similar results to the ones obtained in the work of Carol et al.. The last tests

carried out on the notched specimens have shown qualitative results which are similar to

that observed during the experiments.
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Appendix A

A general quadratic form of the elastic potential coupled with anisotropic damage

proposed by Ladevèse [18] for composite materials can be written in term of stress tensor

σ using four damage variable H1 = (I −D1)
1
2 , H2 = (I −D2)

1
2 (Ladevèse’s tensor) and

d1, d2 (scalar) as:

a1tr
(
H1σ

+H1σ
+ +H2σ

−H2σ
−
)
+ a2tr




(
〈σ〉

+
)

1− d1

2

+

(
〈σ〉

−
)

1− d2

2

 (56)

Here, the tensor σ+ (σ−), called the special positive (negative) part of σ, is built using

the eigenvectors and the positive part of eigenvalues of the matrix Hσ which is of course

diagonalisable [18]. In addition, we can show that the relation (56) can be expressed by

other means using solely the positive and the negative part functions. In fact, the matrix

Hσ = H
1
2H

1
2σ is similar to the symmetric matrix H

1
2σH

1
2 (AB and BA are similar for

all matrices A and B), given the positivity of H (not necessary positive definite) and the

symmetry of σ . Using the similarity property, one can notice that:

tr
(
H1σ

+H1σ
+
)
= tr

((〈
H

1
2

1 σH
1
2

1

〉+)2
)

(57)

and:

tr
(
H2σ

+H2σ
+
)
= tr

((〈
H

1
2

2 σH
1
2

2

〉+)2
)

(58)

Therefore, we can observe that the model is also built by means of the equivalent

stress tensor σH = H
1
2σH

1
2 and a specific set of the cracking functions making some

similarities with the model developed in this paper. However, the Ladevèse’s model is

considered inappropriate to predict the behavior of monolithic materials, such as concrete

material, subjected to one damage mechanism [10] for which a single damage variable

has to be used.
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Figure 1: Local responses in uni-axial and bi-axial loading.
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Figure 2: Effect of the regularity of the opening (closure) cracking functions on the uniaxial response.
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Figure 3: Effect of the parameter η and the constant c2 on the uniaxial response.
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Figure 4: Effect of the parameter η on the shear response.
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Figure 5: Shear response for cyclic loading path -proposed model.
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Figure 6: Stress and angle evolutions for Willam’s test using the proposed model.
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(a) Mesh with 917 elements.
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Figure 7: Finite element mesh and reaction curve (three point bending test).
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Figure 8: Damage isovalues for each component.
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(a) Mesh with 672 elements.
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Figure 9: Finite element mesh and reaction curve (Shi’s test).
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Figure 10: Damage isovalues for each component in the neighborhood of the notches (Shi test).
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