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Abstract

In 4th generation nuclear reactors cooled with liquid
sodium, argon micro-bubbles are present in the pri-
mary opaque sodium. Acoustic control methods are
chosen for operating inspections but this bubble pres-
ence greatly affects the acoustical properties of the
medium. It is therefore required to characterize the
micro-bubble cloud, i.e. to provide the volume frac-
tion and the bubble size distribution. Safety author-
ities requires the proposed method to be robust and
applicable with as few assumptions (about the bub-
ble populations) as possible. The objective of this
study is to evaluate the performance of spectroscopic
methods based on celerity and attenuation in the pres-
ence of bubbles whose size and surface contributions
are very different. Two methods of evaluating the
histogram and the void fraction are compared. The
first is based on the inversion of the integral equa-
tion of the complex wave number derived by Com-
mander and Prosperetti[1]. The second, which as-
sumes the populations to have log-normal or sums
of Gaussian distributions, performs an adjustment of
the distribution’s parameters to fit spectral attenua-
tion and celerity curves measurements. These meth-
ods are compared with experimental data obtained
using ACWABUL facilities at CEA Cadarache.

1 Introduction

With increasing energy consumption around the
world, the energy production will be an issue in the
next decades. That’s why the Generation IV Inter-
national Forum has been settle ”to carry out the re-

search and development needed to establish the feasi-

bility and performance capabilities of the next gener-

ation nuclear energy systems.”1

Within this program, France has made the choice to
concentrate its research on the Sodium Fast Reactors
(SFR). Indeed, several SFR prototypes has already
been build in France: Rapsodie (1967 - 1983), Phenix
(1974 - 2009) and Superphenix (1984 - 1997). These

*lilian.d’hondt@cea.fr
1https : //www.gen− 4.org/gif/jcms/c9260/public

reactors have demonstrated the feasibility of this tech-
nology to answer the gen-4 requirements, witch should
be reach within the development of ASTRID2. How-
ever, some issues must be studied for the operation of
ASTRID. One of these is the characterization of the
micro-bubble cloud in the primary circuit.

Due to the Argon gas plenum, a normal and contin-
uous micro-bubble cloud in the primary circuit exists.
These bubbles mainly come from the dissolution of
gas in the hot sodium, and then nucleation within the
colder sodium. Consequently, there is a risk of accu-
mulation and release of large gas pockets which could
affect the core reactivity. Moreover, micro-bubbles
have an impact on boiling, cavitation and the liq-
uid sodium’s acoustic properties are deeply affected.
Here, characterization means at least obtaining the
void fraction τ = gas volume

total volume
and, if possible, the bub-

ble radius distribution. Today, the characterization of
bubbly liquids is a topic of interest in several domains:
oceanography; medicine, with the studies on contrast
agents and decompression sickness prevention[2]; in-
dustry, for example the studies on cavitation[3]... So,
the framework of this article is not restricted to nu-
clear purposes. The interest in bubbly liquids charac-
terization is not new and comes with Medwin [4, 5] in
1970 in order to understand the bubble’s population
on top of the oceans. He used an analytic expression
to get the bubble radius distribution from attenua-
tion measurements. Only the resonant bubbles were
taken into account. This method has been improved
by Caruthers and Elmore [6, 7] who used an interative
procedure to reduce the impact of the approximations
made by Medwin. However, Commander and Moritz
shown [8] that the non-resonant bubbles should be
taken into accounts for better results. This implies
the utilization of numeric methods to solve the in-
tegral equation that links the bubble distribution to
the acoustic properties. The first numeric method
was given by Commander and Moritz [9] and it has
mainly been improved by the team of the Dynaflow
laboratory. Duraiswami and al. [10–14] improvement
mainly arise from the use of velocity measurement in
the inversion process. Leighton [15] also used this
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method and gave a way to determine the regulariza-
tion parameter required for the inversion process.
The aim of this paper is to present a method based

on the spectroscopic measurements of attenuation and
velocity. In the first section, the different equations
for wave propagation in a bubbly liquid will be de-
scribed. The impact of the bubble size distribution is
shown. In a second part, two ways of obtaining the
bubble size distribution will be described: the first
one is by Tikhonov regularization and the other by
fitting procedures. Finally, both approaches are em-
ployed and validated using acoustical and optical ex-
perimental data. However, the acoustic characteristic
of this two medium are similar so a valid method in
water should be efficient in liquid sodium provided
adequate sodium-proof transducers are available.

2 Wave propagation in bubbly

liquids

In this section, the specificities of a pressure wave
propagation in a bubbly liquid are presented. When a
bubble is subjected to a pressure wave, it will oscillate
accordingly to the Keller-Miksis equation [16] :
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2
(

1− Ṙ
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where the different notation are described at the
end of the article, and p∞(t) is the sum of the hydro-
static pressure and the fluctuating acoustic pressure.
This equation is strongly non linear and so, even

at relatively low pressure (> 5kPa), non linear effects
can arise from the wave’s propagation in a bubbly liq-
uid. These non linear properties can be used to char-
acterize bubble clouds [17, 18]. However, it is sup-
posed here that the wave amplitude is sufficiently low
so that the propagation is almost linear. Commander
and Prosperetti[1] have obtained from the lineariza-
tion of the equation (1) the expression of the complex
wave number km associated to a bubble size distribu-
tion: N(a) = (number of bubbles per volume unit with

radius between a and a+ da):

k2m =
ω2

c2
+ 4πω2

∫

∞

0

aN(a)

ω2
0 − ω2 + 2iβω

da (2)

where w0(a) is the resonant pulsation of a bubble
of radius a. Here,

w2
0 =

p0
ρa2

(

Re(Φ)− 2σ

ap0

)

(3)

where Φ is given by equation (27) in Commander and
Prosperetti’s article[1]. Φ quantifies the thermal ef-
fects that affect the bubble pulsation.

u and v are defined such as the complex velocity
cm = ω/km is given by :

c

cm
= u− iv (4)

then, the attenuation A in dB/m and the phase ve-
locity V in m.s−1 are defined by:

A = 20log(e)
(ωv

c

)

(5)

V =
c

u
(6)

Depending on the excitation frequency, attenuation
and velocity exhibits different behaviors.

At low frequencies: When the excitation fre-
quency is much lower than the resonance frequency
of the larger bubble, the bubbly liquid can be approx-
imated by a homogeneous medium[19] of density ρm
and compressibility χm defined by :

{

ρm = (1− τ)ρl + τ.ρg
χm = (1− τ)χl + τ.χg

(7)

and because here:

ρl ≫ ρg and χg ≫ χl (8)

using the general expression for velocity:

c =
1√
ρχ

(9)

we get:

1

c2Wood

=
τ2κ

c2g
+
(1− τ2)

c2l
+τ(1−τ)

(

ρl
p

+ ρgχl

)

(10)

So, at low frequencies, there is a direct relationship
between velocity cWood and void fraction τ . This is
very convenient for void fraction measurement. How-
ever, this method faces some practical problems when
used in experiments. First, if the size the larger bub-
ble is unknown, it is challenging to make sure that
the frequency used is low enough for equation (7) to
be valid. For example, a 100 µm bubble have a reso-
nant frequency around 30 kHz. Secondly, generating
frequencies around few kilohertz can be difficult for
conventional devices and reflections problem can arise
when working in a tank. However, if these issues are
solved, a void fraction as low as 10−6 can generate
a 1% deviation of velocity in water, (15 m.s−1 shift)
(fig. 1).
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Figure 1: Velocity as a function of void fraction for air
bubbles in water calculated using equation (10)
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Figure 2: Impact of the bubble size distribution (a) on
velocity (b) and attenuation (c). The distribution is log-
normal (eq. (15)) with a scale parameter varying of 0.1
(black); 0.3 (blue) and 0.5 (red). τ = 10−4

Around the resonant frequencies and above:

When the excitation frequency is around the bub-
bles resonances frequencies, the attenuation and ve-
locity should be calculated using equations (5) and
(6). Even if the void fraction remains the same, the
dispersion curves are deeply affected by the bubble
size distribution N(a) (fig. 2). In this figure, the
bubble size distribution is simulated using a log nor-
mal distribution. This distribution is representative
of what is expected during the experiments. Here,
only the impact of the distribution’s shape is plotted.
When the shape remains the same, but the void frac-
tion increase, the frequencies impacted remains also
almost the same. However attenuation and velocity
variations are much larger. These behaviors are the
basis of the interest for the bubble’s characterization
by acoustical means.

3 Inversion of spectroscopic

measurements

As seen in the previous section, the dispersion curves
can be strongly affected by any variation of the bubble
size dispersion. In order to evaluate the bubble cloud’s
characteristics from spectral measurements, the inver-
sion of equation (2) is required. In the following, reg-
ularization and fitting procedures are investigated.

3.1 Regularization procedure

By separating the complex wave number (equation
(2)) into real and imaginary parts, Fredholm equa-
tions of the first kind [10] are obtained:

α(f) =

∫ Rmax

Rmin

k(f, a)N(a)da (11)

where α represent the attenuation and velocity mea-
surements; Rmin ≡ 0 and Rmax are the extremum
radii of the bubble cloud. An erroneous choice could
deeply affect the result of the inversion (as shown later
in fig. 10). k(f, a) is the kernel coming from the sep-
aration into real and imaginary part of equation (2)
[10]. When only attenuation is measured, k(f, a) is
proportional to the extinction cross section [8].
Discretization of the equation (11) is performed to

solve:
KN = α (12)

where α is now the vector of measurements: αi =
α(fi); K is the integration matrix and N is now the
histogram of bubble size distribution.
However, the matrix K is badly conditioned, its

singular values are very small, and so, any measure-
ment error in α could result in large mistakes in N .
Thus, equation (12) must be solved by a regulariza-
tion procedure, here the Tikhonov regularization[20]
is employed. This procedure consists in solving:

min
N

(

‖KN − α‖2 + λ2‖N‖2
)

(13)

where λ is the regularization parameter.
The solution of equation (13) is:

N = (KTK + λI)−1KTα (14)

where I is the identity matrix and KT is the trans-
posed matrix of K.
Equation (13) is solved using a quadratic procedure

(quadprog routine in Matlab) to constraint the solu-
tion N as:

� For any radius a, N(a) > 0

� τ < 1 at least, but a more restrictive maximum
void fraction can be used.

� Any other information of interest. For example,
if the void fraction or if the maximum radius of
the bubble cloud is known, this can be added to
improve the solution.

The optimal regularization parameter is determined
using the L-curve method[21] (fig. 3). This paramet-
ric curve represents the solution’s norm versus the er-
ror’s norm for different values of λ. For λ ≪ λoptimal,
the solution’s norm is large but the error ‖KN − α‖
is small and should not vary too much, whereas for
λ ≫ λoptimal, the solution’s norm is small and almost
constant but the error will increase as λ increase. This
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Figure 3: Example of a L-curve used for the determination
of the optimal regularization parameter. Matlab script
written by Hansen [22]

behavior explain the ”L” shape of this curve (fig. 3).
The optimal choice for the regularization parameter
is then at the corner of the ”L”.

The impact of the regularization parameter’s choice
is shown in figure 4. From an arbitrary distribution
(here log-normal), the dispersion curves are calculated
using equations (5) and (6). A normally distributed
random noise is added to these data to simulate exper-
imental conditions. Even using the optimal regular-
ization parameter, it remains some oscillations (fig.
4b). A larger λ could be used to suppress the os-
cillations, but it also underestimates the number of
small bubbles (fig. 4c). This is why, the results are
smoothed after inversion (blues curves on figure 4).

In practical applications, ultrasonic transducers
present a finite bandwidth usually limited to ±50%
of the central frequency. Several transducers can be
used to over the entire frequency range, but as ex-
plained before, it can be challenging to employ fre-
quencies low enough to cover the range of interest. In
fig. 5, the impact of the total bandwidth is shown.
In the first line, the measurement vector α is plotted
versus frequency. The black curve is the theoretical α,
the red stars show the measurements points and the
dashed blue curve is the data calculated from the re-
covered histogram. When enough frequencies around
the resonances frequencies are used, the results are
satisfactory (fig. 5a and 5c). But, as we increase the
minimum frequency of the working spectral interval,
the result deteriorates. In fig. 5c, even if the shape
of the recovered distribution is good, due to the high
radii population ( [150− 250m]), the void fraction is
wrong (tauinv = 2.10−4 vs tauinput = 7.7e−6). More-
over, the optimal regularization parameter should be
≪ 1. So, in fig. 4c, the fact that λ = 0.03 indicates
something is wrong.

Under proper bandwith conditions, this procedure
provides satisfactory results, even with noisy data.
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Figure 4: Impact of the regularization parameter on the
estimation of the bubble size distribution N(a). Dotted
black curve: input distribution. Red dashed curve: result
of Tikhonov regularization. Blue dashed curve: smoothed
curve
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(c) Narrow bandwidth: 30kHz ≤ f ≤ 1Mhz λ = 0.03 τinv =
2.10−4

Figure 5: Impact of the measurement bandwidth -
τinput = 7.7e − 6

However, some oscillations remains and this proce-
dure is dependent in the choice of the optimal reg-
ularization parameter. To overcome these issues, an
other procedure is examined in the next sub-section.

3.2 Fitting procedure

The bubble size distribution in experiments can of-
ten be approximated with common probability den-
sity functions such as the log-normal distribution [23]:

N(a) = C × 1

σ
√
2π

exp

[

− (lna− a0)
2

2σ2

]

(15)

where here σ is a scale parameter and a0 is the mean
radius of the bubble size distribution. To be able to
deal with more complex bubbles clouds, e.g. clouds
with two distinct bubbles size, a sum of multiple
Gaussian can also be used:

N(a) =
∑

i

[

Ci ×
1

σi

√
2π

exp

[

− (a− a0i)
2

2σ2
i

]]

(16)

The correct parameters (σi, a0i, Ci) are calculated
by a least square procedure, that is find the set of
coefficients x = [σ1, a01, C1, ..., σn, a0n, Cn] that solves
the problem:

min
x

∥

∥

∥

∥

F (x, f)−
[

Ameasur

Vmeasur

]
∥

∥

∥

∥

where :

F : (x, f) 7−→
[

Ax(f)
Vx(f)

]

(17)

F is the function that takes the distribution pa-
rameters x and the frequency of measurement vector
f = [f1, ..., fM ] and provides the attenuation and ve-
locity calculated with equations (5) and (6). Ameasur

and Vmeasur are the vectors of attenuation and ve-
locity measured at each frequency fi. The same con-
straints as in equation (13) can be added in the op-
timization routine. An initial value x0 is set to start
the algorithm. If x0 is too different from the solution,
the optimization will not converge. This is the main
drawback of this technique. However, the regulariza-
tion step is no longer required with this method.
An example is plotted fig. 6. In this figure, 5 gaus-

sian has been used to recover a distribution repre-
sented by a log normal distribution. The population
is well recovered excepted in the lower radii. Indeed,
the very small bubbles have a very week impact on
attenuation as their void fraction contribution is very
small. Also, this procedures allows using few measure-
ments points. Moreover, fitting with the log-normal
distribution is fast (≈ 2s) and gives good results when
dealing with distributions close to log normal distri-
butions.

To summarize, the Tikhnov regularization allows
a priori the determination of bubble size distribu-
tion of any shape. However, it requires more data
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Figure 6: Result of the fitting procedures. The thin
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than the fitting procedure to be efficient and the re-
sults depends on the good choice of the regularization
parameter λ because the L-curve can be ambiguous.
To overcome these issues, the degrees of freedoms is
reduced using the assumption of a solution as log-
normal or in sum of Gaussian distribution. However,
dealing with ”complex” bubble size distributions, the
sum of few Gaussian might not be sufficient to fully
describe the bubble cloud. But this can be repre-
sentative of the bubble size expected distribution in
experiments and in the SFRs.

4 Experimental results

The efficiency of the inversions processes detailed
above is evaluated using experimental data acquired
in the ACWABUL3 bench at CEA Cadarache. A sat-
urator over-saturates water in air. Then this over-
saturated water cavitates in the different injectors lo-
cated at the bottom of the tank, which generates sta-
ble air micro-bubbles.
To estimate the phase velocity and attenuation

at every frequency of interest, transmission mea-
surement are performed by sending two sets of M
monochromatic 10-cycles bursts. To cover the entire
frequency range of interest - from 10kHz to 400kHz-
a set of multiple transducer is used. The waveforms
are generated using a function generator Tektronix
AFG 3022B and the oscilloscope is a PicoScope 4824.
Both these devices are piloted by a dedicated Matlab
script to allow fast measurements. The transducers
used are standard ultrasonic transducers.
The first set is sent in pure water. Each burst is

compared to the ones transmitted in the bubbly liquid
(fig. 7).
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Figure 7: Example of bursts received. f = 13kHz

In figure 7, the effect of attenuation and velocity
modification are clear. To estimate attenuation the
root mean square amplitudes of the bursts (RMS) are
compared. In the same way, to evaluate the velocity,
the time shift ∆tcorr between the bursts is determined
by cross correlation.

Ameasur = 20 log
[

RMSm

RMSl

]

Vmeasur =
d

d

cl
+∆tcorr

(18)

where d is the distance between the emitter and the
receiver and ∆tcorr is the time shift measured by cor-
relation between the signals with and without bub-
bles.

To validate our results, an optical device is em-
ployed simultaneously. Several pictures of the clouds
are taken during the experiments (fig. 8a). Then, a
dedicated algorithm estimates the bubble size distri-
bution (fig. 8b) and the void fraction. The void frac-
tion estimation is achieved by estimating the blurring
level on each bubble in order to estimate its distance
from the focal plan of the camera. Then, a volume
of measurement is delimited and the void fraction is
estimated. This optical void fraction measurement
relies on a correct calibration procedure and requires
that the bubbles are all detected and properly mea-
sured. In practical, some bubbles may hide other ones
and conversely, a dust for example can be treated
as a bubble. Then, the optical measurement is lo-
cal, whereas the volume scanned by acoustics is much
larger. These can partially explain the bias between
the void fractions measurement. In all case, the op-
tical measurement of the void fraction provides an
estimation of the true void fraction.

Spectroscopic measurements of attenuation and ve-
locity are performed on the same bench. The optical
device is also set inside the bubble clouds, as close as
possible to the acoustic transducers. Both regulariza-
tion and fitting methods run on the same acoustical
data (fig. 9). However, due to the strong attenuation
(≃ 80dB.m−1 at resonance), the velocity measure-
ments where not exploitable. The is why the inversion
is only performed on attenuation data.
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(a) One picture of the clouds and the bubbles detected. The
void fraction is estimated to be around 1.4× 10−4
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(b) Optical histogram obtained after treatment

Figure 8: A picture of the cloud and the histogram asso-
ciated
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Figure 9: Experimental attenuation and attenuation ob-
tained by fitting

For the Tikhonov regularization, the maximum in-
tegration radius Rmax is chosen to produce better L-
curve which is the one with the sharpest corner, and
the straightest lines. For the L-curves depicted figure
10,the best is for Rmax = 200µm. This part of the
procedures isn’t automated as it allows some man-
ual adjustments, for example it allows the selection of
a better regularization parameter than the one pre-
dicted by the algorithm when the L-curve is ambigu-
ous.

The full results are presented in figure 11. For
better visibility, the various distribution obtained are
normalized. Indeed, the Tikhonov procedure may give
some big bubbles populations which scale down the
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Figure 10: Several L-curves for different maximum radius
of integration Rmax.

histogram without changing the void fraction. In-
deed, the remaining oscillations have a strong impact
on void fraction when they concern bigger bubbles.
A fitting is also made on these data. The figure 9
shows that the measured attenuation and the fitted
one correspond each other nicely.
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Figure 11: Experimental results. The distribution are nor-
malized for better visibility.

The void fraction obtained by all the methods are of
the same order of magnitude. The shape of the distri-
butions are also similar. The remaining biases can be
explained for different reasons. First, the lack of the
velocity information can induce some discrepancies
between the different curves. The optical device’s res-
olution limits the histogram reconstruction to 10µm,
and confident values are certainly reached at about
20µm. Then, the inversion is dependent on the prop-
agation model used. Here, the model by Comman-
der and Prosperetti is employed. And, as the authors
showed, there are some discrepancies between the the-
oretical and experimental data, especially around the
resonances frequencies. Despite these small disagree-
ment , the overall distributions and void fraction are
really close to each others, providing confidence on
the procedures.

5 Conclusion

In order to provide the bubble size distribution (and
the void fraction) from attenuation and velocity mea-
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surements, a way to invert the complex wave num-
ber is proposed. Two methods based on Tikhonov
regularization and fitting procedures are presented.
The limits and performances of both methods are an-
alyzed numerically and validated experimentally. It is
shown that the Tikhonov regularization is efficient to
characterize bubble clouds if a correct regularization
parameter is chosen and enough data are provided.
But it can be difficult to provide these latter. Indeed,
the transducer have a limited bandwidth and the L-
curve is sometimes ambiguous. So, an other method
has been set up. The bubble size distribution is ap-
proximated as being log-normal or multi-Gaussian, as
the bubble size distribution is expected to look like
in ASTRID. Then, a fit of the experimental data is
made. So, no regularization parameter is longer re-
quired and because there are less degree of freedom is
than with the regularization procedure, less data are
needed.

Future studies will aim at improving the experi-
mental setup in order to be able to use the velocity
in the inversion. Moreover, as the range of radii isn’t
known a priori for practical application in SFRs, the
frequency range used is just a guess and it might not
be sufficient. The addition of new data in the inver-
sion, such as nonlinear parameters, are also currently
considered to improve the reliability of these methods.

Symbols

� Subscript ’0’ denote the initial or equilibrium
value.

� Subscript ’m’ denote the mixture value.

� Subscript ’g’ denote the gas value.

� Subscript ’l’ denote the pure liquid value.

Same symbol can be use for different meaning, but
this should not raise any confusion in the equation.

Symbol Name

ρ Density
c Velocity
cWood Low Frequency Velocity
R Bubble radius
σ Surface tension constant
σ scale parameter of the distribution law
pv Vapor pressure
κ Polytropic constant
µ Total viscosity [24]
β Damping constant
A Attenuation in bubbly liquid
V Phase Velocity in bubbly liquid
τ Void fraction
χ Compressibility
λ Regularization parameter
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