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Abstract:

We investigate in this paper analytically and numerically by means of 3D simulations the 

viscoelastic behavior of concrete and mortar subjected to creep loading and moderate temperatures 

at mesoscale. These heterogeneous materials are assumed to be composed of thermoelastic 

aggregates distributed in a linear thermoviscoelastic matrix; moreover, the Interfacial Transition 

Zones (ITZ) between aggregates and matrix, whose behavior is also considered as linear 

thermoviscoelastic, are explicitly introduced. The numerical specimens consist in unstructured 

periodic meshes containing polyhedral aggregates with various size and shapes randomly 

distributed in a box. Zero-thickness interface finite elements are introduced between aggregates 

and matrix to model the ITZ. Macroscopic response and averaged stresses and strains in the matrix 

and aggregate phases are compared to analytical estimations obtained with classical mean-field 

approximation schemes applied in the Laplace-Carson space, in which the ITZ are introduced via 

imperfect interfaces modelled with the Linear Spring Model (LSM). The effects of ITZ thickness, 

aggregate shape and uniform temperature increase are then studied to evaluate their respective 

influence on the local and macroscopic creep behavior of mortar and concrete. Globally, it is found 

that the model response is in relatively good agreement with numerical simulations results, and 

that as expected while the ITZ do not affect significantly the concrete behavior, they have a non-

negligible impact on the mortar one.

Keywords: 3D finite element simulations; concrete and mortar behavior; linear 

thermoviscoelasticity; analytical homogenization; Interfacial Transition Zone; imperfect 

interfaces.
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1 Introduction
When considering concrete structures in the nuclear context (i.e. containment building, waste 

storage structures…), two main functions have generally to be guaranteed: containment and 

protection against radionuclide migration. The constitutive material must then meet high 

requirements in terms of performance and durability. In particular, loss of containment abilities 

due to long-term creep and induced development of cracks shall be prohibited. It is well known 

that concrete is a heterogeneous material made up at the mesoscale of linear elastic aggregates 

distributed in a mortar matrix whose behaviour is time-dependent. Besides, the presence of an ITZ 

(Interfacial Transition Zone) constituted by a thin interface between the aggregates and the matrix 

is known to also influence the overall behaviour, due to its lesser mechanical (and higher transport) 

properties, see e.g. [1–4]. It is then of particular importance to correctly characterize the respective 

role and impact of both phases and ITZ regarding the creep strains, since the initiation and 

propagation of cracks are strongly related to the local stresses and strains states as well as their 

history. 

In the literature, while a number of numerical studies address the problem of the effects of ITZ 

influence in cementitious materials in elasticity (e.g. [5,6]), less are developed in a viscoelastic 

framework, at least partly due to the resulting more complex formulation. From the theoretical 

viewpoint, numerous approaches for estimating mechanical as well as transport properties of 

cementitious materials including ITZ are based on an explicit representation of the interface and 

the use of analytical homogenization techniques such as the self-consistent scheme to upscale the 

physical properties, see e.g. [1,7–10]. However, if such developments are relatively well adapted 

to the case where the interface thickness is moderately low (i.e. mortars), they appear by contrast 

less satisfactory for concretes since the ratio of respective size between the interfaces and 

aggregates ranges from 2 to 3 orders of magnitude. Models devoted to thin interfaces, i.e. 

accounting specially for the small size of the interface with respect to the inclusion one, are 

comparatively more suited to the case of ITZ surrounding aggregates and coarse sand particles. In 

particular, the resulting imperfect interfaces whose material properties are lower than the inclusion 

ones may be properly approached by the Linear Spring Model (LSM) developed by e.g. [11–13]. 

This model describes the displacement jump across the interface as a function of the normal stress 

(assuming the stress jump is zero) via rigidity coefficients estimated with simple expressions 

involving the interface mechanical properties and its thickness . Such model has been h

successfully applied to the simulation of imperfect interfacial debonding [14] and thin and 

compliant interfaces (e.g. [13,15]). 

Numerically, the study of interface effects in diverse situations has also generated interest among 

the research community (see e.g. [6,16]). The advantages of numerical simulations are that they 
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allow considering in the material samples various and more complex configurations regarding 

aggregate shapes and sizes, including possible different ITZ thicknesses and mechanical 

properties, which cannot be reached in general analytically. Also, local analyses of physical fields 

(strain, stress, temperature, etc.) can be performed so as to quantify statistical information as 

dispersion in aggregates, ITZ and matrix subvolumes, contrary to analytical upscaling schemes 

which are mostly limited to per-phase averaged quantities. Diverse methods have been applied to 

solve the problem of heterogeneous materials including interfaces: among others, one can cite the 

classical finite element method (FEM) [17,18], lattice models [19–21], XFEM/level set methods 

[22,23], and FFT-based methods [3]. We note that in some of these references, interfaces are 

explicitly introduced without the recourse of special elements or procedures, meaning that the 

results directly depend on the spatial resolution/discretization of the material. Some other methods 

make use of homogenized zones encompassing ITZ to avoid their explicit introduction. 

Interestingly, a number of studies have emphasized the interest of specific interface elements for 

describing fracture processes in addition to ITZ effects in cementitious materials via cohesive-

zone models, see e.g. [24–26]. 

In this paper we investigate analytically and numerically the thermoviscoelastic behavior of 

concrete and mortar at mesoscale, with a particular focus on the effects of ITZ. One purpose of the 

study is to test the capacities of simplified analytical models based on classical estimation methods 

against computation results performed on numerical samples expectedly (much) more 

representative of such concrete and mortar materials. Specifically, the simulations are carried out 

by applying the FEM on 3D specimens consisting in polyhedral aggregates of various sizes and 

shapes randomly distributed in a box. We make use of previous developments and procedures to 

generate mesoscale numerical samples and to perform computational analyses [27–30]. The matrix 

and ITZ phases are considered as linear thermoviscoelastic materials ruled by different generalized 

Maxwell models. Specific interface elements are introduced between the aggregates and the matrix 

to simulate the ITZ, whose behavior is characterized by the LSM extended to the 

thermoviscoelastic case. These interface elements are considered to be very well suited for this 

purpose, and are one good reason to carry out FEM simulations, though it should be noticed that 

alternative methods may be more efficient than FEM for general numerical simulations (i.e. 

without interfaces) of representative element volumes (REV), see e.g. [31]. Note that the 

aggregates in the placement procedure are not allowed to intersect each other by construction, so 

that possible ITZ percolation effects are not reproduced; this is also the case for the analytical 

model since the microstructure representation takes only into account separate inclusions.
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A particular attention will be put on the analysis of the overall and intra-phase response of the 

numerical specimens when subjected to classical creep and heating loadings. In particular, the 

evolution of averaged stresses and strains in the matrix and aggregate phases will be reported and 

compared to the analytical estimations obtained with different mean-field approximation schemes 

applied in the Laplace-Carson (LC) space. The influence of the ITZ thickness on the overall and 

local response of the specimens will also be studied. We expect recover the quantitative results 

highlighting the much more importance of ITZ in mortar behavior than in concrete one. 

Further, the impact of the aggregate shape on both local and macroscopic response will be analyzed 

through different mesostructures with flat and elongated particles. Finally, a local analysis 

regarding the evolution of the mean stresses and strains in each aggregate and in matrix 

subvolumes will be performed so as to quantify their dispersion.

2 Linear viscoelastic modelling
As mentioned in the introduction, we are concerned in this paper with the analysis of the 

thermoviscoelastic behavior of concrete with a special focus on the effects of the ITZ. In this 

section the models used for the viscoelastic formulation are recalled, while the extension to the 

thermoviscoelastic case is detailed in section 5.

2.1 Matrix behavior
The behavior of the matrix material is assumed to be linear viscoelastic, with bulk  and shear 𝑘𝑚(𝑡)

 moduli ruled separately by a generalized Maxwell model with  elements (see Figure 1   𝜇𝑚(𝑡) 𝑁 + 1

for the representation of a Maxwell model with the element labelled as 0 composed only of a 

spring) as: 

𝑘𝑚(𝑡) = 𝑘𝑚
0 +

𝑁

∑
𝑖 = 1

𝑘𝑚
𝑖 𝑒

‒
𝑡

𝜏𝑚
𝑖 ,  𝜇𝑚(𝑡) = 𝜇𝑚

0 +

𝑁

∑
𝑖 = 1

𝜇𝑚
𝑖 𝑒

‒
𝑡

𝜏𝑚
𝑖

(1)

in which  and  with  are the elastic moduli of the Maxwell elements,  are their 𝑘𝑚
𝑖 𝜇𝑚

𝑖 𝑖 ∈ {0,𝑁} 𝜏𝑚
𝑗

relaxation times,  is the number of viscoelastic elements. It is assumed to simplify that  and  𝑁 𝜏𝑚
𝑗 𝑁

are the same for both moduli, but it is not strictly mandatory. Accordingly the behavior law takes 

the form:

𝝈𝑚(𝑡) = 3

𝑡

∫
0 ‒

𝑘𝑚(𝑡 ‒ 𝜏)
𝑑𝜖𝑚

𝑑𝜏 𝑑𝜏𝟏 + 2

𝑡

∫
0 ‒

𝜇𝑚(𝑡 ‒ 𝜏)
𝑑𝒆𝑚

𝑑𝜏 𝑑𝜏 (2)
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with ,  and  the macroscopic stress tensor, bulk and deviatoric part of the  𝝈𝑚(𝑡) 𝜖𝑚 = 1 3tr(𝜺𝑚) 𝒆𝑚

strain tensor  of the matrix, respectively;  is the second-order identity tensor..𝜺𝑚 𝟏
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Figure 1. Representation of a Generalized Maxwell model with N+1 elements.

It is well-known that in the case of linear viscoelasticity the time-dependent problem may be 

equivalently reformulated as a linear elastic problem in the Laplace-Carson (LC) space, allowing 

to applying classical upscaling techniques (see e.g. [32–35]). We recall that the LC transform  𝑓(𝑠)

of a function  takes the following form:𝑓(𝑡)

𝑓(𝑠) = 𝑠∫∞

0
𝑒 ‒ 𝑠𝑡𝑓(𝑡)𝑑𝑡 (3)

with  the variable in the LC space. One advantage of this transformation is to replace the time 𝑠

integral formulation (2) by an equivalent elastic-like formulation in the LC space as:

(4)𝝈𝑚(𝑠) = 3𝑘𝑚(𝑠)𝜖𝑚𝟏 + 2𝜇𝑚(𝑠)𝒆𝑚

This procedure is referred to as correspondence principle. The expressions of  and  𝑘𝑚(𝑠) 𝜇𝑚(𝑠)

obtained from (3) take the following simple form:

𝑘𝑚(𝑠) = 𝑘𝑚
0 +

𝑛

∑
𝑖 = 1

𝑘𝑚
𝑖

𝑠

𝑠 + 1 𝜏𝑚
𝑖

,  𝜇𝑚(𝑠) = 𝜇𝑚
0 +

𝑛

∑
𝑖 = 1

𝜇𝑚
𝑖

𝑠

𝑠 + 1 𝜏𝑚
𝑖

(5)

As it is well known, one drawback with the LC transform technique is to obtain the inverse 

transform in the time space of the formulation expressed in the LC space. Diverse methods have 

been developed for this purpose, see e.g. [36,37]. Here we will make use of the classical numerical 

inversion technique known as collocation method, which proposes to approximate the functions 

as Prony (or Dirichlet) series, for they take a particularly simple and tractable form (analytically 

and numerically) in both LC and time space (see e.g. [38,39]). Interestingly, it is shown in [40] 

that in the particular case of the Mori-Tanaka (MT) scheme and spherical particles, exact or semi-

analytical solutions of the inversion problem can be derived, leading to expressions in the time 

space also in the form of Prony series. 
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Whatever the method used to carry out the inversion of the LC transform, the macroscopic 

behavior may then take the form of a linear viscoelastic material:

𝝈(𝑡) = 3

𝑡

∫
0 ‒

𝑘ℎ𝑜𝑚(𝑡 ‒ 𝜏)
𝑑𝜖
𝑑𝜏𝑑𝜏𝟏 + 2

𝑡

∫
0 ‒

𝜇ℎ𝑜𝑚(𝑡 ‒ 𝜏)
𝑑𝒆
𝑑𝜏𝑑𝜏 (6)

where the same notations as in Eq. (2) has been used;  and  denote the homogenized bulk 𝑘ℎ𝑜𝑚   𝜇ℎ𝑜𝑚

and shear moduli, which are then expressed in the form of Prony series as defined in Eq. (1) but 

with possibly a different number of viscoelastic chains and associated characteristic times for both 

moduli. 

2.2 Interface modelling
As mentioned above, the behavior of the material composing the interfaces between the 

aggregates and the matrix is assumed to be ruled by generalized Maxwell models. The ITZ being 

very thin with respect to the aggregate size, we propose in this study to represent them by 

imperfect interfaces. Such approach is relatively simple and suits well with a finite element 

(FE) implementation with specific interface elements. In concrete and mortar, the mechanical 

properties of the ITZ are known to be more compliant than those of the matrix and aggregates; we 

then chose to apply the LSM in the LC space to simulate the interface effects. The interface 

conditions for the LSM in the LC space are (e.g., [11,41,42]):

(7)[𝝈].𝒏 = 0,  𝐤.[𝒖] = 𝝈.𝒏

where , ,  are the unit normal vector to the interface, the second order tensor characterizing the 𝒏 𝐤 𝒖

elastic parameters in the LC space, and the displacement (see Figure 2);  denotes the jump of [ ∙ ]

the corresponding quantities. Eq. (7) expresses that the normal stress (or traction) is continuous 

while the displacements exhibit a jump across the interface. For infinite values of the parameters, 

the interface displacement jumps vanish, leading to a perfect bonding interface, whereas zero 

values entail zero interface tractions and consequently debonding of matrix and inclusions. 

Intermediary positive values of these parameters then characterize an imperfect interface [12].

𝒏

matrix

inclusion

ℎ
𝒕

interface

Figure 2. Schematic representation of a thin interface between an inclusion and the matrix.
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In the case where the interface is thin and compliant with respect to the inclusion:

(8)ℎ ≪ 𝑅𝑖, 𝐸𝑐 ≪ 𝐸𝑖, 𝜇𝑐 ≪ 𝜇𝑖

with  the thickness of the interface,  the radius of the spherical inclusion,  and  the Young ℎ 𝑅𝑖 𝐸𝑐 𝜇𝑐

and shear moduli of the interface,  and  the Young and shear moduli of the inclusion, the tensor 𝐸𝑖 𝜇𝑖

 can be expressed as  with:𝐤 𝐤 = 𝑘𝑛𝒏⨂𝒏 + 𝑘𝑡𝒔⨂𝒔 + 𝑘𝑡𝒕⨂𝒕

𝑘𝑛 =
2𝜇𝑐(1 ‒ 𝜈𝑐)
ℎ(1 ‒ 2𝜈𝑐) , 𝑘𝑡 =

𝜇𝑐

ℎ (9)

in which  and  are the two orthogonal unit vectors in the tangent plane of the interface and  is 𝒔 𝒕 𝜈𝑐

the Poisson ratio of the interface. In the following, we will retain this model for characterizing the 

properties of the interfaces in both FE simulations and analytical models, providing  and  are 𝑘𝑛 𝑘𝑡

expressed in the LC space. 

In order to evaluate the response of the LSM in the particular case of ITZ where the conditions 

regarding the mechanical properties in Eq. (8) are only approximately filled, we also propose to 

apply a more sophisticated approach recently derived in [43]. In this approach, both interfacial 

displacement and traction discontinuities occur, i.e. Eqs. (7) are no more valid. This means in 

particular that the conditions involving the mechanical properties of the inclusion and interface in 

Eq. (8) need not to be satisfied. The model then includes the LSM as a special case. As its 

formulation is relatively complex and the obtained expressions lengthy, they are not recalled here 

and the reader is invited to refer to [43] for the details of the developments.

2.3 Analytical homogenization with interfaces
By construction, the heterogeneous materials considered in this study exhibit composite 

inclusions composed of the aggregates and their surrounding imperfect interfaces of zero 

thickness. Consequently the classical mean-field homogenization schemes cannot directly be 

applied, even in the LC space. We then propose to estimate the overall properties of the 

heterogeneous material by first making use and extending to the linear viscoelastic case the 

approach due to [12,41], based on a replacement procedure. In this approach, the elastic spherical 

composite inclusions are replaced by energetically equivalent homogeneous spherical inclusions 

(see Figure 3) assumed to be perfectly bonded to the matrix. To be more precise, the procedure 

consists in substituting an infinite elastic matrix containing an imperfectly bonded spherical elastic 

inclusion of radius  by the same infinite matrix comprising a perfectly bonded equivalent 𝑅𝑖

inclusion of radius , providing that the elastic energy of both systems is equivalent. The obtained 𝑅𝑖

expressions of the moduli  and  for these equivalent particles depend then on both inclusion 𝑘𝑒𝑞 𝜇𝑒𝑞
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and interphase properties; they take the following form (see [41] for details about their formulation, 

which is beyond the scope of this paper): 

𝑘𝑒𝑞 =
𝑚𝑟𝑘𝑖𝜇𝑚

3𝑘𝑖 + 𝑚𝑟𝜇𝑚
 (10)

𝜇𝑒𝑞 =
𝜇𝑖(24𝑀𝑚𝜃 + 𝑚𝑟(16𝑀 + 𝑚𝜃𝑁))

80𝑔3𝑀 + 4𝑔3𝑚𝜃(10(7 ‒ ν𝑖) + 𝑀) + 𝑚𝑟(2𝑔3(140 ‒ 80ν𝑖 + 3𝑀) + 𝑚𝜃𝑁) (11)

with , , ,  and . In these 𝑀 = 𝑔3(7 + 5ν𝑖) 𝑁 = 5(28 ‒ 40ν𝑖 + 𝑀) 𝑔3 = 𝜇𝑖 𝜇𝑚 𝑚𝑟 = 𝑘𝑛𝑅𝑖 𝜇𝑚 𝑚𝜃 = 𝑘𝑡𝑅𝑖 𝜇𝑚

relations the indexes  and  relate to the matrix and inclusion phases, respectively. Since these 𝑚 𝑖

formulas are established in an elastic framework, they are applied here in the LC space. 

As mentioned in the previous subsection, a second approach in which the imperfect interfaces 

exhibit simultaneously interfacial displacement and traction discontinuities will also be applied 

[43]. In this reference, the same procedure as in [12,41] is employed to replace the composite 

inclusions by an equivalent homogeneous one in an energetic sense. Again, as the expressions 

providing the moduli  and  of these equivalent spherical particles are very complicated and 𝑘𝑒𝑞 𝜇𝑒𝑞

lengthy, they are not developed here (see [43] for details). 

Once the composite inclusions are substituted by equivalent homogeneous ones, classical 

homogenization methods as the MT [44] or generalized self-consistent scheme (GSCS, [45,46]) 

may be applied to obtain the overall properties of the material. In the numerical applications, we 

will make use essentially of the GSCS which is known to give satisfying estimations even for 

relatively large inclusion volume fractions (see e.g. [12]). As this scheme is well-known, its 

formulation is not recalled here.

matrix

inclusion

ITZ

≡
Equivalent
inclusion 

𝑘𝑒𝑞,𝜇𝑒𝑞

Figure 3. Description of the replacement procedure [41].

Note that in the alternative approach where the interfaces are modelled explicitly by a non-

zero thickness phase surrounding the inclusions (Figure 3 left), the GSCS can be directly 

applied to the corresponding 3-phase microstructure. This scheme will be compared to the 

estimations obtained with the zero-thickness interface approach detailed above in section 4. 
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3 FE numerical applications
3.1 Mesostructure generation
The procedure for constructing the numerical cubic samples is detailed in [28,47]. The open-source 

python library Combs [47] based on the Computer-Aided Design code Salome (http://www.salome 

-platform.org) is used to generate both geometry and meshes of the mesostructures. Basically, the 

geometries are obtained by randomly distributing in a box polyhedral aggregates of various sizes 

and shapes obtained independently by a classical Voronoi space decomposition [28]. Note that 

any types of aggregates may be considered in this process; for instance real aggregates 

obtained by tomography (see e.g. [48]) may also be introduced in the box. A minimal distance 

between two particles is prescribed by the user to avoid any interpenetration. As such, since the 

ITZ are modelled by zero-thickness interface elements, possible percolation effects are not 

considered. To improve the placement procedure time, the GJK 3D algorithm has been 

implemented in Combs for fast polyhedrons distance computation (see e.g. http://www.dyn4j.org/ 

2010/04/gjk-distance-closest-points). The periodicity of the numerical samples is imposed so as to 

allow applying periodic boundary conditions. The automatic meshing softwares developed by 

Distene (http://www. meshgems.com/) are then used to generate the unstructured periodic meshes, 

with triangles for the surfaces (MeshGems-CADSurf) and tetrahedral elements for the volumes 

(MeshGems-Tetra). As mentioned in the introduction, this procedure has been applied in diverse 

situations for creating cementitious materials REVs or microstructural elements of concretes 

exhibiting a free surface exposed to the atmosphere [27–30]. 

In the following applications, we will consider two configurations of mesostructures, for 

describing concrete and mortar, respectively. They differ in fact only through their aggregate 

volume fraction. One reason is that it is not possible to generate samples with particles ranging 

from coarse aggregates to fine sand grains with a reasonable size in terms of number of elements 

and nodes. Then to limit the FE computation time and the placement procedure, the choice of 2 

configurations with 872 and 4627 aggregates has been retained. These 2 configurations are 

assumed to represent concrete and mortar with a total volume fraction of 0.40 and 0.50, 

respectively. The number and volume of the aggregates are defined to match approximately the 

ones of the corresponding spheres assembly according to the sieve curve described in [28]. The 

length edge of the samples is set to 120 and 24 mm for the concrete and mortar, respectively. 

Accordingly, the mean aggregate radius of an equivalent sphere assemblage is calculated as 3.55 

and 1.05 mm, respectively. Moreover, the samples with 40% of aggregates will also serve to 

analyze the effects of the boundary conditions (BC), see section 3.3.1. This particular analysis 

has indeed not been possible with the greater size meshes (50% of aggregates) due to the 

memory limitation of the simulation PC-Linux machines available (currently 128 Go RAM, 
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whereas 256 Go would be necessary to achieve these larger computations). The simulations 

are performed with the parallelized Cast3M FE code (www-cast3m.cea.fr) developed at 

CEA. Note that the total number of aggregates in the samples is systematically greater than the 

prescribed one since the aggregates overlapping the surfaces of the mesostructures are cut and the 

remaining parts are placed on the opposite faces to ensure periodicity of the geometry. To evaluate 

the effects of the aggregates shape, some mesostructures are generated with the initial Voronoi 

aggregates (denoted as ‘isotropic’ in the following), and others exhibiting flat and elongated 

inclusions. These flat and elongated aggregates are obtained by applying a scale transform of 3 to 

4 on the initial aggregates along one or two perpendicular axes randomly defined. 

  40%  
Flat, aspect ratio = 4 Elongated, aspect ratio = 4

  50%  
Isotropic Flat, aspect ratio = 3

Figure 4. Sample realizations with 40% (top) and 50% (bottom) aggregate volume fraction, with isotropic, 
flat and elongated Voronoi particles.

As a consequence the volume fraction and corresponding number of aggregates are conserved for 

all mesostructures. Before being placed, the inclusions are rotated with a random angle around an 
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axis also randomly defined. The Figure 4 presents sample realizations with the 40% (top) and 50% 

(bottom) aggregates volume fraction, respectively, and with isotropic, flat, and elongated particles. 

A mesostructure with 872 spherical inclusions representing 40% of volume fraction (i.e. identical 

to the corresponding Voronoi aggregate cases) is also generated for comparison.

For the numerical results to be comparable, the meshes are constrained to have a similar size for 

each of the two volume fractions considered. Here the number of linear tetrahedral finite elements 

ranges from 2.23 to 2.37×106 and 3.71 to 4.21×106, for the 40% and 50% volume fraction 

mesostructures, respectively. The element size is controlled in the automatic meshing procedure 

by imposing globally the maximum length of the sides of the triangles composing all surface 

elements, i.e. interfaces and sample boundaries; it is chosen as 0.02 times the sample edge 

length. Moreover a ‘gradation parameter’ allows prescribing the maximum ratio between the 

lengths of the sides of two adjacent surface elements (triangles), set here to 1.3. 

3.2 Parameters
The material parameters of both matrix and aggregates are taken the same as in [30]. The Young 

modulus of the aggregates is set to  = 70 GPa and its Poisson ratio to  = 0.3. The parameters of 𝐸  𝜈

the Maxwell models are identified on a classical concrete creep test [49], assuming that the 

material is composed of the linear viscoelastic matrix in which are distributed 65% of spherical 

aggregate (no ITZ are considered), and applying the MT scheme to the resulting two-phase 

composite. The number of viscoelastic elements in the Maxwell models is set to  in Eq. (1), 𝑁 = 3

and the relaxation times are chosen in accordance with the duration of the creep tests (300 days). 

The parameters characterizing these models are listed in Table 1. It should be noted that to 

simplify, the parameters of the matrix phase are kept the same for the two configurations, i.e. 

mortar and concrete, although they are in reality different. Without relevant experimental data 

on mortar, we have indeed considered somewhat artificial to perform an identification 

procedure for the mortar using the numerical non-consolidated data obtained from concrete 

matrix identification. Moreover, we believe that this choice does not affect the main features 

regarding analytical vs computational comparison results which are the focus of this study.

Table 1: Maxwell models parameters characterizing the matrix phase

Element 0 1 2 3
 (GPa)𝒌𝒎

𝒊 6.27 2.93 4.21 6.93

 (GPa)𝝁𝒎
𝒊 3.41 7.77 3.54 3.32

 (days)𝝉𝒎
𝒊 2 20 150
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The ITZ mechanical properties have been estimated from the ones of the matrix by assuming that 

it is basically composed of this matrix phase, in which an additional porosity is incorporated. 

With the hypothesis that these supplementary pores are spherical, the MT scheme is then applied 

to obtain the homogenized properties of the corresponding interphase. The Figure 5 shows the time 

evolution of both bulk  and shear  moduli of the ITZ for several values of additional porosities 𝑘𝑐 𝜇𝑐

 ranging from 0 to 40% of volume fraction. We observe as expected that the moduli are lower 𝜙𝑎𝑑

for higher porosities. In the following we adopt the value of , which is a value close to 𝜙𝑎𝑑 = 30%

the one commonly reported in the literature, see e.g. [1,2]. Note that this value  provides 𝜙𝑎𝑑 = 30%

moduli of about half the ones of the matrix phase, as reported in e.g. [50]. With such parameters, 

the behavior of the ITZ complies with the condition of applicability of the LSM defined in Eqs. 

(9), i.e. its mechanical properties are lower than the ones of the inclusions. The simplification 

regarding the fact that the matrix behavior is assumed the same for the 40% and 50% aggregate 

configurations implies that the ITZ properties are also the same in the two cases.

    

Figure 5. Time evolution of the bulk (left) and shear (right) moduli of the phase composing the ITZ, for 
different additional porosity volume fraction .𝝓𝒂𝒅

3.3 Results with the 40% aggregate mesostructures
We present in this section the results obtained in the case of the 40% aggregate volume fraction 

mesostructure. The main objectives are to analyze the effects of the BC and of the aggregate shape 

on the simulation results, in comparison with the analytical approach. To illustrate the potential 

role of the interfaces in the results, the different following values of interface thickness are 

considered =0.2, 2, 5, 10 and 20 µm. A calculation with no interfaces between aggregates and ℎ

matrix is also carried out to control the relevancy of the results with smaller thicknesses. The 

loading corresponds to a typical creep test, defined by a constant normal stress of -25.8×106 Pa 
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applied on the sample surfaces in the direction x and zero stress in the other directions (see Figure 

4). The computations are performed on a standard Linux machine with 20 cores and 128 Go RAM. 

The total simulated time is 300 days, reached in 32 time steps. The mechanical models for both 

matrix and interface materials have been implemented via the MFront code generator 

(www.tfel.sourceforge.net) developed at CEA [51]. Briefly speaking, MFront provides a set of 

domain specific languages for handling mechanical behaviors, which are meant to be easy to 

use and learn by researchers and engineers. A particular attention is paid to the robustness, 

reliability and numerical efficiency of the generated code. Moreover, MFront interface 

allows to generate code to be plugged in various software environments (languages or solver).

3.3.1 Effects of boundary conditions
We focus in this subsection on the particular effects of the BC on the simulation results, which are 

known to affect them depending in particular on the RVE size and the phase contrast, see e.g. 

[31,52]. Three classical types of boundary conditions are considered in the simulations: 

homogeneous strains KUBC and homogeneous stresses SUBC, which provide bounds for the 

isotropic moduli of numerical samples in elasticity (see e.g. [52–54]), and periodic PBC. The 

creep loading corresponds to homogeneous macroscopic stresses imposed at the sample 

surfaces, i.e. SUBC are directly applicable. KUBC are obtained by imposing to the nodes 

belonging to the sample surfaces displacements conforming to a homogeneous macroscopic 

strain (i.e., all nodes belonging to a face are constrained to have the same displacements), 

while the external load is prescribed to be the creep stresses. Likewise, PBC are set through 

constraints imposed between the nodes located on the exact opposite positions on the sample 

faces: the displacements of 2 face-to-face nodes is enforced to be the same. Obviously, such 

periodic BC are possible due to the periodic characteristics of the generated meshes. A 

consequence is that the aggregates crossing a sample face are mechanically connected to their 

remaining part intersecting the opposite face. One drawback of these BC involving 

supplementary displacement constraints is that they increase significantly the size of the 

numerical problem to solve. 

The effects of these different BC are assessed by performing simulations on the same isotropic 

aggregate mesostructure with the creep loading defined above, and for various interface 

thicknesses. The results showing the calculated longitudinal creep strains up to 300 days for the 

values of = 0.2 and 20 µm and the 3 considered BC are gathered on Figure 6 and Figure 7 for ℎ 

isotropic Voronoi aggregates and spherical aggregates mesostructures, respectively. On these 

Figures are also reported the analytical curves (plain lines) obtained by applying the procedure 

described in section 2.3 with the GSCS, then considering spherical inclusions. We observe 
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significant differences whatever the interface thickness and the aggregates shape, with a slightly 

more discrepancy for the higher value of . This confirms that the mesostructures we are dealing ℎ

with cannot exactly be termed as representative elementary volumes. We observe as expected that 

the analytical curves are in better accordance with the results of the spherical aggregate case than 

with the Voronoi aggregate one. For the former configuration, the discrepancies are of about 3.5% 

at 300 days between the analytical and PBC results for the two interface thicknesses, indicating a 

relatively good estimation of the model.

Time (days)Time (days)
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0.2 µm 20 µmPBC
SUBC
KUBC

analytical

Figure 6. Analytical (GSCS) and numerical macroscopic longitudinal strain for interface thickness of 0.2 
(left) and 20 µm (right) obtained for different BC types in the case of the 40% isotropic Voronoi aggregate 

mesostructure.
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Figure 7. Analytical (GSCS) and numerical macroscopic longitudinal strain for interface thickness of 0.2 
(left) and 20 µm (right) obtained for different BC types in the case of the 40% spherical aggregate 

mesostructure.

Interestingly, we also note that the PBC results are much closer to the SUBC than to the KUBC 

ones; this agrees with the properties reported in particular in elasticity that in the case of a matrix 

more compliant than the inclusion phase (as in our case), SUBC results are closer than KUBC ones 
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to the PBC simulations, which are generally considered as a good compromise and approach the 

best the ‘real’ results (see e.g. [55]). In the following, we will then essentially present simulations 

obtained with SUBC, as the computation time is much lesser than PBC due to the fact that the 

periodic BC are introduced in the FE models via supplementary constraints on the displacements 

of all nodes of the sample boundaries, which significantly increases the problem size to be solved. 

The simulations with SUBC are achieved in about 5-6 hours for the 40% aggregate volume fraction 

cases, and additional 5-6 hours are needed for post-processing the results (i.e. calculating the 

average stresses and strains in all inclusions and matrix subvolumes for all time steps), as the 

corresponding processes are not parallelized.

3.3.2 Effects of the aggregate shape
We analyze in this subsection the particular effects of the aggregate shape on the numerical results. 

As mentioned, the considered aggregate shapes are spheres, isotropic Voronoi aggregates, and 

elongated and flattened aggregates with aspect ratio of 4. All simulation results presented are 

carried out with SUBC, and are compared with analytical results estimated with the GSCS (3-

phase model) as explained in section 2.3. Figure 8 shows the macroscopic longitudinal creep 

strains calculated with interface thicknesses =0.2 (left) and 20 (right) µm. We observe that the ℎ

magnitude of the creep strains is overestimated by the analytical model in both cases. The 

aggregate shape giving results the closest to the analytical curve is the sphere, followed by the 

isotropic Voronoi aggregate and the elongated and flat one. Note that the curves for these two 

modified Voronoi aggregate shapes are undistinguishable. We can then conclude that the 

aggregate shape has a relatively limited, though non-negligible, influence on the macroscopic 

response of the material: at 300 days the maximum deviation reaches about 5.5%. As in elasticity, 

prolate and oblate shapes have more effects than spherical shape, i.e. in our case since the 

aggregates are more rigid than the matrix the overall behavior is more compliant with spherical 

inclusions; isotropic Voronoi aggregates influence may be seen as intermediary between spherical 

and flat/elongated aggregates. 

Figure 9 shows the average strains (left) and stresses (right) in both matrix and inclusion phases 

for an interface thickness of 20 µm and the different aggregate shapes. We note that the GSCS 

estimations are in relatively good agreement with the numerical results of strains, and by contrast 

the differences are more significant regarding stresses (10% between spherical inclusions case and 

analytical curve). Again, as expected due to the spherical assumption in the modelling 

derivation the FE results with spheres are the closest to the model, followed by the isotropic then 

flat/elongated aggregates. It should be noted that the average strains in the aggregate phase cannot 
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be directly obtained via the estimation of the strain concentration tensor. This is because in the 

approach of [41], the GSCS is applied to the material exhibiting equivalent homogeneous 

inclusions which replace the initial composite sphere + interface ones (see Figure 3). 

Consequently, the inclusive phase in the upscaling scheme relates to the composite spheres. 

One way to obtain the strains in the aggregate phase alone relies on the calculation of the stresses 

in the composite inclusions, which are the same than in the aggregates due to the stress continuity 

condition through the interfaces in Eq. (7), and from which the strain can be easily deduced due 

to the elastic behavior of the aggregates. 
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Figure 8. Analytical (GSCS) and numerical macroscopic longitudinal strain for interface thickness of 0.2 
(left) and 20 µm (right) obtained for different aggregate shapes in the case of the 40% aggregate 

mesostructure. The numerical results for the elongated and flat aggregates are almost superposed.
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Figure 9. Analytical (GSCS) and numerical longitudinal strain (left) and stress (right) in both matrix and 
inclusion phases for interface thickness of 20 µm obtained for different aggregate shapes in the case of the 
40% aggregate mesostructure. The red plain curve on the left corresponds to the analytical strain of the 

composite aggregate (i.e. aggregate + interface). The numerical results for the elongated and flat aggregates 
are almost superposed. 
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On Figure 9 left is reported the corresponding analytical curve in continuous black line, and in 

continuous red line the curve of the composite inclusions. We then observe that the numerical 

results lie nearly between the two analytical curves.

4 Simulation results with the 50% aggregate mesostructures
We present in this section the results obtained with the mesostructures with 50% of Voronoi 

aggregates. We focus our analysis on the effects of interface thicknesses, the comparison with 

different analytical homogenization schemes and the local behaviour, as the aspects regarding the 

effects of the aggregate shape and the BC have been discussed in section 3.3.

4.1 Comparison with different analytical schemes
We first study the effects of the different interface thicknesses of =1, 25, 50, 100 and 250 µm on ℎ

the 50% aggregate mesostructures. These thicknesses are not representative of real values for 

concrete, and are chosen to clearly distinguish between the obtained curves, and also because by 

applying a size scale analogy (i.e. by dividing all sizes by 5) the results can be extended for mortars. 

Clearly speaking, the 40% and 50% samples can be used for both materials, providing an 

adjustment of the ITZ thickness to reflect a realistic ratio of ITZ over aggregate dimensions. 

Figure 10 presents the evolution of the creep longitudinal and transversal macroscopic strains 

obtained numerically by FE (symbols) and analytically (lines) for the isotropic aggregate case. The 

analytical results are obtained with the GSCS applied to the composite particles immersed in the 

matrix phase as depicted on Figure 3 right. 

 

Figure 10. Longitudinal and transversal macroscopic creep strains obtained numerically (symbols) and 
analytically with the GSCS (lines) in the case of the 50% Voronoi aggregate for interface thicknesses of 1 to 

250 µm.
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We observe as expected that the magnitude of strains progressively increases for higher values of 

thickness. The differences are small between =1 and 25 µm, and are about 6, 14 and 33% between ℎ

=1 and 50, 100 and 250 µm, respectively. Note that the results with no interface are omitted as ℎ

they are superposed with the =1 thickness ones. As already mentioned in the previous section, ℎ

we may conclude that the presence of ITZ, whose typical thickness is around 20-25 µm [2] in 

concrete at mesoscale (i.e. considering the matrix as mortar), is not significant regarding the 

estimation of macroscopic response of the material. By contrast, for mortars which correspond 

approximately to the case of a thickness of 100 µm with respect to the aggregate sizes, they appear 

very influential and should not be neglected. We also observe that the strains estimated by the 

model overestimate in magnitude the numerical ones for all interface thicknesses. Several causes 

may explain these discrepancies. The first and most important one, already discussed in the 

preceding section, lies in the difference between inclusion shape, spherical for the model and 

polyhedral in the simulations. Another is due to the inherent use of the GSCS whose estimations 

inevitably present some divergence from exact results, especially for important inclusion volume 

fractions. Biases introduced by the insufficiently fine meshes and the considered BC are also well-

known sources of deviation. 

        

Figure 11. Average stresses (left) and strains (right) in both aggregate and matrix phase, obtained 
numerically (symbols) and analytically (lines) for different interface thicknesses ranging from 1 to 250 µm.

Figure 11 shows the evolution of average stresses (left) and strains (right) in the aggregate and 

matrix phases in the direction of creep loading, obtained numerically (symbols) and analytically 

(GSCS, lines), for the different interface thicknesses. This Figure, whose results are comparable 

to those of Figure 9 at a given interface thickness in the previous section, indicates that an increase 

of this thickness tends to reduce the magnitude of the stress in the aggregates and to augment it in 

the matrix. This is the same for the strain: it increases significantly in the matrix, and decreases in 
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the aggregates. The range of variation is about 10%-12% for all cases between =1 and 250 µm at ℎ

300 days. Again, we consider that the model based on GSCS estimations provides results relatively 

close to the FE simulations.

To illustrate the response of the homogenization methods, Figure 12 presents the evolution of 

longitudinal creep strains obtained numerically (symbols) and analytically with different 

estimation schemes, for interface thicknesses of 1 (black curves), 100 (green curves) and 250 (pink 

curves) µm. The continuous lines depict the analytical results provided by the GSCS associated 

with the replacement procedure and the LSM as defined in section 2.3 and shown in Figure 10. 

This case is labelled ‘GSCS2 + LSM’, GSCS2 referring to the fact that the GSCS is applied to a 

2-phase composite. The dashed lines termed as ‘GSCS2 + IDSD’ result from the same application 

of both the GSCS and replacement procedure (i.e. to a 2-phase heterogeneous material), but the 

interface is modelled by the approach developed in [43]. As mentioned previously, in this approach 

both interfacial displacement and normal stress vector are allowed to be discontinuous across the 

thin interfaces. The dot-dash lines labeled ‘GSCS3’ give the evolution of the longitudinal strains 

from the GSCS applied to the heterogeneous material in which the ITZ is explicitly represented as 

a layer coating the spherical inclusion, see e.g. [7,56] for similar material description. In this case, 

the GSCS hypothesis on the composite sphere morphology makes the thickness of the layer 

varying with the inclusion size. For the applications, the volume fractions of the ITZ layer are 

calculated from the composite sphere with core size given by the mean aggregate size of the 

numerical model, equal here to 3.55 mm. Last, the dotted lines labelled ‘GSCS2 mult’ correspond 

to an extension of the GSCS to multiphase composites as proposed in [57], and used for instance 

in [41]. This method is based on the following approximate decoupled formulation for  particulate 𝑁

phases:

𝑘𝑒𝑞

𝑘𝑚
=

𝑁

∏
𝑖 = 1

𝑘𝑖

𝑘𝑚
(𝜙𝑖,𝑘𝑖,𝑘𝑚,𝜇𝑖,𝜇𝑚), 

𝜇𝑒𝑞

𝜇𝑚
=

𝑁

∏
𝑖 = 1

𝜇𝑖

𝜇𝑚
(𝜙𝑖,𝑘𝑖,𝑘𝑚,𝜇𝑖,𝜇𝑚) (12)

where  and  are the moduli of a composite (estimated with the GSCS associated with the 𝑘𝑖 𝜇𝑖

replacement procedure) containing only the ith phase with volume fraction  and moduli  and . 𝜙𝑖 𝑘𝑖 𝜇𝑖

Here, these relations are applied in order to circumvent the GSCS limitations and obtain a more 

realistic morphological representation of the dimensions of the ITZ with respect to the size of the 

aggregates. The aggregates are then divided in three classes with the following average sizes of 

inclusions: 8.8, 5.89 and 2.26 mm, corresponding to a (total) volume fraction of 0.195, 0.189 and 

0.116, respectively. Since the ITZ thickness is constant, the theoretical volume fraction of the ITZ 

layer considered in the estimations differs in the three classes. 
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We observe on Figure 12 that the estimations for 250 µm provided by the GSCS2 + IDSD are 

relatively close to the ones given by the GSCS2 + LSM, indicating that the latter more simple 

model could be used with a correct accuracy in the context of a replacement procedure. On the 

other hand, the curves obtained with the GSCS with 3 phases, i.e. accounting explicitly for the ITZ 

and disregarding the replacement process, are more distant from the two other cases, and closer to 

the FE results. This means that the effects of the interfaces seem to be significantly lower in the 

GSCS3 case since the magnitude of the strains is lesser. We also note that the curves given by 

these 3 estimation methods are as expected undistinguishable for the thickness of 1 µm. Finally, 

the results obtained with the ‘GSCS2 mult’ procedure are nearer to the FE results than the 3 others 

for the higher ITZ thickness, and by contrast more distant for the lower one. Consequently the 

effects of the ITZ are weaker with this method since the difference of magnitude of the strain 

between 1 and 250 µm is lower, which does not agree very well with the numerical data. For this 

reason its application is more questionable and may not be recommended here. 
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Figure 12. Longitudinal creep strains obtained numerically (symbols) and analytically with the GSCS2 + 
LSM (continuous lines), the GSCS2 + IDSD (dashed lines), the GSCS2 mul (dotted lines) and the GSCS3 (dot-

dash lines) for interface thicknesses of 1 (black, left) and 250 (pink, right) µm.

To show the influence of the ITZ mechanical properties, Figure 13 depicts the FE longitudinal 

creep strain of the material for 3 different ITZ behaviors and thicknesses. The behaviors 

correspond to the values of additional porosities of 20, 30 and 40% in the ITZ phase as reported 

on Figure 5. We observe as expected that the response is very close for the lower ITZ thickness 

(25 µm), while significant discrepancies appear for the greater one (250 µm). As a consequence 

and as already mentioned above, the ITZ should be properly characterized for modelling accurately 

the behavior of mortars, whereas for concrete viewed as a mix of a mortar matrix and aggregates 
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this aspect is of less importance. A well-known explanation is that the surface over volume 

ratio associated with a given ITZ thickness is larger for smaller sand grains than for gravel.

Figure 13. Longitudinal macroscopic creep strains obtained numerically in the case of the 50% Voronoi 
aggregate for the 3 ITZ behaviors of Figure 5 and interface thicknesses of 25, 100 and 250 µm.

4.2 Local analyses
We present in this section some statistical results regarding the distribution of the stresses and 

strains within the material. Figure 14 presents the probability distribution functions (PDF) of the 

longitudinal average stress (left) and strain (right) in the aggregates and matrix subvolumes for the 

interface thicknesses of 1 (top) and 250 (bottom) µm, and at 0.38, 24.5 and 300 days. The matrix 

subvolumes are obtained by dividing the matrix with a voxel-type procedure. Here the dimensions 

of a voxel are chosen as 1/20 of the edge dimension of the initial box (i.e. 8000 subvolumes are 

expected). 

We observe that the stress in the aggregates is slightly more dispersed than in the matrix 

subvolumes, in particular in the case of the smaller interface thickness. This is the contrary for the 

strain, which appears much more dispersed in the matrix. This dispersion tends to reduce and 

increase for the average stress and strain, respectively, for higher thickness. Moreover, in all cases 

the PDF are significantly more dispersed at later ages. These results indicate that the presence of 

interfaces affects notably the mean stress in both matrix and aggregate phases (as can be seen on 

Figure 11), but also their dispersion. Besides, the relatively high dispersion, especially in the 

matrix phase, proves that important stress and strain concentrations arise locally, meaning that 
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microcracking is likely to occur in particular in the matrix and ITZ, whose strength is in general 

weaker than in the aggregates.

             

       

Figure 14. FE Probability Distribution Function for the average longitudinal stress (left) and strain (right) in 
both matrix subvolumes and aggregates for the 1 µm (top) and 250 µm (bottom) interface thickness and at 

0.38, 24.5 and 300 days.

5 Extension to linear thermoviscoelasticity
We extend in this subsection the formulation presented in section 2 to the case of linear 

thermoviscoelasticity. The effects of temperature have generally to be introduced in the model 

through different aspects. One relates to the viscoelastic behavior of the matrix phase, which is 

known to be strongly affected by temperature (see e.g. [58–60]. A simple approach to account for 

this effect is the time shift (or reduced time) method which consists in replacing the time variable 

 by an equivalent time variable  accounting for temperature variations and defined as (see e.g. 𝑡 𝑡𝑒(𝑡)

[59]):
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𝑡𝑒(𝑡) =
𝑡

∫
0

𝑒𝑥𝑝[ ‒
𝑄
𝑅( 1

𝑇(𝜏) ‒
1

𝑇0
)]𝑑𝜏 (13)

where  is an activation energy,  is the ideal gas constant,  is a reference temperature and  is 𝑄 𝑅 𝑇0 𝑇

the current temperature. In the following applications, the ratio  is set to  K, which is close 𝑄 𝑅 6200

to values found in the literature for concrete materials (see e.g. [40,60]). 

Another crucial aspect to consider regarding temperature effects is the dilatation of the material 

phases. It is indeed well known that for heterogeneous materials exhibiting phases with (in general) 

different coefficients of thermal expansion (CTE), internal stresses and strains may develop even 

with homogeneous temperature variations due to differential dilation effects. Here the CTE of 

aggregates  and matrix  are assumed to be isotropic, constant and equal to  and 𝛼𝑔 𝛼𝑚 1.1 × 10 ‒ 5 1.6 ×

 K-1, respectively, corresponding to average values for sand and cement paste from [61,62]. 10 ‒ 5

The hypothesis of constant values seems reasonable in a moderate range of temperature variations 

as considered in this study. Note that in this case and taking into account the equivalent time  𝑡𝑒(𝑡)

expressed above, the thermoviscoelastic behavior of the matrix may be formulated as:

𝝈𝑚(𝑡) = 3

𝑡𝑒

∫
0 ‒

𝑘𝑚(𝑡𝑒 ‒ 𝜏)
𝑑(𝜖𝑚 ‒ 𝛼𝑚∆𝑇)

𝑑𝜏 𝑑𝜏𝟏 + 2

𝑡𝑒

∫
0 ‒

𝜇𝑚(𝑡𝑒 ‒ 𝜏)𝑑𝒆𝑚

𝑑𝜏 𝑑𝜏 (14)

In the LC space the behavior takes the generic following form:

(15)𝝈𝑚(𝑠) = 3𝑘𝑚(𝑠)(𝜖𝑚 ‒ 𝛼𝑚∆𝑇)𝟏 + 2𝜇𝑚(𝑠)𝒆𝑚

The CTE of the ITZ phase  is estimated from the matrix one with the same method than for its 𝛼𝑐

mechanical properties, i.e. by describing it as a composite constituted of the matrix material with 

additional porosity. It is well known that for such 2-phase material the effective CTE in the case 

of isotropic linear elasticity  is obtained exactly by means of the Levin formula, providing the 𝛼(2)
𝑒𝑓𝑓

knowledge of the effective compressibility modulus  [63]:𝑘(2)
𝑒𝑓𝑓

𝛼(2)
𝑒𝑓𝑓 =

𝛼1(1 𝑘(2)
𝑒𝑓𝑓 ‒ 1 𝑘2) ‒ 𝛼2(1 𝑘(2)

𝑒𝑓𝑓 ‒ 1 𝑘1)
1 𝑘1 ‒ 1 𝑘2

(16)

In the case where the phase 2 is porosity, then  and consequently . It implies for the 𝑘2 = 0 𝛼(2)
𝑒𝑓𝑓 = 𝛼1

ITZ that . 𝛼𝑐 = 𝛼𝑚

The next step of the modelling is to calculate the effective CTE  of the 3-phase material 𝛼𝑒𝑓𝑓

depicted on Figure 3 left, i.e. composed of spherical aggregates surrounded by an ITZ layer and 

immersed in the matrix. We make use here of the developments of [64] to derive  in the case 𝛼𝑒𝑓𝑓
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of thin interfaces with elastic mechanical parameters much lower than those of the inclusions, 

leading to the following explicit expression (in the LC space):

𝛼𝑒𝑓𝑓 ‒ 𝜙𝑔𝛼𝑔 ‒ 𝜙𝑚𝛼𝑚 ‒
𝜙𝑔𝛾
𝑅𝑖

1
𝑘𝑒𝑓𝑓

‒
𝜙𝑔

𝑘𝑔
‒

𝜙𝑚

𝑘𝑚
‒

3
𝑘𝑛𝑅𝑖

=
𝛼𝑔 ‒ 𝛼𝑚 +

𝛾
𝑅𝑖

1
𝑘𝑔

‒
1

𝑘𝑚
+

3
𝑘𝑛𝑅𝑖

(17)

where the subscripts ,  and  designate again the matrix, interphase and aggregate, respectively; 𝑚 𝑐 𝑔

 is the volume fraction of phase ;  is defined in Eqs. (9). Finally,  is the normal thermoelastic 𝜙𝑖 𝑖 𝑘𝑛 𝛾

parameter of the interface defined by (see section 2.2 for the details of the notation): 

(18)[𝒖].𝒏 = 𝛾∆𝑇

with  the homogeneous increment of temperature. The parameter  defines then the response of ∆𝑇 𝛾

the interfaces in terms of normal displacement jump when subjected to a temperature variation. 

Again, we refer here on the results derived by [64] to express  as a function of the thermoelastic 𝛾

properties of both interphase and aggregates, and the interface thickness , in the form:ℎ

𝛾 =
𝛼𝑐(1 + 𝜈𝑐) ‒ 2𝛼𝑔𝜈𝑐

1 ‒ 𝜈𝑐
ℎ (19)

Note that Eq. (17) constitutes an extension of the Levin formula to the particular 3-phase case of 

the composite sphere assemblage represented on Figure 3 left. Figure 15 left depicts the time 

evolution of  as obtained with this formulation for different ITZ thicknesses. We observe that 𝛼𝑒𝑓𝑓

 evolves slightly (about 2.5%) in the range 0-50 days, and that it is also moderately affected by 𝛼𝑒𝑓𝑓

the ITZ thickness (approximately 6% of difference between 1 and 250 µm). Figure 15 right shows 

the evolution of the effective CTE  obtained with the GSCS applied to the 3-phase 𝛼(𝐺𝑆𝐶𝑆)
𝑒𝑓𝑓

representation of the material, i.e. considering explicitly the ITZ (see Figure 3 left), and expressed 

in [65] (and also in [66] in a different form) as:

𝛼(𝐺𝑆𝐶𝑆)
𝑒𝑓𝑓 =

𝑘𝑚

𝑘(𝐺𝑆𝐶𝑆)
𝑒𝑓𝑓

𝛼𝑚 +
(3𝑘𝑚 + 4𝜇𝑚)(𝑘(2)

𝑒𝑓𝑓𝛼(2)
𝑒𝑓𝑓 ‒ 𝑘𝑚𝛼𝑚)(1 ‒ 𝜙𝑚)

𝑘(𝐺𝑆𝐶𝑆)
𝑒𝑓𝑓 (4𝜇𝑚 + 3𝑘(2)

𝑒𝑓𝑓𝜉𝑚 + 3𝑘𝑚(1 ‒ 𝜙𝑚)) (20)

where  is the effective bulk modulus of the 3-phase material,  and  denote the effective 𝑘(𝐺𝑆𝐶𝑆)
𝑒𝑓𝑓 𝑘(2)

𝑒𝑓𝑓 𝛼(2)
𝑒𝑓𝑓

bulk modulus and CTE, respectively, of the 2-phase sphere assemblage consisting of the 

aggregates surrounded by the ITZ. We observe that the influence of the ITZ thickness is much 

weaker for  than for ; this result agrees with Figure 12 ones showing the effects of ITZ 𝛼(𝐺𝑆𝐶𝑆)
𝑒𝑓𝑓 𝛼𝑒𝑓𝑓

on the macroscopic creep strains. Note that from the numerical viewpoint, the resulting 

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440



Page 25

thermoviscoelastic behaviors of both interface and matrix have been implemented via the code 

generator MFront, and the general thermomechanics formulation of Cast3M has been applied.

  

Figure 15. Evolution of the macroscopic CTE  according to Eq. (17) (left) and  according to GSCS 𝜶𝒆𝒇𝒇 𝜶(𝑮𝑺𝑪𝑺)
𝒆𝒇𝒇

with 3 phases defined in Eq. 20 (right) for interface thicknesses of 1, 100 and 250 µm.

We present in the following some illustrative simulation results obtained with the mesostructure 

with isotropic aggregates, where the only external loading is a temperature increase of 40°C (no 

macroscopic stresses or strains are imposed). The simulations are performed with homogeneous 

stresses SUBC. The analytical estimations are derived with the replacement procedure and the 

GSCS with 2 phases. Figure 16 shows the evolution during the first 50 days of the isotropic 

macroscopic strains obtained numerically (symbols) and analytically (lines) for the interface 

thicknesses of 1, 100 and 250 µm. We observe that the magnitude of these strains is only 

moderately affected by the ITZ thickness, as could be expected from Figure 15; indeed, in this 

particular case the strain tensor is simply given by , which means that the time 𝜺(𝑡) = 𝛼𝑒𝑓𝑓(𝑡)∆𝑇𝟏

evolution of  follow the ones of  whatever the ITZ thickness. Specifically, the strain difference 𝜺 𝛼𝑒𝑓𝑓

between the lower and higher thickness value is no more than 5%. Moreover, the time evolution 

of the macroscopic strains is also limited to about 2.5% at 50 days, as for . The comparison 𝛼𝑒𝑓𝑓(𝑡)

between FE numerical and analytical results shows a relatively good agreement especially for ℎ =

 µm (maximum discrepancy of less than 0.4% at 50 days), and small differences appear for 250

lower thicknesses (about 1.5% at 50 days for  µm). ℎ = 1

Figure 17 presents the evolution of the average stresses in aggregate and matrix phases obtained 

numerically and analytically for the 3 considered interface thicknesses. As the volume fraction of 

the inclusion phase is 50% and no macroscopic stresses are applied to the specimen, the average 

stresses in both phases are opposite (note that this is also a consequence of the interface behavior, 

modelled here with the LSM and implying that there is no jump of the normal stress vector across 
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the interface, see section 2.2). We observe that the stresses progressively relax from a tensile and 

compressive state for the aggregate and matrix, respectively, in agreement with the values of CTE 

for these two components. Indeed the matrix CTE being greater than the aggregate one, the 

dilatation of the matrix is restrained by the aggregates + ITZ. As expected since the ITZ mechanical 

properties are lower than the ones of the matrix and aggregates, increasing the ITZ thickness tends 

to lessen the magnitude of the average stresses in the two other phases. We note that the model 

provides relatively correct estimations of these quantities, with a trend to underestimate their 

magnitude (with a maximum difference of about 20% the first days, and less than several percent 

at 50 days). 

Figure 16. Macroscopic strains due to a temperature increase of 40°C obtained numerically (symbols) and 
analytically (lines) for interface thicknesses of 1 (black), 100 (green) and 250 (pink) µm.

Figure 17. Average stresses in the matrix and aggregate phase due to a temperature increase of 40°C 
obtained numerically (symbols) and analytically (lines) for interface thicknesses of 1 (black), 100 (green) and 

250 (pink) µm.
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Strain Stress

Figure 18. Mesh of a 50% mesostructure used in the simulations (top). Distribution of longitudinal strain 
(bottom left) and stress (bottom right, Pa) at 1 day in the case of ITZ thickness of 100 µm after a temperature 

increase of 40°C (bottom).

Finally, Figure 18 illustrates the distribution of longitudinal strain (bottom, left) and stress (bottom, 

right) within the mesostructure at 1 day in the case of the ITZ thickness of 100 µm. The mesh 

used in the corresponding simulations is represented in Figure 18 top. We indeed observe that 
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aggregate phase is globally in tension and matrix one in compression, although the total strains are 

greater in the matrix. We also note the (quasi-)zero normal stress on the front left surface of the 

mesostructure perpendicular to the longitudinal direction, resulting from the homogeneous zero 

stress boundary conditions.

To conclude this section, we consider again from the numerical-analytical confrontation that the 

analytical model developed is globally able to correctly reproduce the main features of the material 

behavior. As already mentioned, the observed relatively moderate discrepancies are attributed for 

a large part to the fact that the analytical estimations provide approximate solutions by nature, and 

that they are based on a representation with spherical aggregates while the numerical samples are 

generated with polyhedrons. More generally, further investigations regarding this latter aspect, 

including taking into account in the analytical estimations the ITZ surrounding non-spherical 

aggregates, could improve the model prediction capacities. 

6 Conclusion
We have analyzed analytically and numerically in this paper the thermoviscoelastic behavior of 

concrete and mortar, considered at mesoscale as heterogeneous materials composed of a matrix in 

which are embedded aggregates surrounded by an ITZ. FE simulations have been performed on 

3D samples, some of them exhibiting more than 4600 polyhedral aggregates randomly distributed 

in a box with a total volume fraction of 50%. Both matrix and ITZ behaviors have been considered 

as linear thermoviscoelastic and the aggregates as elastic. Specific FE interface elements have been 

introduced to model the ITZ, whose properties have been estimated from the matrix ones. 

Analytical estimations of the material response have been provided especially by applying a 

procedure for replacing the composite inclusions (i.e., initial aggregates considered as spherical + 

ITZ) by equivalent homogeneous particles, and then by using the GSCS in the Laplace-Carson 

space. In such space the ITZ are governed by the Linear Spring Model. The overall and intra-phase 

responses in the numerical specimens have been investigated when subjected to classical creep 

loading, and compared to the analytical estimations. The results obtained show that typical ITZ 

thicknesses for concrete of 20-25 μm do not affect significantly its behavior, contrary to the case 

of mortars whose response is comparatively notably influenced. As expected, increasing the ITZ 

thickness leads globally to a rise of the creep strains magnitude, i.e. the material becomes more 

compliant. Moreover, it implies a reduction in magnitude of the stresses in the aggregates and an 

increase of both stresses and strains in the matrix phase. A significant dispersion has been observed 

in the average creep stress per aggregate and per matrix subvolumes, indicating potentially 

important local stress concentrations. Higher ITZ thicknesses tend to slightly reduce this 
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dispersion. The effects of the aggregate shape (i.e. flat or elongated polyhedrons with aspect ratio 

of 4) have also been analyzed on the macroscopic response and prove to be limited but non-

negligible, whatever the interface thickness. Finally, an application of the modelling procedure to 

temperature increase is presented; in particular, the coefficient of thermal expansion is estimated 

for the composite material including the ITZ. Again, the comparison of analytical and numerical 

results shows a fairly good agreement, indicating that the model is able to relatively correctly 

reproduce the thermoviscoelastic behavior of concrete as represented in this study. 
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 3D specimens are generated with thermoviscoelastic matrix and dispersed particles 
 Thermoviscoelastic interfaces between particles and matrix are introduced 
 FE results are successfully compared to various upscaling schemes estimations
 Impact of interface thickness is significant for mortar and negligible for concrete
 Effects of flattened particle shapes on overall and local behavior are moderate




