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Abstract 
 
Substitutional solutes in metals generally diffuse by successive exchanges with vacancies, that is, via 
the so called vacancy mechanism. However, recent density functional theory (DFT) calculations 
predicted an atypical behaviour for the oversized solute atoms (OSA) in bcc and fcc iron. These 
solutes exhibit a very strong attraction with a nearby vacancy (V) at a first neighbour (1nn) distance. 
The attraction is so large that the 1nn OSA-V pair is no longer stable and relaxes spontaneously 
towards a new configuration where the OSA sits in the middle of the two half-vacancies (V/2). As a 
consequence, the diffusion of OSAs cannot be described by the standard vacancy mechanism. A new 
migration mechanism with a new formulation of correlation effects is required. The present study rests 
on a renewed expression of the diffusion coefficient of the OSAs in bcc and fcc lattices, which 
introduces the concept of macrojumps. The new formalism is applied presently to the case of yttrium 
(Y: a principal alloying element of advanced steels) in iron, using DFT data. But it is directly 
transferable to other OSA atoms in cubic metal lattices. At variance with the standard substitutional 
solutes, the Y atom is found to diffuse more rapidly than iron at all temperatures by orders of 
magnitude in the two cubic-Fe structures. This finding is opposite to the recent common belief that 
yttrium is a slow diffusing species in Fe alloys, based on experimental evidences. Several suggestions 
are proposed to solve this apparent inconsistency. 

 
 

Introduction 

 
Diffusion of solutes in solids plays a crucial role controlling a large variety of 

kinetic processes, such as precipitation, segregation to surfaces, dislocations and 
grain boundaries, etc. Recently, significant advances in predicting diffusion properties 
of solutes in metals have been achieved, from both modelling and atomistic 
simulation viewpoints [1-4], in particular from a more accurate description of 
correlation effects including solute-vacancy interactions beyond the first neighbor 
shells in various lattice structures (cubic [5], hexagonal [6], arbitrary lattice structure 
[7]) up to a thorough evaluation of phenomenological coefficients in dilute alloys [8]. 
But, beyond the standard vacancy mechanism, an exact and rigorous formalism for 
various atypical substitutional-solute diffusion is still missing. 

For instance, first principles calculations predicted recently that oversized 
solute atoms (OSAs) are dissolved as substitutional species in bcc and fcc iron. 
These OSAs include the transition metal elements (TM) at the beginning of the series 
(Sc, Y, Lu, Zr and Hf) due to their big atomic size, compared with the host atom [9]. 
Also, the noble-gas elements can behave as OSAs in a TM lattice, because of the 
strong repulsion with the host atoms which creates a large effective solute volume 
[10-11]. As expected, there is a strong attraction of the OSAs with a nearby vacancy 
(V): for some of them it is so large that a 1nn OSA-V pair is no longer stable and 
relaxes spontaneously towards a new configuration where the OSA sits in the middle 
of the bond, the two ends of which are decorated with two half-vacancies (V/2) [1-3, 
10-13]. It is worth mentioning that the same type of complex was reported earlier for 
cadmium in silicon and germanium [14], for helium in bcc iron [10]; it is also the case 
for yttrium in iron, as presented below. It is clear that this new feature cannot be 



captured by the today existing diffusion formalisms and that the standard expressions 
for the diffusion coefficient and correlation factor cannot be used. 

The oversized solutes can act as important alloying elements in advanced 
steels, which is the case of yttrium in ODS (oxide dispersion strengthened) steels. 
The ODS steels are of paramount importance in the future design of fusion devices, 
due to their exceptionally high resistance to creep: the pinning of dislocations is 
obtained thanks to a very high density of small immobile precipitates [15]. Among the 
possible alternate candidates [16], mixed yttrium-titanium oxides still occupy the pole 
position: they have been the subject of a large number of mainly experimental 
studies [17-22], the main effect of Ti being a decrease of the size of Y-Ti-O 
nanoscale clusters or precipitates  [23-25], and also theoretical studies mixing first 
principle calculations [26-32] and numerical simulations [18, 33-35]. The fabrication 
of such alloys with a fine dispersion of Y-Ti-O nano-clusters or precipitates is, up to 
now, mainly done by a mechanical alloying of nanopowders mixing Y2O3 oxide with 
the iron-based matrix, with Ti as an additional impurity. At the end of the process the 
original Y2O3 oxides are no longer detectable, which is interpreted as a complete 
dissolution of Y and O in the lattice of the base matrix. The crucial step is then the 
annealing of the mixture at a high temperature in order to produce the small 
precipitates which are desired. The success of this complex nucleation-growth-
coarsening process rests on basic key mechanisms, among which the yttrium 
diffusivity is one of importance. Since to our knowledge, no direct measurement of 
yttrium diffusivity through tracer technique has ever been reported [36], the only way 
out was to evaluate at best the diffusion coefficient at work in the precipitation 
process described above. This was done experimentally by Alinger [18,37] who 
proposed a diffusivity having a very high activation energy equal to 3.1 eV; Kinetic 
Monte-Carlo simulations performed afterwards could reproduce the experimental 
results (precipitate density and size) with these experimentally deduced diffusion 
coefficients [33-34]. But the fabrication process incorporates a large supersaturation 
of dislocations, grain-boundaries, vacancies and oxygen. Due to a known strong 
trapping of Y atoms by the structural defects and by O atoms, such experiment can 
only yield at best an environment-dependent effective value for the Y diffusivity, while 
giving no information on the intrinsic transport mechanism of yttrium and its diffusion 
coefficient. 

 
The present contribution proposes a new variant of the vacancy mechanism 

for an exact determination of the OSA transport, which takes into account the 
existence of the V/2-OSA-V/2 complex. The chemical species of the OSA will be 
denoted by B for generality and B* will stand for a tagged atom of the B species, also 
called a tracer for short. 
 The first section sums up the theoretical analysis and recalls the analytical 

expressions to be used for the solute diffusion coefficient 
*B

D  and for the correlation 

factor 
B

f  in the bcc and fcc lattices. In the second section, we apply the new 

approach to yttrium diffusivity in bcc and fcc iron. Density functional theory 
calculations provide the atomic ingredients entering the diffusion coefficients, i.e. the 
solute-vacancy interactions, together with the migration barriers in the vicinity of the 
OSA. The variation with temperature of the corresponding diffusion coefficient and 
correlation factor is presented. Also, we discuss the implications of the results in the 
light of recent experimental and simulation results. Finally, conclusions are given in 
the third section. 



 

I The new migration mechanism: a modified formulation of tracer 
diffusivity and correlation factor 

 
In the course of the new migration path, the tracer B* occupies alternatively 

regular lattice sites as well as interstitial sites located at the middle of nearest 
neighbour bonds. The analysis must then take this new feature into account in order 
to calculate correctly the mean square displacement. The migration mechanism is 
therefore a two-step process which can be described as follows: 

1. the 1nn neighbour vectors are denoted by  i
  (with length  ); the tracer B* 

sits initially on the origin (Figs. 1a and 2a); let us assume that a vacancy V 

jumps from some site 
i n i t

R  with  i n i t i j
R      belonging to more distant 

shells than the first neighbour one (
i n i t

R   ) towards a 1nn neighbour site of 

B*, say 
0

i
 (Fig. 1a-2a). Then the tracer B* slides without any activation barrier 

towards the intermediate site 
0 0

/ 2
i i

    while the vacancy splits into two 

halves located on 0r   and 
0

i
r   (Fig. 1b-2b). This is the first step of the 

diffusion process which ends up by the formation of a complex denoted 
(V/2+OSA+V/2) to remember that only one unoccupied vacancy was present 
before the formation of the complex. 

2. the second step of the diffusion process happens then: 

- either the half-vacancy  on 
0

i
  jumps back towards one of its first 

neighbours 
0

i j
    (with 

0

0
i j

    ) while repelling simultaneously the 

tracer B* on the centre of the cubic cell, in which case the net displacement 
of B* is equal to zero; 

- or the half-vacancy located on 0r   jumps towards one of its first 

neighbours 
1
i

  (with 
1 0
i i

   ) while rejecting simultaneously the B* atom 

on site 
0

i
 , in which case the net displacement of B* is equal to 

0
i

 (Fig. 

1c-2c). 
The net displacement of B* from a lattice site to a neighboring lattice site is 

called a macrojump; it becomes the new elemental displacement of the random walk. 
 This picture holds for both bcc and fcc lattices. An additional migration path 
must be envisaged because the pseudo-divacancy (made of two half-vacancies) can 
also migrate as a whole. In the fcc lattice, it migrates while keeping its 1nn 
configuration: the tracer B* is carried from an interstitial site to another, as 
symbolically sketched in Fig. 3, where the arrows denote the net displacements of 
the moving species. In the bcc lattice, the divacancy moves while adopting 
temporarily a 2nn metastable configuration: it was shown previously that He was 
carried in this way in bcc iron [10]. 
 
 
 
 
 
 
 



 
 

a)                                           b)                                      c) 

            
 
Figure 1. (Color online) OSA diffusion path including the formation and the dissociation of the 
V/2+OSA+V/2 complex in a bcc lattice. The dark brown and the light spheres represent respectively 
the OSA and the host atoms. The cubes denote the vacant sites. The numbers on the atoms indicate 
the coordination shell with respect to the OSA. a) formation: various arrival paths for the vacancy; the 
OSA relaxes to the mid-point of the bond (curved arrow); b) stable configuration of the complex; c) 
various dissociation paths: the OSA relaxes toward a new lattice site (curved arrow).  

 
a)                                      b)                                     c) 

    
 
Figure 2. (Color online) OSA diffusion path including the formation and the dissociation of the 
V/2+OSA+V/2 complex in a fcc lattice (same description as Fig. 1). 

  
Rigid-lattice Atomic Monte Carlo simulations are often employed for studying 

diffusion and other kinetic processes (precipitation, ordering…). For instance, it is 
worth mentioning that previous Kinetic Monte Carlo simulations dealing with Y in bcc 
iron systems did not take into account the existence of this complex and assigned to 
yttrium diffusivity an effective value which is fitted on experimental precipitation 
kinetics [34]. If Monte Carlo simulations taking this effect into account appear as 
conceivable, they would have however to overcome a difficult problem of vacancy 
trapping in the close vicinity of the OSA: the existence of a deep attractive well 
induces a large number of flickering events which produce not net displacement and 
are highly time-consuming, especially at low temperatures. Indeed, in such systems 
exhibiting a large disparity of frequencies, the brute force approach will become 
ineffectual at rather low temperatures and the recourse to specialized detrapping 
algorithms will therefore be mandatory to reach a sufficient statistical accuracy [38]. 

This is the reason why the present paper directs its effort on an exact 
modelling which starts from the detailed vacancy jump frequencies of the vacancy 
around the OSA obtained through first-principles calculations, while including the role 
of the complex in the migration process. The subsections below give the theoretical 



background and analysis of this variant of the vacancy mechanism. To focus mainly 
on the physical processes, only a synthetic summary is provided: all the technical 
details of the calculation are reported in a dedicated ArXiv deposit [39]. 
 

 
 

Figure 3. (Color online) Non-dissociative jump of the V/2+OSA+V/2 complex in a fcc lattice. The 
arrows denote the net displacement of the two species, from the initial positions to the final ones in the 
forefront lattice plane. For the OSA (brown sphere), the curved arrow means that the actual 
displacement passes through the substitutional site before relaxing towards its final position 
 

I-1 Calculating the mean square displacement of a tagged atom 
  

The diffusion coefficient of a tracer B* in infinite dilution is related to its mean 

square displacement 2

( )R t   during a time interval ‘t’ by the Einstein formula 
2

*
l im ( ) 6

B
t

D R t t
 

    where the displacement is the result of all the jumps performed 

with a large number of distinct defects. These jumps can however be considered as:  
* bunched in space: the number of jumps performed with only one vacancy is small 
(hardly larger than unity in 3D walks [40]) resulting in an overall displacement of a 
few lattice parameters only; 

* bunched in time: the total vacancy concentration 
0V

C  is small and the time interval 

separating the arrival of two different vacancies on the tracer is large compared to 
the time spent by one given vacancy in its vicinity. This implies that, in average, a 
vacancy labelled k will arrive in the neighbourhood of the tracer only a long time after 
the vacancy labelled k-1 definitely escaped after completion of its exchanges with the 
tracer. 
 The collection of solute jumps performed with the same vacancy can thus be 
gathered together into what is called an encounter [41]. The average time interval 
which separates the successive arrivals of two different vacancies in the 

neighbourhood of the tracer B* is denoted by 
E n c

t ; in other words it is nothing but 

the duration allotted to an encounter. Because the vacancy concentration is very low, 
these encounters do not noticeably overlap: their contributions can be considered as 
independent from one another and additive. This is the reason why the general 
formula above can be replaced by: 



 2

*
6

E n c E n cB
D R t                                                                                                  (1) 

where 2

E n c
R   is the mean square displacement of the tracer B* during one 

encounter. 
 
 The encounter starts at time zero, when the tracer B*, which was previously 
located on a substitutional site (denoted ‘S’), is pushed onto an intermediate 
interstitial location (denoted ‘I’), by a vacancy which it never encountered before, at a 

frequency denoted by 
S I

 . The possible vectors    / 2
i i

    for this S→I jump are 

collinear with the first neighbour vectors  i
  and their length is denoted by      . 

Then the tracer atom B* comes back onto a lattice site through an I→S jump of 
length  , while expelling the vacancy on some neighbouring site, at a frequency 

denoted by 
I S

 . This set of elementary displacements (S→I + I→S) which carries B* 

from a regular lattice site to a regular lattice site is the macrojump introduced above. 
After this first macrojump, the tracer can initiate a second one thanks to the same 
vacancy with a probability P  (strictly smaller than unity for a 3D walk [40]), a third 

macrojump with a probability 2
P  . . . etc. Finally the vacancy will escape definitely to 

infinity or will be absorbed by a sink, which puts an end to the encounter. 
 The calculation of the mean square displacement of the tracer requires the 
introduction of probability functions SI and IS attached to S→I and I→S jump 
respectively and consists in establishing recurrence relations between them: for 
instance the tracer B* reaches a site r  through the I→S  jump number ‘n’ only if it 
has reached the intermediate site of a bond having one end on r  through the S→I 
jump number ‘n-1’. The mean square displacement corresponding to the encounter is 
expressed thanks to the second order moment of those functions which bring the 
tagged atom back onto a substitutional site, i.e. the IS ones [39]. Summing the 
recurrence equations over ‘n’ from 1 to ∞ yields the desired moments. Hence the final 
expression: 

2

2
(1 )

2 (1 )

B C C

E n c
R Q

P


   



,                                                                                     (2) 

where P  is the total probability of performing a S→I jump after an I→S one with the 

same vacancy, B C C

Q  is the average cosine between an I→S jump vector and the 

next S→I one in the bcc lattice. The average number of macrojumps in an encounter 

is given by  
12

1 . . . 1P P P


     . The mean square length of a macrojump is 

obtained thanks to Eq. (2) while setting 0P Q  , which yields 2 2
/ 2

M J
R    . The 

mean square  displacement produced by  
1

1 P


  macrojumps 

is  
12 2

1
M Jr a n d

R R P


       and the correlation factor is by definition given by the 

ratio : 
2 2

1
B C C

B E n c r a n d
f R R Q       .                                                                          (3) 

In this transport mechanism, the only correlation effect takes place between an I→S 
jump and the S→I one belonging to the next macrojump. 
 

For a fcc lattice, the recurrence equations must be modified in order to take 

into account the additional I→I jump (Fig. 3) of frequency 
I I

W  : indeed, a tracer B* 



sitting on an intermediate site can jump either toward a lattice site at a frequency 
I S

W  

(2 possibilities) or toward another interstitial site at a frequency 
I I

W  (8 possibilities), 

as described on Fig. 4. 
 
 

 
 
Figure 4. (Color online) Jump vectors for the OSA from an intermediate site to its eight neighbours in a 
fcc lattice; light spheres stand for fcc lattice sites; big and small brown spheres stand for intermediate 

sites. 
 
 
It can be shown that the II functions associated with this additional type of jump can 
be eliminated at the benefit of the IS ones [39]. As before the second order moments 
of the IS functions yield the desired result: 

2

2 (1 2
)

(1 ) 1 2

F C C

E n c
R Q

P

    
    

    

                                                                        (4) 

where  8
I II S I S

W       and  F C C
Q  is the average cosine for the fcc lattice. 

The mean square length of the macrojump is no longer constant but depends on the 
temperature through the frequency ratio   : 

2 2
(1 2 )

M J
R        ,                                                                                           (5) 

and the correlation factor is defined as above by 

 
2

2
1

1 2

F C CE n c

B

R a n d

R
f Q

R

   
  

  

.                                                                               (6) 

The smaller  , the larger the length of a macrojump and the larger the displacement 
during an encounter. As expected intuitively, the correlation factor becomes close to 
unity when the tracer B* migrates mainly from an intermediate site to another without 
passing through a lattice site, a situation which mimics in a close way a direct 
interstitial mechanism. 
 

I-2 Calculating the time duration for an encounter 



 
 Let’s set the reference state of the energy as the crystal containing a tracer 
atom B* on the origin and a non-interacting vacancy far apart in the bulk. The 

vacancy concentration in the bulk is denoted by 
0V

C  and, that at closer distances, 

0

i
E

V i V
C C e

b
 where 

i
E  is the vacancy-solute binding energy when the vacancy sits 

on the ith neighbour shell of the tracer ( 0
i

E   for an attraction and 0
i

E   for a 

repulsion). Assuming an isotropic interaction, the jump frequency 
R i R j

W


 of the 

vacancy from a lattice site 
i

R  to a neighbour site 
j

R  depends only on the neighbour 

shells sites 
i

R  and 
j

R  belong to. The notation 
R i R j

W


 can thus be replaced by s h e l l

i j
W


, 

where the subscripts ‘i’ and ‘j’ stand for a shell index. 
The macrojump is made of two steps in series: the passage from S to I site at 

a frequency 
S I

  is carried out by a vacancy jumping from 
i n i t

R  onto a site of the first 

neighbor shell of B*; the return on a substitutional site at the frequency 
I S

  is carried 

out when the vacancy (at any of the two ends of the complex) jumps back on a lattice 

site which belongs to  i n i t
R . 

S I
  is the total jump frequency of a vacancy towards a first neighbour site of 

the atom B* which sits on a lattice site. The sites 
i n i t

R  it starts from belong to more 

distant shells (labelled ‘j’) than the first one and  the vacancy jump frequencies from 

shell ‘j’ to shell ‘1’ are named 
1

s h e l l

j
W


 (j= 2, 3, 5 for the bcc lattice, j=2,3,4 for the fcc 

lattice). The probability of finding a vacancy on shell ‘j’ is by definition its atomic 

concentration 
V j

C and the frequency 
S I

  is thus expressed as: 

 
1 1 0 1 1

1 1

s h e l l s h e l lj
E

V jS I j j V j j

jV jV

z n b o n d C W z C n b o n d e W
 

   
                                           (7) 

where  
* z  is the number of first neighbours; 

* the summation 
1jV

  runs on the shells ‘j’ which can be reached from the first shell 

through one jump; 

* 
1 j

n b o n d


 is the number of bonds connecting a given site of the 1st shell to sites of 

the jth shell. 
For the bcc lattice, using a standard notation for the frequencies which control 

the formation or the dissociation of the complex: 

1 2
3n b o n d


 , 

1 3
3n b o n d


 , 

1 5
1n b o n d


 ,  3 52

0 4 4 4

' ''
8 3 3

EE E

S I V
C e W e W e W

 
    , 

' ''

3 3 3
3 3

I S
W W W W    and  3 3 3

' ''
2 2 3 3

I S I S
W W W W     . 

Since the jumps  S→I + I→S are performed in series, their delays are additive : 

   
1 1

M J S I I S
t

 

   D . 

The frequency attached to a macrojump is thus defined as  

 
1

( ) /
M J M J S I I S S I I S

t


         .                                                                         (8) 



The duration of an encounter made of  
1

1 P


  macrojumps is then 

 
1

1
E n c M J

t P t


 D D  and the tracer diffusion coefficient is finally expressed as: 

2 2

*

1
(1 )

6 6 2

B C CE n c

M JB

E n c

R
D Q

t

  
   

D

                                                                         (9) 

 
For the fcc lattice: 

1 2
2n b o n d


 , 

1 3
4n b o n d


 , 

1 4
1n b o n d


 ,  32 4

0 4 4 4

' ''
1 2 2 4

EE E

S I V
C e W e W e W

 
    , 

3 3 3

' ''
2 4

I S
W W W W    and  3 3 3

' ''
2 2 2 4

I S IS
W W W W     . 

It can be shown that the time spent on intermediate sites does not depend on the 

jump frequency 
I I

W  [39] and that the tracer diffusion coefficient is expressed as:  

2 2

*

1 1 2
(1 )

6 6 1 2

F C C

E n c

M JB

E n c

R Q
D

t

       
   

   D
.                                                      (10) 

 
I-3 Calculation of the correlation factor  

 
The value of the correlation effect rests on the above-mentioned average 

cosine B C C
Q  and F C C

Q  between successive macrojumps in the two lattice structures. 

After the completion of a macrojump, the OSA is repelled onto the origin and the 

vacancy sits on a lattice site belonging to the set  
i n i t

R . The general method consists 

in solving the diffusion problem corresponding to a vacancy starting from any site of 

 
i n i t

R  and coming back on any site of  
i n i t

R  while avoiding the origin: the average 

cosine is nothing but the product of the time-integral of the return probabilities of the 
vacancy on the arrival sites and the jump frequency which pushes the OSA on an 
intermediate site. Summing the contribution of all possible vacancy trajectories made 
of an arbitrary number of jumps is performed with a Fourier transform. Summing the 
probabilities over time is easily done with a Laplace transform. Denoting the 

probability of finding the vacancy at a regular lattice site 
i

r  at time t  by ( , )
i

L r t , its 

Laplace transform is given by 
0

( , ) ( , )
p t

i i
L L r p e L r t d t




   and the time-integral is defined 

by 
0

( , )
r e t

r i
i

p L r t d t



  . The latter is nothing but the value of the Laplace transform for

0p  , i.e. 
0

( , )
i p

L L r p


. Hence the use of a double Laplace and Fourier transform of 

the transport equation for the vacancy, which yields the desired quantities [5,39]. The 

return probabilities take into account all the jump frequencies s h e l l

i j
W


 which are 

different from the jump frequency 
O

W  in the bulk. In the general case, their analytical 

expressions are out of reach for interactions ranging beyond the first neighbour shell; 
their values can however be calculated exactly as the solution of a linear system. The 
coefficients of this system combine the above modified frequencies with quantities 
which depend only on the random walk propagator for the lattice structure under 
study, i.e. lattice integrals calculated in the first Brillouin zone [5,39]. 

For the bcc lattice, the average cosine is found to be equal to  



52 4 3 4 4

' ''
4  8   4  

B C C r e t r e t r e t
Q p W p W p W    ,                                                                  (11) 

where r e t

i
p  is the time-integrated probability on a lattice site belonging to neighbour 

shell ‘i’. 
For the fcc lattice, the average cosine is found to be equal to 

2 4 3 ,1 3 , 2 4 4 4

' ''
4  8 ( )   4  

F C C r e t r e t r e t r e t
Q p W p p W p W     ,                                                       (12) 

where the time-integrated probabilities on the sites of the 3rd neighbour shell 
3 ,1

r e t
p  and 

3 , 2

r e t
p  have to be distinguished for symmetry considerations. 

 
II The case of yttrium in bcc and fcc iron 
 

II-1 Vacancy-yttrium interactions and migration barriers from first 
principles 
 

We have investigated the diffusion of yttrium, as a representative OSA, in the 
bcc and the fcc iron lattices. We confirm the formation of the very stable V/2-Y-V/2 
complex in both bcc and fcc iron, as proposed by previous DFT studies [11,13]. First-
principles calculations within the density functional theory (DFT) framework were 
performed using the SIESTA code [42]. They provide key data for determining the 
solute diffusion coefficients, that is, the solute-vacancy interaction energies and the 
barriers for vacancy jumps, as functions of the solute-vacancy separation distance. 
The SIESTA approach has already been extensively applied for predicting energetics 
and migration properties of solutes in Fe systems [3,10,43-45].  

The calculations were spin polarized in the case of yttrium in bcc iron, in order 
to account for the ferromagnetism. The fcc iron phase exhibits spin-spirals at the 
ground state, and it is stabilized with the paramagnetic state above the α-γ transition 
temperature. Simulating the complex magnetic configurations including magnetic 
disorder is out of the scope of the present work. For simplicity,  we only assumed a 
non-magnetic state for fcc iron. 

We adopted the generalized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [46]. Core electrons were 
replaced by norm-conserving pseudopotentials. Valence electrons were described by 
linear combinations of numerical pseudoatomic orbitals. The pseudopotential and the 
basis set for Fe are the same as in Refs. [3,45], with a pseudopotential cut-off radius 
of 1.15 A ̊ and a basis set of ten localized functions per atom. The cut-off radii for the 
pseudopotentials of yttrium are set to 1.37, 0.76, and 0.82 Å, respectively for the 5s, 
4p and 4d states. The basis set of each Y atom consists in two strictly localized 
functions for the 5s states three for the 4p, and five for the 4d states. The cut-off radii 
are respectively 4.14, 2.74 and 3.65 Å. Three functions for the 5p states are also 
included as polarized orbitals in order to increase angular flexibility. The charge 
density is represented on a regular 0.067 A ̊ width grid in the real space. 
 A cubic supercell of 250-atom sites with a 2 × 2 × 2 k-point grid were used for 
the case of bcc-Fe, and a 256-sites supercell with 3 x 3 x 3 k-grid were employed for 
the fcc-Fe. The Methfessel-Paxton broadening scheme with a 0.3 eV width was used 
[47]. We have checked that the obtained binding energies and migration barriers are 
well converged with respect to the supercell size and the k-point grid. The estimated 
uncertainties are all smaller than 0.05 eV. 
In all the cases, a system containing a solute and/or a vacancy was relaxed by 
optimizing the atomic positions keeping the volume of the supercell constant as in the 



defect-free system (constant-volume approximation). The convergence criterion was 
set to be 0.04 eV/ Å for the residual forces.  
 The binding energy between a yttrium solute and a vacancy is determined as: 
 

       ( 1 ) ( 1) , ( 2 ) ,
B

E E N F e E N F e Y E N F e E N F e Y                                        (13) 

 

where  ( 1 )E N F e ,  ( 1 ) ,E N F e Y  and  ( 2 ) ,E N F e Y  are the total energy of the 

system containing respectively a vacancy (V), a substitutional Y atom, and a vacancy 

near a substitutional Y.  E N F e  denotes the total energy of a perfect bcc or fcc iron 

lattice, with N F e  atoms. Here, a positive binding energy means attraction. 

 Migration barriers and paths were calculated using the drag method [48], that 
is, the atomic positions are constrained to relax in a hyperplane perpendicular to the 
vector connecting the initial and final positions. This method has shown to provide 
results with satisfactory precision for calculating migration barriers in solid systems 
[3,10, 43-45, 49-51].  
  

II-2 Application to the case of Y in bcc iron 
 

Due to the high technological interest of the advanced ODS steels, properties 
of yttrium in a bcc-iron lattice has been investigated by various authors. It is worth 
noticing that the existence of the V/2-Y-V/2 complex was not always recognized 
previously. A tiny but positive migration barrier (0.02 eV) for the jump of an yttrium 
atom toward a first neighbor vacancy was reported, based on ab initio calculations, 
which apparently prevents the formation of the complex [52]. But the same authors 
also mentioned that in such a configuration, the yttrium atom significantly shifts 
towards the incoming vacancy. The positive barrier allowed the authors to calculate 
the diffusion coefficient with the expressions of the standard model for the bcc 
structure. To our knowledge, this result was however never reproduced later on, 
neither with the same ab initio code [11], nor with other DFT implementations [12]. 
Therefore, unless future contradictory reports, we take the existence of the complex 
for granted. 
 In order to study the Y diffusion with our new model, we have adopted a 
vacancy formation energy of 2.12 eV, based on our DFT calculations, and a vacancy 
formation entropy of 4.08 kB according to previous DFT estimations [53]. For 
simplicity, the pre-exponential term is taken equal to the Debye frequency 1013 s-1 for 
all jump frequencies. The vacancy migration energy in the bulk, as obtained by DFT, 
is equal to 0.69 eV. The lattice parameter found is 2.87 10-10 m. 

The relative positions of the yttrium atom and of the vacancy are depicted on 
Fig. 5. The values of interaction energies and migration barriers are gathered in 
Table 1. The diffusion coefficient of a tracer iron atom is expressed as: 

2

0 0 0*

4

3

B C C

VF e
D C W f  , where the correlation factor 

0
f  is a constant which depends 

only on the geometry of the bcc lattice (
0

0 .7 2 7f  ). The total activation energy for 

diffusion is the sum of the vacancy formation and migration energies. 
 



 
 
 

Figure 5. (Color online) Definition of neighborhoods in the bcc lattice. The yttrium atom (brown 
sphere) sits on the lower left site of the forefront lattice plane. 
 
 
 
 

Vacancy 
on shell 

i 

Binding 
energy 

Jump toward 
shell j 

Migration barrier 
for jump 

s h e l l

i j
W


 

Migration barrier 
for jump 

s h e l l

j i
W


 

1 +1.2 2 2.0 0.89 

  3 1.22 0.16 

  5 1.02 0.05 

2 +0.09 4 0.69 0.61 

3 +0.14 4 0.79 0.66 

  7 0.83 0.69 

4 +0.01 5 0.69 0.91 

  6,8,9 0.70 0.69 

5 +0.23 7,10 0.91 0.69 
 
 
Table 1. Binding energies of the vacancy + OSA configurations at various distances, where ‘i’ stands 
for i

th
 neighbor shell of the yttrium atom (a positive sign means an attraction). Binding energies and 

migration barriers between configurations are given in eV.   
 
 
 

T(K) e x a c t

Y
f  

M J

e x a c t
  

*

e x a c t

Y
D  

*

a p p r o x

Y
D  

300 4.358 10
-4

 1.213 10
-17

 2.723 10
-41

 1.576 10
-41

 

400 2.993 10
-3

 1.719 10
-9

 2.649 10
-32

 1.041 10
-32

 

500 9.368 10
-3

 1.356 10
-4

 6.542 10
-27

 2.038 10
-27

 

600 1.966 10
-2

 2.545 10
-1

 2.576 10
-23

 6.875 10
-24

 

700 3.275 10
-2

 5.650 10
+1

 9.526 10
-21

 2.276 10
-21

 

800 4.720 10
-2

 3.306 10
+3

 8.033 10
-19

 1.767 10
-19

 

900 6.190 10
-2

 7.934 10
+4

 2.528 10
-17

 5.215 10
-18

 

1000 7.613 10
-2

 1.017 10
+6

 3.985 10
-16

 7.820 10
-17

 
 

             Table 2. Correlation factor, macrojump frequency (s
-1

) and diffusion coefficient (m
2
 s

-1
) for 

yttrium tracer in bcc iron. The exact result is compared with the approximation [12]. 



The results of our calculation are displayed in Table 2 and Fig. 6. In spite of 
the complex migration mechanism, the Arrhenius plot does not exhibit any noticeable 
curvature over the explored temperature range. Because the correlation factor is a 
complicated function of the jump frequencies which are thermally activated, it has 
also an activation energy; in all the cases known up to now, this activation energy is 
much smaller than that for the diffusion jump itself, but it can be non-negligible. In the 

present case the effective activation energies coming from the e x a c t

Y
f  and 

M J

e x a c t
  

terms amount to 0.18 eV and 1.96 eV respectively, yielding a total effective activation 

energy 2 .1 4  
e x a c t

a c t
E e V  and a pre-exponential factor 2 16

2 .4  1 0  m
O

D s


 . 

Besides this exact calculation, a first approximate evaluation of yttrium 
diffusivity was recently proposed [12]. The approximation consists in ignoring the 

1nn↔5nn transitions (
3 4

'' ''
,W W ) which leads to flicker events without producing any net 

transportation of the yttrium atom, as well as the 1nn→2nn transition (
3 4

,W W ) which 

requires too high an energy. Only the 1nn→3nn jump (frequency 
3

'
W ) and the reverse 

jump (frequency 
4

'
W ) are kept. At last, a constant correlation factor 0 .5

a p p r o x

Y
f   was 

assumed: indeed, when sitting on a 3nn site after a 
3

'
W  jump, the vacancy has only 

two possibilities for an immediate return of equal probability: the first cancels the 
macrojump and the second produces a macrojump length equal to the 1nn distance. 

The diffusion coefficient 
*

B a r o u h

Y
D  is then expressed by a single thermally activated 

term  e x p / ( )
a c t BO

D E k T , with 2 .1 0  
a c t

E e V  and 2 16
3 .0  1 0  m

O
D s


 .  

Very interestingly, the resulting approximate diffusion coefficients are different 
from the exact values only by a factor ranging from 1.6 at the lower temperatures to 
5.3 at the higher ones, thanks to the simple physical arguments considered above. 
This approximate model is actually a particular case of the called ‘one-shot’ model, 
as detailed in Appendix A, where we demonstrate why this approximation works so 
well. The one-shot model consists in allowing the vacancy, after its dissociation from 
the OSA, to perform only one further jump for returning to a 1nn site of the OSA. 
Such approximation induces mechanically a nearly constant correlation factor close 
to 0.33 (which is not too far from the adopted value of 0.5), and this overestimated 
value of the correlation effect is fortuitously compensated by an underestimation of 
the macrojump frequency. Please note that the one-shot approximation gives 
simplified expressions for the diffusion coefficients and the correlation factors 
(Appendix A). It is expected to give a reasonable estimation of diffusion coefficients 
as long as the vacancy-solute interaction is very strong at a 1nn separation, with a 
rapid decrease with increasing separation distances, which is clearly the case of Y in 
bcc iron (Table 1). 

One additional comment is worth being made about the importance of 

correlation effects. It can be shown that the smallness of the correlation factor e x a c t

Y
f

is not implied by the existence of the vacancy+OSA complex and its intervention in 
the migration mechanism, but only by the particular set of vacancy jump frequencies 
around the yttrium atom. Indeed, in such a mechanism, the OSA occupies alternately 
the sites of the regular bcc lattice and the sites at the middle of first neighbour bonds. 
If this mechanism is considered independently of any energetic considerations by 

assuming that all jump frequencies are equal to a common value oW , then the 

correlation factor is found equal to 0.761603 [39], that is, close to the value of the 



correlation factor for self-diffusion with a pure vacancy mechanism in the bcc 
structure. 

The conclusion of this section points out the fact that the yttrium atom is 
definitely more rapid than the iron atom in the bcc structure, at the thermal vacancy 
regime. 

This result is however at variance with the common belief that yttrium is a slow 
diffuser in bcc Fe. To our knowledge, the very high activation energy for Y relies on 
the only reported experiment-based Y diffusion coefficients, obtained by fitting to 
experimental small angle neutron scattering data in an ODS-FeCr alloy, using a 
classical nucleation-growth-coarsening model [37]. 

Some reasons can contribute to explain the low diffusivity of yttrium from the 
experiments: 

- the introduction of yttrium into iron through mechanical alloying with yttrium 
oxide induces a large number of vacancies and oxygen atoms in 
supersaturation. DFT studies [12,49] showed that the binding energy of yttrium 
to vacancy and to vacancy clusters is high. Further, if considering the 
migration of a complex as a unit, and adopting the effective migration energy 

e f f

m
E  of the cluster to be the largest barrier along the most probable migration 

path, as explained in Ref. [3], we found that the e f f

m
E  increases with ‘n’ for YVn 

clusters.  For instance, the value calculated via the same DFT implementation 
as the present work for the YV complex is 1.22 eV, while that for YV2 and YV3 
clusters are as high as 1.80 and 2.09 eV, respectively [12]. In addition, the 
dissociation energy of these clusters (via emission of a vacancy) also 
increases with the cluster size, for example, 1.89, 2.14 and 2.60 eV for YV, 
YV2 and YV3, respectively [12]. A vacancy supersaturation is therefore 
expected to favor the YV2 and YV3 clusters at the expense of the most mobile 
YV, which can decrease the apparent diffusivity of yttrium by orders of 
magnitude. 

- also, there is as expected a strong oxygen-yttrium and oxygen-vacancy 
attraction [12,54-55]. The presence of oxygen induces the production of 
oxygen-vacancy clusters. Certain of them (the small OVn) can be significantly 
mobile [55]. The strong attraction between yttrium, oxygen and vacancies 
together with the high mobility of oxygen, vacancy and their small clusters can 
lead to the formation of VnYmOp clusters which are expected to be very stable 
but showing reduced mobility.  



 
Figure 6. (Color online) Diffusion coefficients of yttrium and iron tracer in bcc and fcc iron resulting 
from the exact calculation or from the approximation. 

 
II-3 Application to the case of yttrium in fcc iron 

 
In order to determine the tracer diffusion coefficients of Y in fcc iron, we have 

adopted a vacancy formation energy of 2.543 eV, based on our DFT calculations and 
a vacancy formation entropy of 2.0 kB, which is a commonly accepted value for fcc 
metals [56]. For simplicity, the pre-exponential term is taken equal to the Debye 
frequency 1013 s-1 for all jump frequencies. The vacancy migration energy in the bulk, 
as obtained by DFT, is equal to 1.34 eV. The lattice parameter found is 3.51 10-10 m. 
The configurations which were calculated are depicted on Fig. 7; the associated 
yttrium-vacancy binding energies and the relevant migration barriers are gathered in 
Table 3. 
 

As above, the large attractive interaction energy between the yttrium atom and 

the vacancy is accompanied by small dissociation frequencies 
3 3 3

' ''
, ,W W W  and high 

re-association frequencies 
4 4 4

' ''
, ,W W W . The additional feature is now the existence of 

the rotation frequency 
1I I

W W (Fig. 3). For this jump, the calculation shows that 

during the ascent of the migrating iron atom toward its saddle, the yttrium atom is 
progressively pushed back on its lattice site. During the descent towards the new 
equilibrium position, the yttrium atom relaxes again towards the new position of the 
moving vacancy at the end of the process. As a result, the rotation of the divacancy 



is accompanied by a net displacement of the yttrium atom from an intermediate site 
to a neighbouring one, as described in section 1 and schematically depicted in Fig. 3. 

 

 
Figure 7. (Color online) Definition of neighbourhoods in the fcc lattice. The yttrium atom (brown 

sphere) sits on the lower left site of the forefront lattice plane. 
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s h e l l
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Migration barrier 
for jump 
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1 +1.32 1 2.47 2.47 

  2 2.10 0.69 

  3 1.72 0.54 

  4 1.65 0.54 

2 -0.09 3 1.25 1.48 

  5 1.25 1.36 

3 +0.14 3 1.48 1.48 

  4 1.58 1.65 

  5 1.25 1.13 

  6 1.32 1.19 

  7 1.29 1.22 

4 +0.21 5 1.55 1.36 

  7 1.24 1.10 

  9 1.55 1.34 

5 +0.02  1.36 1.36 

  7 1.36 1.41 

  8, 9, 10 1.36 1.34 

6 +0.01 7 1.31 1.37 

7 +0.07 7, 9, 10 1.41 1.34 
 

Table 3. Binding energies of the vacancy + OSA configurations at various distances in the fcc lattice. A 
positive sign means an attraction. Binding energies and migration barriers between configurations are 
given in eV.   

 
 



In Table 4 are gathered the values of the calculated correlation factor e x a c t

Y
f  

and yttrium diffusion coefficient 
*

e x a c t

Y
D , to be compared with the values of self-

diffusion in fcc iron given by 2

0 0 0*
2

F C C

VF e
D C W f  , with (

0
0 .7 8 1f  ) as displayed in 

Fig. 6. 
Correlation effects are still noticeable, but less marked than in the bcc 

structure and with a weaker temperature dependence. In the present case the impact 

of the rotation frequency 
1I I

W W  is negligible, because of its large activation barrier 

(2.47 eV): the factor    remains very close to unity. 
Once more, the smallness of the correlation factor is not linked to the 

migration mechanism as such but is mainly due to the high interaction energy at first 

neighbor distance, together with high re-association frequencies 
4 4 4

' ''
, ,W W W , as in the 

bcc case. Please note that if a common value is assigned to all jump frequencies, the 
correlation factor for this mechanism is found equal to 0.787081, which is close to the 
value for the pure vacancy mechanism in the fcc structure [39]. 
 At last, based on the present prediction, the yttrium atom diffuses more rapidly 
than iron also in the fcc phase at the thermal vacancy regime. 
 

T(K) e x a c t

Y
f  

M J

e x a c t
   

*

e x a c t

Y
D  

1100 0.1664 1.782 10
2
  2.538 10

-20
 

1200 0.1710 2.326 10
3
  3.405 10

-19
 

1300 0.1754 2.047 10
4
  3.074 10

-18
 

1400 0.1797 1.322 10
5
  2.033 10

-17
 

1500 0.1841 6.655 10
5
  1.049 10

-16
 

1600 0.1888 2.737 10
6
  4.428 10

-16
 

 
Table 4. Correlation factor, macrojump frequency (s

-1
) and tracer diffusion coefficient (m

2
 s

-1
) for 

yttrium tracer in fcc iron. 
 
III Conclusions 
 

At variance with standard substitutional solutes in a cubic lattice, an oversized 
solute atom (OSA) close to a vacancy can form a tightly bound complex, in which the 
solute sits in the middle of a first neighbor bond. This specific behavior has been 
theoretically predicted for various early-series transition-metal elements and some 
noble gas atoms in both bcc and fcc iron lattices.  

Since the diffusion of the OSAs cannot be carried out via the standard 
vacancy mechanism, the present study works out a new approach which includes a 
new mechanism for a quantitative determination of diffusion properties of the OSAs 
in bcc and fcc lattices. Splitting the OSA trajectory into encounters and macrojumps 
provides a simple way to define the quadratic displacement and the macrojump 
frequency. The theoretical results are applied to the case of yttrium diffusion in bcc 
and fcc iron, based on first principles results as starting physical ingredients. Under 
thermal-vacancy conditions, yttrium is found to diffuse orders of magnitude faster 
than iron in the two structures. To the best of our knowledge, there is no tracer 
diffusion data available for Y in pure iron. The present result is opposite to previously 
reported Y diffusion coefficients deduced from experimental data in ODS-FeCr alloys. 
A significant amount of vacancies and oxygen atoms present in the experimental 
samples during the precipitation, which strongly binds to Y and slows down its 
diffusion, can be a plausible explanation of the apparent discrepancy.   



  The present modelling approach is directly transferable to other OSAs in cubic 
lattices, with the most probable corollary that those OSAs, which form tightly bound 
complexes with a vacancy, are most probably rapid diffusers in the thermal vacancy 
regime.  

With the diffusion coefficients calculated in the present way, effective 
activation energies for the macrojumps can be derived, monitoring the transport of 
the OSA. These energies can be then used to parametrize Monte Carlo simulations 
with a twofold advantage: the simulations will not need include explicitly the 
intermediate sites in the rigid-lattice model, and will escape the penalty attached to 
the trapping-detrapping problem mentioned in the first section. 
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Appendix A: One-shot evaluation of average cosine B C C

1 s h o t
Q  in the bcc lattice 

 
The ‘one-shot’ approximation is rough and consists in allowing the vacancy, 

after its dissociation from the OSA, to perform only one further jump for returning 
close to the OSA. 

Let us assume that the OSA is at site 
1 1 1

 . When the half-vacancy at 
1 1 1 1 1 1

2    

dissociates from the OSA, the latter slips back to lattice site 0r   with a jump 
111

  

parallel to 
111

 . The vacancy pops up into seven parts on its seven possible 

neighbours with weights proportional to the dissociating frequencies and reaches: 

 three 2nd neighbours of the origin at 
1 1 1 1 1 1 1 1 1111 111 111

 ,   ,            with a 

relative probability  3 3 3 3 3

' ''
3 3c W W W W    for each of them; 

 three 3rd neighbours of the origin at 
1 1 1 1 1 1 1 1 111 1 111 1 11

 ,   ,            with a 

relative probability  3 3 3 3 3

' ' ' ''
3 3c W W W W    for each of them; 

 one 5th neighbour of the origin at 
1 1 1

2r    with a relative probability 

 3 3 3 3 3

'' '' ' ''
3 3c W W W W   . 

The vacancy is then allowed to perform one jump. We define the relative probabilities 
of occurrence for the association jumps: 

 54 4 4
4 4p W W W  ,  4 4 4 0

' ' '
2 6p W W W  ,  4 4 4 0

'' '' ''
7p W W W  , where 

5
W  is the 

standard name for the jump frequency from 2nd to 4th neighbor shell. 
The values of the corresponding cosine are calculated with respect to the direction 

111
  of the preceding I→S jump of the OSA. The probabilities that the vacancy comes 

back on a first neighbour site of the OSA are listed below in Table A1. The 
multiplicative factor in the last column accounts for the number of sites bringing the 
same contribution to the average cosine. 
 
 

weight starting site arrival site rel. prob. c o s ( )  contribution 

 to B C C

1 s h o t
Q  

  
factor 

3
c  

1 1 1 111
    

1 1 1
  

111 11 1
  o r    

111
  

4
p  

4
p  

4
p  

1  

1
3

  

1
3

  

 43
( 1 )c p   

 43
2 ( 1 / 3 )c p   

 43
( 1 / 3 )c p   

 
 

3  

3

'
c  1 1 1 111

    
1 1 1

  

111
  

'

4
p  

'

4
p  

1  

1
3

  

 

'

4

'

3
( 1)c p 

 
 

'

4

'

3
( 1 / 3 )c p 

 
 

 
3  

3

''
c  1 1 1

   
1 1 1

  
4

''
p  1  ''

4

''

3
( 1)c p 

 
 1  

 
Table A1 Contributions to the average cosine from the first returning jump 

 

Summing up all the contributions gives the average cosine B C C

1 s h o t
Q : 



3 4 3 4 3 4

543 3 3 4 0 4 0

' ' '' ''

' '' ' ''

4 41

4 43 3 2 6 7

B C C

1 s h o t

W W W W W W
Q

W WW W W W W W W

 

    
    

 

                                (A1) 

 
This approximation is known to yield a returning probability always smaller - and a 
correlation factor always larger - than the exact one since it neglects all the 
trajectories of the returning vacancy which are made of more jumps.  
Applying these approximations to the case of yttrium in bcc iron (OSA ≡ Y) yields the 

values of the correlation factor 1 s h o t

O S A
f  displayed below in Table A2, assuming 

5 0
W W . Comparison with Table 2 shows that, although crude, the approximation 

retains most of the physics and yields a reasonable magnitude for the correlation 
factor over the whole range of temperature: as expected, the agreement deteriorates 
with increasing temperatures. 

Then the approximation used in Ref. [12] is introduced: dropping of 
'' ''

3 3 4 4
, , ,W W W W  reduces the expressions of the average cosine and correlation factor 

to: 

4

4 0

'

'

4

3 ( 2 6 )

B C C

1 s h o t a p p r o x

W
Q

W W


 



 

4 0 4

4 0 4 0

' '

' '

9 21

33 9 3 9

1 s h o t a p p r o x

O S A

W W W
f

W W W W




  

 

                                                                 (A2) 

 

Table A2 displays the values of 
1 s h o t a p p r o x

O S A
f


 which are nearly constant and slightly 

larger than 1/3. This is, after all, not too far from the value 0.5 retained originally by 

this author. Dropping 
3 3 4 4

'' ''
, , ,W W W W  in the expression of the macrojump frequency 

leads to the values a p p r o x

M J
  which are reported in Table A2. The comparison with 

Table 2 of the main section shows that the underestimation of the macrojump 

frequency 
a p p r o x

M J
  is practically compensated by the overestimation of the correlation 

factor 
1 s h o t a p p r o x

O S A
f


; this explains the closeness of the approximated value with our 

own one. 
 
 

T(K) 
*

e x a c t

O S A
f  

*

1 s h o t

O S A
f  

*

1 s h o t a p p r o x

O S A
f



 

a p p r o x

M J
  

300 4.356 10
-4

 4.356 10
-4

 0.3333 1.587 10
-20

 

400 2.993 10
-3

 2.993 10
-3

 0.3333 1.543 10
-11

 

500 9.368 10
-3

 9.370 10
-3

 0.3333 3.812 10
-6

 

600 1.966 10
-2

 1.969 10
-2

 0.3334 1.501 10
-2

 

700 3.275 10
-2

 3.293 10
-2

 0.3337 5.550 

800 4.720 10
-2

 4.787 10
-2

 0.3342 4.679 10
+2

 

900 6.190 10
-2

 6.368 10
-2

 0.3355 1.471 10
+4

 

1000 7.613 10
-2

 8.003 10
-2

 0.3376 2.314 10
+5

 

 
Table A2 Comparison of the exact value of the correlation factor for OSA yttrium tracer in bcc iron 
with the ‘one-shot’ and with the physical approximation retained in Ref. [12]. 
 


