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Abstract

Substitutional solutes in metals generally diffuse by successive exchanges with vacancies, that is, via
the so called vacancy mechanism. However, recent density functional theory (DFT) calculations
predicted an atypical behaviour for the oversized solute atoms (OSA) in bcc and fcc iron. These
solutes exhibit a very strong attraction with a nearby vacancy (V) at a first neighbour (1nn) distance.
The attraction is so large that the 1nn OSA-V pair is no longer stable and relaxes spontaneously
towards a new configuration where the OSA sits in the middle of the two half-vacancies (V/2). As a
consequence, the diffusion of OSAs cannot be described by the standard vacancy mechanism. A new
migration mechanism with a new formulation of correlation effects is required. The present study rests
on a renewed expression of the diffusion coefficient of the OSAs in bcc and fcc lattices, which
introduces the concept of macrojumps. The new formalism is applied presently to the case of yttrium
(Y: a principal alloying element of advanced steels) in iron, using DFT data. But it is directly
transferable to other OSA atoms in cubic metal lattices. At variance with the standard substitutional
solutes, the Y atom is found to diffuse more rapidly than iron at all temperatures by orders of
magnitude in the two cubic-Fe structures. This finding is opposite to the recent common belief that
yttrium is a slow diffusing species in Fe alloys, based on experimental evidences. Several suggestions
are proposed to solve this apparent inconsistency.

Introduction

Diffusion of solutes in solids plays a crucial role controlling a large variety of
kinetic processes, such as precipitation, segregation to surfaces, dislocations and
grain boundaries, etc. Recently, significant advances in predicting diffusion properties
of solutes in metals have been achieved, from both modelling and atomistic
simulation viewpoints [1-4], in particular from a more accurate description of
correlation effects including solute-vacancy interactions beyond the first neighbor
shells in various lattice structures (cubic [5], hexagonal [6], arbitrary lattice structure
[7]) up to a thorough evaluation of phenomenological coefficients in dilute alloys [8].
But, beyond the standard vacancy mechanism, an exact and rigorous formalism for
various atypical substitutional-solute diffusion is still missing.

For instance, first principles calculations predicted recently that oversized
solute atoms (OSAs) are dissolved as substitutional species in bcc and fcc iron.
These OSAs include the transition metal elements (TM) at the beginning of the series
(Sc, Y, Lu, Zr and Hf) due to their big atomic size, compared with the host atom [9].
Also, the noble-gas elements can behave as OSAs in a TM lattice, because of the
strong repulsion with the host atoms which creates a large effective solute volume
[10-11]. As expected, there is a strong attraction of the OSAs with a nearby vacancy
(V): for some of them it is so large that a 1nn OSA-V pair is no longer stable and
relaxes spontaneously towards a new configuration where the OSA sits in the middle
of the bond, the two ends of which are decorated with two half-vacancies (V/2) [1-3,
10-13]. It is worth mentioning that the same type of complex was reported earlier for
cadmium in silicon and germanium [14], for helium in bcc iron [10]; it is also the case
for yttrium in iron, as presented below. It is clear that this new feature cannot be



captured by the today existing diffusion formalisms and that the standard expressions
for the diffusion coefficient and correlation factor cannot be used.

The oversized solutes can act as important alloying elements in advanced
steels, which is the case of yttrium in ODS (oxide dispersion strengthened) steels.
The ODS steels are of paramount importance in the future design of fusion devices,
due to their exceptionally high resistance to creep: the pinning of dislocations is
obtained thanks to a very high density of small immobile precipitates [15]. Among the
possible alternate candidates [16], mixed yttrium-titanium oxides still occupy the pole
position: they have been the subject of a large number of mainly experimental
studies [17-22], the main effect of Ti being a decrease of the size of Y-Ti-O
nanoscale clusters or precipitates [23-25], and also theoretical studies mixing first
principle calculations [26-32] and numerical simulations [18, 33-35]. The fabrication
of such alloys with a fine dispersion of Y-Ti-O nano-clusters or precipitates is, up to
now, mainly done by a mechanical alloying of nanopowders mixing Y,O3 oxide with
the iron-based matrix, with Ti as an additional impurity. At the end of the process the
original Y,O3 oxides are no longer detectable, which is interpreted as a complete
dissolution of Y and O in the lattice of the base matrix. The crucial step is then the
annealing of the mixture at a high temperature in order to produce the small
precipitates which are desired. The success of this complex nucleation-growth-
coarsening process rests on basic key mechanisms, among which the yttrium
diffusivity is one of importance. Since to our knowledge, no direct measurement of
yttrium diffusivity through tracer technique has ever been reported [36], the only way
out was to evaluate at best the diffusion coefficient at work in the precipitation
process described above. This was done experimentally by Alinger [18,37] who
proposed a diffusivity having a very high activation energy equal to 3.1 eV; Kinetic
Monte-Carlo simulations performed afterwards could reproduce the experimental
results (precipitate density and size) with these experimentally deduced diffusion
coefficients [33-34]. But the fabrication process incorporates a large supersaturation
of dislocations, grain-boundaries, vacancies and oxygen. Due to a known strong
trapping of Y atoms by the structural defects and by O atoms, such experiment can
only yield at best an environment-dependent effective value for the Y diffusivity, while
giving no information on the intrinsic transport mechanism of yttrium and its diffusion
coefficient.

The present contribution proposes a new variant of the vacancy mechanism
for an exact determination of the OSA transport, which takes into account the
existence of the V/2-OSA-V/2 complex. The chemical species of the OSA will be
denoted by B for generality and B* will stand for a tagged atom of the B species, also
called a tracer for short.

The first section sums up the theoretical analysis and recalls the analytical

expressions to be used for the solute diffusion coefficient o _, and for the correlation

*

factor ¢, in the bcc and fcc lattices. In the second section, we apply the new

approach to yttrium diffusivity in bcc and fcc iron. Density functional theory
calculations provide the atomic ingredients entering the diffusion coefficients, i.e. the
solute-vacancy interactions, together with the migration barriers in the vicinity of the
OSA. The variation with temperature of the corresponding diffusion coefficient and
correlation factor is presented. Also, we discuss the implications of the results in the
light of recent experimental and simulation results. Finally, conclusions are given in
the third section.



| The new migration mechanism: a modified formulation of tracer
diffusivity and correlation factor

In the course of the new migration path, the tracer B* occupies alternatively
regular lattice sites as well as interstitial sites located at the middle of nearest
neighbour bonds. The analysis must then take this new feature into account in order
to calculate correctly the mean square displacement. The migration mechanism is
therefore a two-step process which can be described as follows:

1. the 1nn neighbour vectors are denoted by {,} (with length o ); the tracer B*
sits initially on the origin (Figs. 1a and 2a); let us assume that a vacancy V
jumps from some site r,, With R, = {0, + o} belonging to more distant

shells than the first neighbour one (|r,,,|> » ) towards a 1nn neighbour site of
B*, say », (Fig. 1a-2a). Then the tracer B* slides without any activation barrier

towards the intermediate site », = o, /2 while the vacancy splits into two
halves located on r = 0 and r = o, (Fig. 1b-2b). This is the first step of the

diffusion process which ends up by the formation of a complex denoted
(V/2+OSA+V/2) to remember that only one unoccupied vacancy was present
before the formation of the complex.

2. the second step of the diffusion process happens then:
- either the half-vacancy on o jumps back towards one of its first

neighbours o, + o, (With o, + o, » o) while repelling simultaneously the

tracer B* on the centre of the cubic cell, in which case the net displacement
of B* is equal to zero;

- or the half-vacancy located on r = 0 jumps towards one of its first
neighbours o, (with o %o ) while rejecting simultaneously the B* atom

on site o, , in which case the net displacement of B* is equal to », (Fig.

1c-2c).

The net displacement of B* from a lattice site to a neighboring lattice site is
called a macrojump; it becomes the new elemental displacement of the random walk.

This picture holds for both bcc and fcc lattices. An additional migration path
must be envisaged because the pseudo-divacancy (made of two half-vacancies) can
also migrate as a whole. In the fcc lattice, it migrates while keeping its 1nn
configuration: the tracer B* is carried from an interstitial site to another, as
symbolically sketched in Fig. 3, where the arrows denote the net displacements of
the moving species. In the bcc lattice, the divacancy moves while adopting
temporarily a 2nn metastable configuration: it was shown previously that He was
carried in this way in bcc iron [10].



Figure 1. (Color online) OSA diffusion path including the formation and the dissociation of the
V/2+OSA+V/2 complex in a bcc lattice. The dark brown and the light spheres represent respectively
the OSA and the host atoms. The cubes denote the vacant sites. The numbers on the atoms indicate
the coordination shell with respect to the OSA. a) formation: various arrival paths for the vacancy; the
OSA relaxes to the mid-point of the bond (curved arrow); b) stable configuration of the complex; c)
various dissociation paths: the OSA relaxes toward a new lattice site (curved arrow).

a) b)

W,
~

=l

”

Y
4;

Figure 2. (Color online) OSA diffusion path including the formation and the dissociation of the
V/2+OSA+V/2 complex in a fcc lattice (same description as Fig. 1).

Rigid-lattice Atomic Monte Carlo simulations are often employed for studying
diffusion and other kinetic processes (precipitation, ordering...). For instance, it is
worth mentioning that previous Kinetic Monte Carlo simulations dealing with Y in bcc
iron systems did not take into account the existence of this complex and assigned to
yttrium diffusivity an effective value which is fitted on experimental precipitation
kinetics [34]. If Monte Carlo simulations taking this effect into account appear as
conceivable, they would have however to overcome a difficult problem of vacancy
trapping in the close vicinity of the OSA: the existence of a deep attractive well
induces a large number of flickering events which produce not net displacement and
are highly time-consuming, especially at low temperatures. Indeed, in such systems
exhibiting a large disparity of frequencies, the brute force approach will become
ineffectual at rather low temperatures and the recourse to specialized detrapping
algorithms will therefore be mandatory to reach a sufficient statistical accuracy [38].

This is the reason why the present paper directs its effort on an exact
modelling which starts from the detailed vacancy jump frequencies of the vacancy
around the OSA obtained through first-principles calculations, while including the role
of the complex in the migration process. The subsections below give the theoretical



background and analysis of this variant of the vacancy mechanism. To focus mainly
on the physical processes, only a synthetic summary is provided: all the technical
details of the calculation are reported in a dedicated ArXiv deposit [39].

Figure 3. (Color online) Non-dissociative jump of the V/2+OSA+V/2 complex in a fcc lattice. The
arrows denote the net displacement of the two species, from the initial positions to the final ones in the
forefront lattice plane. For the OSA (brown sphere), the curved arrow means that the actual
displacement passes through the substitutional site before relaxing towards its final position

I-1 Calculating the mean square displacement of a tagged atom

The diffusion coefficient of a tracer B* in infinite dilution is related to its mean
square displacement < r*(t) > during a time interval ‘t' by the Einstein formula

D_.=lim < R(t) >/6t where the displacement is the result of all the jumps performed
t—> o

-
with a large number of distinct defects. These jumps can however be considered as:
* bunched in space: the number of jumps performed with only one vacancy is small
(hardly larger than unity in 3D walks [40]) resulting in an overall displacement of a
few lattice parameters only;

* bunched in time: the total vacancy concentration ¢, is small and the time interval

Vo
separating the arrival of two different vacancies on the tracer is large compared to
the time spent by one given vacancy in its vicinity. This implies that, in average, a
vacancy labelled k will arrive in the neighbourhood of the tracer only a long time after
the vacancy labelled k-1 definitely escaped after completion of its exchanges with the
tracer.

The collection of solute jumps performed with the same vacancy can thus be
gathered together into what is called an encounter [41]. The average time interval
which separates the successive arrivals of two different vacancies in the
neighbourhood of the tracer B* is denoted by at_ _; in other words it is nothing but

the duration allotted to an encounter. Because the vacancy concentration is very low,
these encounters do not noticeably overlap: their contributions can be considered as
independent from one another and additive. This is the reason why the general
formula above can be replaced by:



2
Dg.=<R >Enc/6AtEnc (1)
where <r’>_  is the mean square displacement of the tracer B* during one
encounter.

The encounter starts at time zero, when the tracer B*, which was previously
located on a substitutional site (denoted ‘S’), is pushed onto an intermediate
interstitial location (denoted ‘I’), by a vacancy which it never encountered before, at a

frequency denoted by r, . The possible vectors {,} = {o,/2} for this S—I jump are

collinear with the first neighbour vectors {«,} and their length is denoted by » = o /2.

Then the tracer atom B* comes back onto a lattice site through an 1-S jump of
length », while expelling the vacancy on some neighbouring site, at a frequency
denoted by r . . This set of elementary displacements (S—I + 1-S) which carries B*

from a regular lattice site to a regular lattice site is the macrojump introduced above.
After this first macrojump, the tracer can initiate a second one thanks to the same
vacancy with a probability p (strictly smaller than unity for a 3D walk [40]), a third

macrojump with a probability 2 . . . etc. Finally the vacancy will escape definitely to
infinity or will be absorbed by a sink, which puts an end to the encounter.

The calculation of the mean square displacement of the tracer requires the
introduction of probability functions Sl and IS attached to S—I and [—-S jump
respectively and consists in establishing recurrence relations between them: for
instance the tracer B* reaches a site r through the I-S jump number ‘n’ only if it
has reached the intermediate site of a bond having one end on r through the S—l
jump number ‘n-1’. The mean square displacement corresponding to the encounter is
expressed thanks to the second order moment of those functions which bring the
tagged atom back onto a substitutional site, i.e. the IS ones [39]. Summing the
recurrence equations over ‘n’ from 1 to « yields the desired moments. Hence the final

expression:
2

<R >_ = ® 1+Q°%y, (2)
21— P)

where p is the total probability of performing a S—I| jump after an 1-S one with the
same vacancy, Q °°° is the average cosine between an |-S jump vector and the
next S—I| one in the bcc lattice. The average number of macrojumps in an encounter

is given by 1+p+P’+..=(1-P) . The mean square length of a macrojump is

obtained thanks to Eq. (2) while setting p = @ = o, which yields < r* >, = 0®/2.The

mean  square displacement  produced by (1-P) macrojumps
iS<RrR®> =<R'>  (1-P )" and the correlation factor is by definition given by the
ratio :

fB:<R2>EnC/<R2>rand:1+QBCC. (3)

In this transport mechanism, the only correlation effect takes place between an 1-S
jump and the S—1 one belonging to the next macrojump.

For a fcc lattice, the recurrence equations must be modified in order to take
into account the additional 1—1 jump (Fig. 3) of frequency w, : indeed, a tracer B*



sitting on an intermediate site can jump either toward a lattice site at a frequency w

(2 possibilities) or toward another interstitial site at a frequency w,, (8 possibilities),
as described on Fig. 4.

¢

Figure 4. (Color online) Jump vectors for the OSA from an intermediate site to its eight neighbours in a
fcc lattice; light spheres stand for fcc lattice sites; big and small brown spheres stand for intermediate
sites.

It can be shown that the Il functions associated with this additional type of jump can
be eliminated at the benefit of the IS ones [39]. As before the second order moments
of the IS functions yield the desired result:

2
1+ 2 4
2 _ 1+20)m (1+ o QFCC) (4)
8a(l-P) 1+2a

where 2a =T /(r s +8wW, ) and Q" isthe average cosine for the fcc lattice.

The mean square length of the macrojump is no longer constant but depends on the
temperature through the frequency ratio 2a :

<R2>MJ:m2(1+2a)/8a, (5)

and the correlation factor is defined as above by

Enc

FCC

2
<R > 40
Enc FCC
fy = =1+ Q . (6)

<F€2 1+2a

> Rand
The smaller « , the larger the length of a macrojump and the larger the displacement
during an encounter. As expected intuitively, the correlation factor becomes close to
unity when the tracer B* migrates mainly from an intermediate site to another without
passing through a lattice site, a situation which mimics in a close way a direct
interstitial mechanism.

I-2 Calculating the time duration for an encounter



Let's set the reference state of the energy as the crystal containing a tracer
atom B* on the origin and a non-interacting vacancy far apart in the bulk. The
vacancy concentration in the bulk is denoted by ¢, and, that at closer distances,

bE

c,, =C,,e ' Where g, is the vacancy-solute binding energy when the vacancy sits

on the i" neighbour shell of the tracer (e, > o for an attraction and e, <o for a

repulsion). Assuming an isotropic interaction, the jump frequency w_ .. of the

vacancy from a lattice site r, to a neighbour site r, depends only on the neighbour

shells sites r, and r, belong to. The notation w , . can thus be replaced by w """,

Rj
where the subscripts ‘i’ and ‘j’ stand for a shell index.

The macrojump is made of two steps in series: the passage from S to | site at
a frequency r, is carried out by a vacancy jumping from r,_ onto a site of the first

neighbor shell of B*; the return on a substitutional site at the frequency r . is carried

out when the vacancy (at any of the two ends of the complex) jumps back on a lattice
site which belongs to {r

init} )

r .. is the total jump frequency of a vacancy towards a first neighbour site of

Sl

the atom B* which sits on a lattice site. The sites r, . it starts from belong to more
distant shells (labelled ‘j’) than the first one and the vacancy jump frequencies from
shell j’ to shell ‘1’ are named w ;”j'; (= 2, 3, 5 for the bcc lattice, j=2,3,4 for the fcc

lattice). The probability of finding a vacancy on shell j is by definition its atomic
concentration ¢, and the frequency r is thus expressed as:
I, =12z> nbond, | J.CVJ.W ;h:'l' =12C,, > nbond, | J.eiﬁEjW ;hjlll (7)
ivi jvi
where
*z is the number of first neighbours;
* the summation ¥ runs on the shells ‘j’ which can be reached from the first shell
jv i
through one jump;
*nbond, . isthe number of bonds connecting a given site of the 1% shell to sites of

the j" shell.
For the bcc lattice, using a standard notation for the frequencies which control
the formation or the dissociation of the complex:

B

nbond1 =3, nbond =3, nbond =1, T =8C (Se
— 1— 1>

E, BE, ! BEg "
5 Sl Vo W4+3e W4+e WA)'

2 3

W =3W, +3W,_ +W, and T =2W ¢ :2(3w3 +3w3+w3).

Since the jumps S—l + |-S are performed in series, their delays are additive :

Dty, = (FSI )7 + (FIS)
The frequency attached to a macrojump is thus defined as
st is ) (8)

_1
Py =@ty,) =TT /(F



The duration of an encounter made of (1- p) ' macrojumps is then

pt_..-(1-P) pt,, and the tracer diffusion coefficient is finally expressed as:
2 2
<R > 1 Q)
En BCC
D, =—"5=—r,, —@+Q"°"") (9)
6D t 6 2
Enc
For the fcc lattice:
nbond, =2, nbond, _=4,nbond, ,=1,T :12(:\,0(2eﬁEzw4 + 4epE3w4'+ eBE“w;),
W,=2w, +4w_ +w_andr  =2w = 2(2w3 +4W3+W3).

It can be shown that the time spent on intermediate sites does not depend on the
jump frequency w,, [39] and that the tracer diffusion coefficient is expressed as:

2 2 FCC
<R > 1 1+2 4
5 enc _ L 1+20)o @+ aQ ). (10)
6

B” 6D t M 8a 1+ 2a

Enc

[-3 Calculation of the correlation factor

The value of the correlation effect rests on the above-mentioned average
cosine @ °°“ and q " between successive macrojumps in the two lattice structures.
After the completion of a macrojump, the OSA is repelled onto the origin and the
vacancy sits on a lattice site belonging to the set {r_,} . The general method consists
in solving the diffusion problem corresponding to a vacancy starting from any site of
(rR,.} and coming back on any site of {r . 1 while avoiding the origin: the average

cosine is nothing but the product of the time-integral of the return probabilities of the
vacancy on the arrival sites and the jump frequency which pushes the OSA on an
intermediate site. Summing the contribution of all possible vacancy trajectories made
of an arbitrary number of jumps is performed with a Fourier transform. Summing the
probabilities over time is easily done with a Laplace transform. Denoting the
probability of finding the vacancy at a regular lattice site r, at time ¢ by r(r,.t), its

Laplace transform is given by Li(r,, p) = je’ ptL(ri,t)dt and the time-integral is defined

0

by p* = [Ln.tdt. The latter is nothing but the value of the Laplace transform for

p=0,l€ LL(r, p)|p:0 . Hence the use of a double Laplace and Fourier transform of

the transport equation for the vacancy, which yields the desired quantities [5,39]. The
return probabilities take into account all the jump frequencies w *"*" which are

i—> ]

different from the jump frequency w _ in the bulk. In the general case, their analytical

expressions are out of reach for interactions ranging beyond the first neighbour shell;
their values can however be calculated exactly as the solution of a linear system. The
coefficients of this system combine the above modified frequencies with quantities
which depend only on the random walk propagator for the lattice structure under
study, i.e. lattice integrals calculated in the first Brillouin zone [5,39].

For the bcc lattice, the average cosine is found to be equal to



BCC ret ret ! ret "
Q =-4p, W, -8p, W, —4p w,, 11

where /" is the time-integrated probability on a lattice site belonging to neighbour
shell .
For the fcc lattice, the average cosine is found to be equal to

FCC ret ret ret

Q™ = —aptw, —8(p) rpaw, —aptw, (12)
where the time-integrated probabilities on the sites of the 3" neighbour shell p,, and

p;e; have to be distinguished for symmetry considerations.

Il The case of yttrium in bcc and fcc iron

[I-1 Vacancy-yttrium interactions and migration barriers from first
principles

We have investigated the diffusion of yttrium, as a representative OSA, in the
bcc and the fcc iron lattices. We confirm the formation of the very stable V/2-Y-V/2
complex in both bcc and fcc iron, as proposed by previous DFT studies [11,13]. First-
principles calculations within the density functional theory (DFT) framework were
performed using the SIESTA code [42]. They provide key data for determining the
solute diffusion coefficients, that is, the solute-vacancy interaction energies and the
barriers for vacancy jumps, as functions of the solute-vacancy separation distance.
The SIESTA approach has already been extensively applied for predicting energetics
and migration properties of solutes in Fe systems [3,10,43-45].

The calculations were spin polarized in the case of yttrium in bcc iron, in order
to account for the ferromagnetism. The fcc iron phase exhibits spin-spirals at the
ground state, and it is stabilized with the paramagnetic state above the a-y transition
temperature. Simulating the complex magnetic configurations including magnetic
disorder is out of the scope of the present work. For simplicity, we only assumed a
non-magnetic state for fcc iron.

We adopted the generalized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [46]. Core electrons were
replaced by norm-conserving pseudopotentials. Valence electrons were described by
linear combinations of numerical pseudoatomic orbitals. The pseudopotential and the
basis set for Fe are the same as in Refs. [3,45], with a pseudopotential cut-off radius
of 1.15 A”and a basis set of ten localized functions per atom. The cut-off radii for the
pseudopotentials of yttrium are set to 1.37, 0.76, and 0.82 A, respectively for the 5s,
4p and 4d states. The basis set of each Y atom consists in two strictly localized
functions for the 5s states three for the 4p, and five for the 4d states. The cut-off radii
are respectively 4.14, 2.74 and 3.65 A. Three functions for the 5p states are also
included as polarized orbitals in order to increase angular flexibility. The charge
density is represented on a regular 0.067 A’ width grid in the real space.

A cubic supercell of 250-atom sites with a 2 x 2 x 2 k-point grid were used for
the case of bcc-Fe, and a 256-sites supercell with 3 x 3 x 3 k-grid were employed for
the fcc-Fe. The Methfessel-Paxton broadening scheme with a 0.3 eV width was used
[47]. We have checked that the obtained binding energies and migration barriers are
well converged with respect to the supercell size and the k-point grid. The estimated
uncertainties are all smaller than 0.05 eV.

In all the cases, a system containing a solute and/or a vacancy was relaxed by
optimizing the atomic positions keeping the volume of the supercell constant as in the



defect-free system (constant-volume approximation). The convergence criterion was
set to be 0.04 eV/ A for the residual forces.
The binding energy between a yttrium solute and a vacancy is determined as:

E,=E((N -1)Fe)+ E((N —1)Fe,Y )~ E (NFe)- E ((N - 2)Fe,Y) (13)

B

where E ((N -1)Fe), E((N -1)Fe,Y) and E ((N - 2)Fe,v ) are the total energy of the
system containing respectively a vacancy (V), a substitutional Y atom, and a vacancy
near a substitutional Y. e (NFe) denotes the total energy of a perfect bcc or fcc iron

lattice, with nFe atoms. Here, a positive binding energy means attraction.

Migration barriers and paths were calculated using the drag method [48], that
is, the atomic positions are constrained to relax in a hyperplane perpendicular to the
vector connecting the initial and final positions. This method has shown to provide
results with satisfactory precision for calculating migration barriers in solid systems
[3,10, 43-45, 49-51].

lI-2 Application to the case of Y in bcc iron

Due to the high technological interest of the advanced ODS steels, properties
of yttrium in a bcc-iron lattice has been investigated by various authors. It is worth
noticing that the existence of the V/2-Y-V/2 complex was not always recognized
previously. A tiny but positive migration barrier (0.02 eV) for the jump of an yttrium
atom toward a first neighbor vacancy was reported, based on ab initio calculations,
which apparently prevents the formation of the complex [52]. But the same authors
also mentioned that in such a configuration, the yttrium atom significantly shifts
towards the incoming vacancy. The positive barrier allowed the authors to calculate
the diffusion coefficient with the expressions of the standard model for the bcc
structure. To our knowledge, this result was however never reproduced later on,
neither with the same ab initio code [11], nor with other DFT implementations [12].
Therefore, unless future contradictory reports, we take the existence of the complex
for granted.

In order to study the Y diffusion with our new model, we have adopted a
vacancy formation energy of 2.12 eV, based on our DFT calculations, and a vacancy
formation entropy of 4.08 kg according to previous DFT estimations [53]. For
simplicity, the pre-exponential term is taken equal to the Debye frequency 10*® s for
all jump frequencies. The vacancy migration energy in the bulk, as obtained by DFT,
is equal to 0.69 eV. The lattice parameter found is 2.87 10° m.

The relative positions of the yttrium atom and of the vacancy are depicted on
Fig. 5. The values of interaction energies and migration barriers are gathered in
Table 1. The diffusion coefficient of a tracer iron atom is expressed as:

4
BCC
Fex — ;Cv oW

only on the geometry of the bcc lattice ( f, = 0.727 ). The total activation energy for
diffusion is the sum of the vacancy formation and migration energies.

. foo >, where the correlation factor f, is a constant which depends



Figure 5. (Color online) Definition of neighborhoods in the bcc lattice. The yttrium atom (brown

sphere) sits on the lower left site of the forefront lattice plane.

Vacancy Binding Jump toward | Migration barrier | Migration barrier
on shell energy shell j for jJump for jump
| W) Wi
1 +1.2 2 2.0 0.89
3 1.22 0.16
5 1.02 0.05
2 +0.09 4 0.69 0.61
3 +0.14 4 0.79 0.66
7 0.83 0.69
4 +0.01 5 0.69 0.91
6,8,9 0.70 0.69
5 +0.23 7,10 0.91 0.69

Table 1. Binding energies of the vacancy + OSA configurations at various distances, where ‘i’ stands
for i" neighbor shell of the yttrium atom (a positive sign means an attraction). Binding energies and

migration barriers between configurations are given in eV.

Table 2. Correlation factor, macrojump frequency (s™) and diffusion coefficient (m* s™) for

T(K exact exact exact

K M3 D, I
300 |4.35810° | 1.21310"" | 2.72310" | 1.576 10"
400 | 2.99310°|1.71910° | 2.64910° | 1.04110°
500 | 9.36810° | 1.356 10* | 6.542 10°" | 2.038 10’
600 | 1.966 10° | 2.54510" | 2.576 10°° | 6.875 10"
700 | 3.275107 | 5.650 10" | 9.526 10" | 2.276 10°**
800 | 4.720107° | 3.306 10 | 8.03310" | 1.767 10"
900 | 6.190107° ] 7.93410™ |2.52810"" |5.21510™"°
1000 | 7.613 107 | 1.017 10" | 3.98510"° | 7.82010"'

yttrium tracer in bcc iron. The exact result is compared with the approximation [12].



The results of our calculation are displayed in Table 2 and Fig. 6. In spite of
the complex migration mechanism, the Arrhenius plot does not exhibit any noticeable
curvature over the explored temperature range. Because the correlation factor is a
complicated function of the jump frequencies which are thermally activated, it has
also an activation energy; in all the cases known up to now, this activation energy is
much smaller than that for the diffusion jump itself, but it can be non-negligible. In the

present case the effective activation energies coming from the °**°" and r&**®

Y MJ

terms amount to 0.18 eV and 1.96 eV respectively, yielding a total effective activation

energy ... = 2.14 ev and a pre-exponential factor o = 2.4 107" m*s™.

Besides this exact calculation, a first approximate evaluation of yttrium
diffusivity was recently proposed [12]. The approximation consists in ignoring the

1nn<5nn transitions (w,,w, ) which leads to flicker events without producing any net

transportation of the yttrium atom, as well as the 1nn—2nn transition (w, .w, ) which
requires too high an energy. Only the 1nn—3nn jump (frequency ws') and the reverse
jump (frequency w4') are kept. At last, a constant correlation factor ¢*"*"* - 0.5 was

assumed: indeed, when sitting on a 3nn site after a Wsl jump, the vacancy has only

two possibilities for an immediate return of equal probability: the first cancels the
macrojump and the second produces a macrojump length equal to the 1nn distance.

The diffusion coefficient o """ is then expressed by a single thermally activated

6 1

term o exp(-E,. /(k,T)),With E,,, =2.10ev and b  =3.010 " m’s ".

act

Very interestingly, the resulting approximate diffusion coefficients are different
from the exact values only by a factor ranging from 1.6 at the lower temperatures to
5.3 at the higher ones, thanks to the simple physical arguments considered above.
This approximate model is actually a particular case of the called ‘one-shot’ model,
as detailed in Appendix A, where we demonstrate why this approximation works so
well. The one-shot model consists in allowing the vacancy, after its dissociation from
the OSA, to perform only one further jump for returning to a 1nn site of the OSA.
Such approximation induces mechanically a nearly constant correlation factor close
to 0.33 (which is not too far from the adopted value of 0.5), and this overestimated
value of the correlation effect is fortuitously compensated by an underestimation of
the macrojump frequency. Please note that the one-shot approximation gives
simplified expressions for the diffusion coefficients and the correlation factors
(Appendix A). It is expected to give a reasonable estimation of diffusion coefficients
as long as the vacancy-solute interaction is very strong at a 1nn separation, with a
rapid decrease with increasing separation distances, which is clearly the case of Y in
bcc iron (Table 1).

One additional comment is worth being made about the importance of
correlation effects. It can be shown that the smallness of the correlation factor /¢
is not implied by the existence of the vacancy+OSA complex and its intervention in
the migration mechanism, but only by the particular set of vacancy jump frequencies
around the yttrium atom. Indeed, in such a mechanism, the OSA occupies alternately
the sites of the regular bcc lattice and the sites at the middle of first neighbour bonds.
If this mechanism is considered independently of any energetic considerations by
assuming that all jump frequencies are equal to a common value w,, then the

correlation factor is found equal to 0.761603 [39], that is, close to the value of the



correlation factor for self-diffusion with a pure vacancy mechanism in the bcc
structure.

The conclusion of this section points out the fact that the yttrium atom is
definitely more rapid than the iron atom in the bcc structure, at the thermal vacancy
regime.

This result is however at variance with the common belief that yttrium is a slow
diffuser in bcc Fe. To our knowledge, the very high activation energy for Y relies on
the only reported experiment-based Y diffusion coefficients, obtained by fitting to
experimental small angle neutron scattering data in an ODS-FeCr alloy, using a
classical nucleation-growth-coarsening model [37].

Some reasons can contribute to explain the low diffusivity of yttrium from the
experiments:

- the introduction of yttrium into iron through mechanical alloying with yttrium
oxide induces a large number of vacancies and oxygen atoms in
supersaturation. DFT studies [12,49] showed that the binding energy of yttrium
to vacancy and to vacancy clusters is high. Further, if considering the
migration of a complex as a unit, and adopting the effective migration energy

eff

. of the cluster to be the largest barrier along the most probable migration

m

path, as explained in Ref. [3], we found that the e:" increases with ‘n’ for YV,

clusters. For instance, the value calculated via the same DFT implementation
as the present work for the YV complex is 1.22 eV, while that for YV, and YV3
clusters are as high as 1.80 and 2.09 eV, respectively [12]. In addition, the
dissociation energy of these clusters (via emission of a vacancy) also
increases with the cluster size, for example, 1.89, 2.14 and 2.60 eV for YV,
YV, and YV; respectively [12]. A vacancy supersaturation is therefore
expected to favor the YV, and YV; clusters at the expense of the most mobile
YV, which can decrease the apparent diffusivity of yttrium by orders of
magnitude.

- also, there is as expected a strong oxygen-yttrium and oxygen-vacancy
attraction [12,54-55]. The presence of oxygen induces the production of
oxygen-vacancy clusters. Certain of them (the small OV,) can be significantly
mobile [55]. The strong attraction between yttrium, oxygen and vacancies
together with the high mobility of oxygen, vacancy and their small clusters can
lead to the formation of VYO, clusters which are expected to be very stable
but showing reduced mobility.
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Figure 6. (Color online) Diffusion coefficients of yttrium and iron tracer in bcc and fcc iron resulting
from the exact calculation or from the approximation.

[I-3 Application to the case of yttrium in fcc iron

In order to determine the tracer diffusion coefficients of Y in fcc iron, we have
adopted a vacancy formation energy of 2.543 eV, based on our DFT calculations and
a vacancy formation entropy of 2.0 kg, which is a commonly accepted value for fcc
metals [56]. For simplicity, the pre-exponential term is taken equal to the Debye
frequency 102 s for all jump frequencies. The vacancy migration energy in the bulk,
as obtained by DFT, is equal to 1.34 eV. The lattice parameter found is 3.51 10™° m.
The configurations which were calculated are depicted on Fig. 7; the associated
yttrium-vacancy binding energies and the relevant migration barriers are gathered in
Table 3.

As above, the large attractive interaction energy between the yttrium atom and
the vacancy is accompanied by small dissociation frequencies w, .w_ w, and high

re-association frequencies w, ,w,,w, . The additional feature is now the existence of

the rotation frequency w , =w, (Fig. 3). For this jump, the calculation shows that

during the ascent of the migrating iron atom toward its saddle, the yttrium atom is
progressively pushed back on its lattice site. During the descent towards the new
equilibrium position, the yttrium atom relaxes again towards the new position of the
moving vacancy at the end of the process. As a result, the rotation of the divacancy



Is accompanied by a net displacement of the yttrium atom from an intermediate site
to a neighbouring one, as described in section 1 and schematically depicted in Fig. 3.

Figure 7. (Color online) Definition of neighbourhoods in the fcc lattice. The yttrium atom (brown
sphere) sits on the lower left site of the forefront lattice plane.

Vacancy Binding Jump toward | Migration barrier | Migration barrier
on shell energy shell for jump for jump

i j
1 +1.32 1 2.47 2.47
2 2.10 0.69

3 1.72 0.54

4 1.65 0.54

2 -0.09 3 1.25 1.48
5 1.25 1.36

3 +0.14 3 1.48 1.48
4 1.58 1.65

5 1.25 1.13

6 1.32 1.19

7 1.29 1.22

4 +0.21 5 1.55 1.36
7 1.24 1.10

9 1.55 1.34

5 +0.02 1.36 1.36
7 1.36 141

8,9, 10 1.36 1.34

6 +0.01 7 1.31 1.37
7 +0.07 7,9,10 141 1.34

Table 3. Binding energies of the vacancy + OSA configurations at various distances in the fcc lattice. A
positive sign means an attraction. Binding energies and migration barriers between configurations are
givenin eV.



exact

In Table 4 are gathered the values of the calculated correlation factor f,

exact

and yttrium diffusion coefficient b’

, to be compared with the values of self-

FCC

diffusion in fcc iron given by o .’ - 2c,
Fig. 6.

Correlation effects are still noticeable, but less marked than in the bcc
structure and with a weaker temperature dependence. In the present case the impact

of the rotation frequency w,, = w_ is negligible, because of its large activation barrier

(2.47 eV): the factor 20 remains very close to unity.
Once more, the smallness of the correlation factor is not linked to the
migration mechanism as such but is mainly due to the high interaction energy at first

neighbor distance, together with high re-association frequencies w, .w,.w, , as in the

bcc case. Please note that if a common value is assigned to all jump frequencies, the
correlation factor for this mechanism is found equal to 0.787081, which is close to the
value for the pure vacancy mechanism in the fcc structure [39].

At last, based on the present prediction, the yttrium atom diffuses more rapidly
than iron also in the fcc phase at the thermal vacancy regime.

w, foo’, With (f, = 0.781) as displayed in

0

T(K) exact exact exact
fY lHMJ DY*

1100 | 0.1664 | 1.782 10° 2.538 107
1200 | 0.1710 | 2.326 10° 3.405 10
1300 | 0.1754 | 2.047 10" 3.074 10"
1400 | 0.1797 | 1.322 10° 2.033 10"
1500 | 0.1841 | 6.655 10° 1.049 10™°
1600 | 0.1888 | 2.737 10° 4.428 10

Table 4. Correlation factor, macrojump frequency (s"l) and tracer diffusion coefficient (m2 s'l) for
yttrium tracer in fcc iron.

Il Conclusions

At variance with standard substitutional solutes in a cubic lattice, an oversized
solute atom (OSA) close to a vacancy can form a tightly bound complex, in which the
solute sits in the middle of a first neighbor bond. This specific behavior has been
theoretically predicted for various early-series transition-metal elements and some
noble gas atoms in both bcc and fcc iron lattices.

Since the diffusion of the OSAs cannot be carried out via the standard
vacancy mechanism, the present study works out a new approach which includes a
new mechanism for a quantitative determination of diffusion properties of the OSAs
in bcc and fcc lattices. Splitting the OSA trajectory into encounters and macrojumps
provides a simple way to define the quadratic displacement and the macrojump
frequency. The theoretical results are applied to the case of yttrium diffusion in bcc
and fcc iron, based on first principles results as starting physical ingredients. Under
thermal-vacancy conditions, yttrium is found to diffuse orders of magnitude faster
than iron in the two structures. To the best of our knowledge, there is no tracer
diffusion data available for Y in pure iron. The present result is opposite to previously
reported Y diffusion coefficients deduced from experimental data in ODS-FeCr alloys.
A significant amount of vacancies and oxygen atoms present in the experimental
samples during the precipitation, which strongly binds to Y and slows down its
diffusion, can be a plausible explanation of the apparent discrepancy.



The present modelling approach is directly transferable to other OSAs in cubic
lattices, with the most probable corollary that those OSAs, which form tightly bound
complexes with a vacancy, are most probably rapid diffusers in the thermal vacancy
regime.

With the diffusion coefficients calculated in the present way, effective
activation energies for the macrojumps can be derived, monitoring the transport of
the OSA. These energies can be then used to parametrize Monte Carlo simulations
with a twofold advantage: the simulations will not need include explicitly the
intermediate sites in the rigid-lattice model, and will escape the penalty attached to
the trapping-detrapping problem mentioned in the first section.
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Appendix A: One-shot evaluation of average cosine @ °°° in the bcc lattice

1shot

The ‘one-shot’ approximation is rough and consists in allowing the vacancy,
after its dissociation from the OSA, to perform only one further jump for returning
close to the OSA.

Let us assume that the OSA is at site » , . When the half-vacancy at o, = 22,
dissociates from the OSA, the latter slips back to lattice site r - o with a jump » -
parallel to » . The vacancy pops up into seven parts on its seven possible

neighbours with weights proportional to the dissociating frequencies and reaches:

o three 2" neighbours of the originat o, + o . o, +o_. . o, +o_ Witha

111 111 111 ' 11

relative probability c, - w /(3w3 F3W, + ws") for each of them;

e three 3" neighbours of the origin at o ton e re - o o - Witha
relative probability ¢, - Wsl/( W, + 3w + vvs") for each of them;

o one 5" neighbour of the origin at r - 20, With a relative probability
c; = wsn/(3w3 + 3W3' +W3") .

The vacancy is then allowed to perform one jump. We define the relative probabilities
of occurrence for the association jumps:

p4=W4/(4W4 +aw, ), p;:wg/(zwlﬁewo), p;=W4‘I/(W4‘I+7WO),Wher6W5 is the

standard name for the jump frequency from 2" to 4™ neighbor shell.
The values of the corresponding cosine are calculated with respect to the direction
o of the preceding I—S jump of the OSA. The probabilities that the vacancy comes

back on a first neighbour site of the OSA are listed below in Table A1. The
multiplicative factor in the last column accounts for the number of sites bringing the
same contribution to the average cosine.

weight | starting site | arrival site | rel. prob. | cos(e) | contribution x
BCC
to Q’°°, factor
Cs ®110 T O ©111 P, -1 ¢, [p,(-1)]
1
@ 0 9y Pa A C3[2 p,(-1/3)] 3
© P +% c,[p,(+1/3)]
C; O T O ©111 p; -1 C;[P;(—l)J
: _1 o 3
@0 : A ¢, [p.(-173)]
C; 20)111 @49 p; -1 C;[P;(—l)J 1

Table Al Contributions to the average cosine from the first returning jump

Summing up all the contributions gives the average cosine Q °°° :

1shot *



[ w W]
1 4W W 4W W W, W
Bce ‘ 3 4 n 3 4 + - s 4 | (Al)

©shor ' 1AW, + AW '
3W3+3W3+W3L 4 5 2W, +6W W4+7WOJ

This approximation is known to yield a returning probability always smaller - and a
correlation factor always larger - than the exact one since it neglects all the
trajectories of the returning vacancy which are made of more jumps.

Applying these approximations to the case of yttrium in bcc iron (OSA = Y) yields the

values of the correlation factor *:"°" displayed below in Table A2, assuming

OSA

w, =w . Comparison with Table 2 shows that, although crude, the approximation

5
retains most of the physics and yields a reasonable magnitude for the correlation
factor over the whole range of temperature: as expected, the agreement deteriorates
with increasing temperatures.
Then the approximation used in Ref. [12] is introduced: dropping of

w,.w,.w, w, reduces the expressions of the average cosine and correlation factor
to:

BCC N 4
leh0t+appr0x =T '
3(2W  + 6W )
4 0
Y 1 2w |
l1shot+approx 4 0 - 4
fOSA = ; = 3 + ; (A2)
3W4+9W0 3W4+9W0

lshot+approx

Table A2 displays the values of 1, which are nearly constant and slightly
larger than 1/3. This is, after all, not too far from the value 0.5 retained originally by
this author. Dropping w,.w, ,w, ,w, in the expression of the macrojump frequency

leads to the values r;°’"°* which are reported in Table A2. The comparison with
Table 2 of the main section shows that the underestimation of the macrojump
frequency r;’’™ is practically compensated by the overestimation of the correlation

l1shot+approx

factor f Osn
own one.

; this explains the closeness of the approximated value with our

T(K) g exact f1shot 1shot+approx [ 2pprox
OSA* OSA* OSA* MJ

300 | 4.35610° | 4.356 10 0.3333 1.587 107
400 | 2.99310° | 2.99310° 0.3333 154310
500 | 9.36810° | 9.37010° 0.3333 3.812 10°
600 | 1.966 107 | 1.969 107 0.3334 1.501 10°°
700 | 3.275107 | 3.29310° 0.3337 5.550

800 | 4.720107 | 4.787 107 0.3342 4.679 10™
900 | 6.190 107 | 6.368 10° 0.3355 1.471 10™
1000 | 7.61310° | 8.003 10 0.3376 2.314 107

Table A2 Comparison of the exact value of the correlation factor for OSA yttrium tracer in bce iron
with the ‘one-shot’ and with the physical approximation retained in Ref. [12].



