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Abstract. This paper demonstrates how OpenMP 4.5 tasks can be used
to efficiently overlap computations and MPI communications based on a
case-study conducted on multi-core and many-core architectures. It fo-
cuses on task granularity, dependencies and priorities, and also identifies
some limitations of OpenMP. Results on 64 Skylake nodes show that
while 64% of the wall-clock time is spent in MPI communications, 60%
of the cores are busy in computations, which is a good result. Indeed,
the chosen dataset is small enough to be a challenging case in terms of
overlap and thus useful to assess worst-case scenarios in future simula-
tions.
Two key features were identified: by using task priority we improved the
performance by 5.7% (mainly due to an improved overlap), and with re-
cursive tasks we shortened the execution time by 9.7%. We also illustrate
the need to have access to tools for task tracing and task visualization.
These tools allowed a fine understanding and a performance increase for
this task-based OpenMP+MPI code.

Keywords: Dependent tasks · OpenMP 4.5 · MPI · Many-core

1 Introduction

The MPI and OpenMP programming models are widely used in numerical HPC
applications [8]. While combining both models is commonplace, several chal-
lenges must be addressed to obtain improved performance. One of them is the
efficient overlapping of communication with computation since communications
are often a major source of overhead. This is critical for future exascale machines
expected to interconnect a very large number of computing units.

With the recent shift of HPC platforms from multi-core to many-core archi-
tectures, the cumulated communication time can prevail over the computation
time [3]. Meanwhile, it can be difficult to keep all cores busy when dealing with
fine-grained computations since communication latencies and synchronization
costs are possibly an issue at large scale. It is especially challenging as it would
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be preferable for parallel applications to provide portable performance on mul-
tiple platforms (with reduced development efforts).

Task-based programming is a promising approach to address these prob-
lems [16,5]. The introduction of this approach in the version 3.0 of OpenMP has
significantly improved the way of expressing parallelism in numerical applica-
tions. Especially data dependencies in OpenMP 4.0 (i.e. the depend clause), and
both task priorities and task loops in the version 4.5 of the norm [11].

As a first contribution, this paper demonstrates that OpenMP tasks can be
used to efficiently overlap computations and MPI communications based on a
specific case-study on many-core and multi-core architectures. A second contri-
bution is the identification of three specific task parameters that should be care-
fully tuned to reach this goal: granularity, dependencies and priorities5. A third
contribution is the proposal of a method based on visualization to understand
and guide the tuning of these parameters. Finally, the paper identifies features
absent from OpenMP 4.5 that could improve the situation; some of which are
already present in OpenMP 5.0 [12].

Section 2 describes the use-case studied in this paper: a hybrid MPI +
OpenMP 2D Vlasov-Poisson application while Section 3 discusses its implemen-
tation and specifically how we designed algorithms and tasks with communica-
tion/computation overlap in mind. Section 4 evaluates and discusses the perfor-
mance in terms of efficiency, scalability, overlapping; it identifies important task
parameters (granularity, dependencies, priorities) and presents a way to adjust
these parameters based on tasks visualization. Section 5 discusses related work
while Section 6 concludes the paper and presents some future work.

2 Use-Case Description

2.1 Overview and Numerical Approach

Overview We consider an application that solves the Vlasov-Poisson equations6

to model the dynamics of a system of charged particles under the effects of a self-
consistent electric field. The unknown f is a distribution function of particles in
the phase space which depends on the time, the physical space, and the velocity.
This approach is useful to model kinetically different kinds of plasmas.

Equations The evolution of the distribution function of particles f(t, x, v) in
phase space (x, v) ∈ IR× IR is given by the Vlasov equation

∂f

∂t
+ v · ∇xf + E(t, x) · ∇vf = 0 (1)

In this equation, time is denoted t and the electric field E(t, x) is coupled to
the distribution function f . Considering the Vlasov-Poisson system, Poisson is

5 See [10] for an advanced tutorial about these points.
6 In practice, Poisson-Ampere[7] are solved instead of Poisson. But for sake of clarity,

Poisson-Ampere is not detailed here as the algorithm and performance are very close.
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solved in the following way:

E(t, x) = −∇xφ(t, x), −∆xφ(t, x) = ρ(t, x)− 1 , (2)

with ρ(t, x) =
∫
IR
f(t, x, v) dv

where ρ is typically the ionic density, φ is the electric potential. One can express
the characteristic curves of the Vlasov-Poisson equation (1)-(2) as the solutions
of a first-order differential system. It is proven that the distribution function
f is constant along the characteristic curves which are the basis of the semi-
Lagrangian method we employ to solve the Vlasov equation [17].

Numerical method The semi-Lagrangian method [17] consists in evaluating the
distribution function directly on a Cartesian grid in phase space. The driving
force of this explicit scheme is to integrate the characteristic curves backward in
time at each timestep and to interpolate the value at the feet of the character-
istics. The chosen interpolation technique relies on Lagrange polynomials [4] of
degree 5. To perform 2D interpolations, we use a tensor product on a fixed-size
square region of the 2D grid surrounding the feet of the characteristics.

2.2 Distributed Algorithm and Data Structures

Algorithms Algorithm 1 presents one timestep of the application. It is divided in
two parts: the solving of the Poisson equation (lines 1-2) and the Vlasov solver
(lines 4-10). The Vlasov solver operates on a 2D regular mesh with ghost areas
(data structures are presented in the next paragraph). In the following, we will
denote by ∆t the time step, by ρn =ρ(n∆t, x) the ionic density at time step n
(the superscript notation .n will be used also for E and f). Ghost exchange is
done through MPI isend/irecv between surrounding processes so they can be
available for the next iteration. The number of ghost cells in both direction is
denoted G. In the upcoming Section 4 we will set G = 8.

Algorithm 1: One timestep

Input : fn, ρnloc
Output: fn+1, ρn+1

loc

1 ρn = AllReduce(ρnloc)
2 En = Field solver(ρn)
3 Perform diagnostics & outputs (En, ρn)

4 Launch all isend/irecv for ghost zones fn

5 2D advections for interior points (Algo. 2)
6 Receive wait for ghost zones fn

7 2D advections for border points (Algo. 3)
8 Send wait for ghost zones fn

9 ρnloc = Local integral(fn)
10 Buffer swap between timestep n and n+1

Algorithm 2: Interior points advection

Input : Set of local tiles T∗ (representing fn) and En

Output: Set of local tiles T∗

1 for k= [indices of local tiles] do
2 for j = [vstart(k) +G : vend(k)−G] do
3 for i = [xstart(k) +G : xend(k)−G] do
4 Compute the foot (x?i , v

?
j ) ending at (xi, vj);

// All needed f values belong to Tk
5 fn+1

k (xi, vj)← interpolate fn(x?i , v
?
j );

Algorithm 3: Border points advection

Input : Set of local tiles T∗ (representing fn) and En

Output: Set of local tiles T∗

1 DJ =[vstart(k) :vstart(k)+G[∪]vend(k)−G :vend(k)];
2 DI =[xstart(k) :xstart(k)+G[∪]xend(k)−G :xend(k)];
3 for k= [indices of local tiles] do
4 for j ∈ DJ do
5 for i ∈ DI do
6 Compute the foot (x?i , v

?
j ) ending at (xi, vj);

// All needed f values belong to Tk
7 fn+1

k (xi, vj)← interpolate fn(x?i , v
?
j );
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Fig. 1: Tiles and exchange of ghost buffers of the algorithm.

Data Structures The whole (x, v) grid is split into uniform rectangular tiles.
Within a tile, two internal buffers are used for double buffering, each buffer
corresponding to a timestep. We have also two additional buffers to store ghosts
required for the interpolation stencil (virtually surrounding the internal buffers):
one for sending data to other tiles and one for receiving data. The ghost area of
each tile is split into 8 parts for the 8 neighbor tiles. The tile set is distributed
among processes using a 2D decomposition. The points (x, v) of a tile Tk are
defined in the domain: x ∈ [xstart(k);xend(k)[ and v ∈ [vstart(k); vend(k)[. The
structure of a tile is illustrated in Figure 1 wherein orange areas are ghost zones
while light-green areas are internal buffers updated by Vlasov 2D advections.

Computations and Dependencies In Algo. 1, Poisson computation is composed of
two sub-steps. First (line l. 1), data is reduced to compute the integral in velocity
space (computing ρ as in Eq. 2). Then (l. 2), a local computation is performed
in each process. The reduction acts as a synchronization requiring all advection
data to be computed before solving Poisson and starting a new step. Thus, most
computations of the Vlasov advection and Poisson cannot be overlapped.

Between two advection steps, ghost cells are exchanged with the 8 surround-
ing tiles (l. 4); data is copied between buffers for tiles that lie in the same process
and MPI is used otherwise. The interior points advection (l. 5) can start as soon
as Poisson is finished since their interpolation does not depend on ghosts. We
assume small displacements (i.e. |v.∆t| < ∆x and |E.∆t| < ∆v), thus all inter-
polations can be done locally[7]. Once all ghosts are received for one tile (l. 6),
its border points can be computed as well (l. 7).

When the advection of all points of a tile is done, the local part of the integral
(needed for the next Poisson computation) is computed (l. 9). Finally, when they
are not needed anymore by MPI Isend (l. 8) internal buffers are swapped (l. 10).

Figure 1 displays the communication pattern of the ghost exchange for two
MPI processes. Red solid arrows are MPI communications while green dashed
arrows are in-process ghost buffers copies. Sent buffers and received buffers are
distinct. For sake of clarity, communications/copies providing periodicity along
dimensions x and v are not shown here.
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3 Implementation Design

We have implemented Algo 1 in C with OpenMP and MPI so as to evaluate the
use of OpenMP tasks, priorities and task loops7 for communication / compu-
tation overlap. We have used the OpenMP Tool Interfaces (OMPT) [12] (from
OpenMP 5.0) combined to tracing capabilities of the KOMP [5] runtime to ana-
lyze the behavior and performance of the code.

Overall design Except where specified otherwise, we use a flat OpenMP task
model where the master thread submits all tasks that are then executed either
by worker threads or by the master thread itself. This is the only way to create
dependencies between sibling tasks [12]. We assign MPI calls and computations
to distinct tasks to improve the flexibility of the scheduling and rely on task
priorities to guide it. We submit all the tasks of each iteration in batch to provide
enough work to feed all workers during a single iteration (critical on many-core
systems). The tasks graph is similar on each MPI process.

On the MPI side, we use the MPI THREAD SERIALIZED mode where all threads
can access MPI, but only one at a time. Most MPI implementations use locks to
serialize communications in the MPI THREAD MULTIPLE mode which would inter-
fere with the task model. We instead serialize MPI calls using additional tasks
dependencies so that only one MPI task is active at a time. We use non-blocking
MPI calls with wait calls in distinct tasks for a fine control of dependencies.

The tasks are submitted with the omp task directive and depend OpenMP
clauses are used to specify the dependencies between them (unless explicitly
stated). We decide to prune redundant data dependencies to mitigate submis-
sion and scheduling costs (which can be several time higher than the execution
if the submission is so slow that workers are starving). For the same reason,
we aggregated successive short calculations into single tasks, and consider the
whole ghost zone of each tile as a single atomic memory area to achieve coarser
granularity.

Algorithm Implementation Poisson is implemented by two tasks. The first one
communicates (MPI AllReduce) the density field. The second task depends on
the first one and solves Poisson for a local subdomain along space dimension.
Once Poisson is solved, a task performs diagnostics: the output of the code.

Ghost buffers management is implemented by two tasks. The first one recur-
sively submits two groups of independent sub-tasks (using synchronous task loop
construct8). Sub-tasks of the first group copy data into ghost buffers and swap
tile buffers; those from the second group exchange ghost buffers between local
tiles, this avoids MPI transfers that would occur within each MPI process. The
second task depends on the first one (and also on the MPI AllReduce task due

7 See [10] for an advanced tutorial about these points.
8 This construct specifies to execute iterations of one or multiple loops in parallel using

(independent) tasks. Unless specified by the user, it lets the runtime choose the best
granularity and perform a final synchronization.
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Fig. 2: Submitted task graph of one iteration with the advection (top) and Pois-
son (bottom) within the implementation.

to MPI tasks serialization) and performs all the isend/irecv required for tiles
whose neighbors are in a different MPI process.

Finally, the advection is implemented by four groups of tasks. Tasks in the
first group compute the advected values of internal points of the tiles; each
depends only on its own tile both as input and output. Tasks of the second group
wait for the reception of ghosts sent in the ghost buffer management tasks. Tasks
of the third group compute the advected values of border points and the density
integrals ρ; each depends on its own tile both as input and output and on the
associated ghost buffer as input. One last task waits for all buffers to be sent.
Finally, a taskwait directive is performed before moving back to the Poisson
phase that depends on the completion of all tasks. MPI tasks have the highest
priority, then come tile internal point tasks and border point tasks; other tasks
have a default lower priority.

Figure 2 summarizes the scheduled OpenMP task graph of one timestep on
one MPI process (similar on each process). Firstly, all MPI tasks (top and left)
are serialized using an inout fake variable. Moreover, while the MPI Isend/Irecv

task perform all the Isend/Irecv, each MPI WaitAll Irecv waits only for all
ghost buffers of a single tile to be received. For each tile, one task of each of the
three following types is submitted: MPI WaitAll Irecv, Tile center and Tile

border. The dependency pattern between the Tile center and Tile border

tasks is a 2D stencil (simplified view on Figure 2).

4 Performance Evaluation

4.1 Experimental setup

System configuration The experiments have been performed on the Skylake
(SKL) and Xeon Phi (KNL) partitions of the Marconi supercomputer9. SKL
nodes include two sockets Xeon 8160 with 24 cores. KNL nodes contain a Xeon
Phi KNL 7250 processor with 68 cores. The Xeon Phi is configured with the
quadrant clustering and cache memory modes10. Hyper-threading is disabled on

9 http://www.hpc.cineca.it/hardware/marconi
10 The mode cannot be configured by the user on the selected computing machines.

http://www.hpc.cineca.it/hardware/marconi
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SKL and we chose to disable it on KNL. The network is an Intel Omni-Path
100 Gb/s (fat-tree). Experiments use one process per NUMA node (two pro-
cesses per socket for SKL and four processes per socket for KNL) to prevent
in-process NUMA effects which are out of the scope of this paper (the numactl
tool was used so that each process is bound to a unique quadrant and access to
its own memory). The code has been compiled with ICC 2018.0.1 and IntelMPI
2018.1.16311. The used OpenMP runtime is KOMP [5] (commit 32781b6), a fork
of the LLVM/Intel OpenMP runtime. This runtime helps us to produce and vi-
sualize runtime traces in order to finely profile and track performance problems
and behaviors. It also implements tasks priorities and provides good performance
with fine-grained tasks [9].

Method The median completion time is retrieved from a set of 10 runs. Each run
performs 1000 iterations for the scaling and granularity experiments and 100 for
the trace-based results (to reduce the trace size). Unless explicitly stated, each
run works with a (small) tile size of 64x64 over a 2D dataset of 8192x8192. We
choose a quite-small dataset for practical reasons: it exhibit issues that usually
occur with much more nodes on bigger datasets, but actually takes less time and
energy.

4.2 Experimental Results

This Section presents and discusses the performance obtained on the considered
use-case. First, the overall scalability is analyzed and performance issues are
further investigated. Then, the benefits of using priorities is studied. After that,
the amount of overlapping is quantified. Finally, task overheads are analyzed: the
cost of the submission, the dependencies, and the impact of the task granularity.

Scalability Figure 3a displays the completion time plotted against the number
of cores on both KNL and SKL nodes. It shows the hybrid application scales
well up to 64 nodes (respectively 4352 and 3072 cores) despite the small amount
of data to process. However, some scalability issues appear on 128 nodes nodes
(respectively 8704 and 6144 cores).

Breakdown Figure 3b shows the fraction of parallel time (cumulated sum of
the duration of the tasks) taken by each part of the application plotted against
the number of nodes used. First, we can see that the advection and the ghost
exchange needed by the advection take most of the time, while the Poisson part
seems negligible at first glance. However, from 32 to 128 nodes, the idle time
and the runtime overhead12 is increasing to the point of becoming dominant,
and this growth is mainly due to Poisson solver as we shall see.

11 The latest available versions on the computing machines during the experiments.
12 The idle time includes periods where threads are busy waiting for ready tasks to

be executed and thread synchronization periods, and the runtime overhead includes
scheduling and task submission costs.
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Fig. 3: Scalability and performance results.

Figure 4 displays the task scheduling of one iteration on one MPI process of
64 SKL nodes (the work is uniformly balanced on each process). Let us focus on
Figure 4a for the moment.

Schedule analysis Overall, the schedule is quite good since tasks related to the
advection and ghost exchanges (left side) are feeding almost all cores. The overlap
of communication is almost perfect in the Vlasov solver with MPI isend/irecv

triggered early in the timestep and the associated MPI Wait do not slow down
tiles computations. However, we can see that the Poisson solver (right side)
is less effective: the AllReduce does not scale well and the overlapping exists
but is dropping along with the number of cores. Indeed, it takes around 30%
of the overall execution time on 64 SKL nodes there (and 47% with 128 KNL
nodes), with a small fraction overlapped with computation. Please note that this
operation only consists in performing communications and can hardly be well
overlapped with computations at scale due to the actual dependencies between
the steps of Algorithm 1 itself.

It demonstrates the need of overlapping. But, the dependencies of the algo-
rithm prevent any additional overlap with computation in the Poisson solver.
Though, the results from all tiles are required to perform the global collective,
the result of which is used to solve Poisson, that finally leads to the next timestep.

At the beginning of the timestep, we can note that the master thread takes a
while before executing tasks. This delay is spent to submit all the tasks for the
current timestep and takes a non-negligible part of the time13.

Task priorities Figure 4b displays the task scheduling with task priorities dis-
abled, as opposed to Figure 4a. This schedule is less efficient since MPI Wait

tasks are executed lately reducing the throughput of ready tasks that compute
the border points, and at a later stage is delaying the start of Poisson. Please
note that the AllReduce is slightly faster. We assume the management of traces

13 This time could be shortened, if only one could store and resubmit the task graph
from one timestep to another such as in [2].
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(b) Task scheduling without priorities enabled and with task loops.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iteration time (ms)

0
2
4
6
8

10
12
14
16
18
20
22

Th
re

ad
 ID

s

MPI_Isend/Irecv
Diagnostics
Tile center
MPI_WaitAll Irecv
Tile border
MPI_WaitAll Isend
Prepare send buffers
Local ghost copies
MPI_AllReduce
Poisson-Ampere

(c) Task scheduling with priorities enabled and without task loops.

Fig. 4: Task scheduling of one iteration within one MPI process using 64 SKL
nodes. White areas are idle time and runtime overheads. Dashed lines are the
completion time of the selected iterations.

by the runtime causes network transfers that perturbs the AllReduce opera-
tion. Overall, this version is 5.7% slower than the version with priorities. Thus,
it shows the effectiveness of using task priorities. However, one can note that
some OpenMP implementations do not currently support priorities. Indeed, the
LLVM/Intel runtime does not yet, but KOMP and GOMP do.

Note that while GOMP could be used in the experiments of this paper, we en-
countered some limitation when we tried to use it. Indeed, OMPT implemented
in GOMP that enable tracing capabilities is still in an early state and we did
not succeed to make it work on the tested computing environment (with GCC
8.2.0). Studying results without such information was proven to be tricky.

Quantifying the overlap To measure the amount of overlapping more precisely
on the overall execution time, we have designed and used two metrics: rcomm
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and ract. Let us define rcomm = tcomm

tall
where tcomm is the cumulated time of

MPI-only tasks (which are serialized) and the tall is the overall completion time.
rcomm gives hints on whether the application is compute-bound (rcomm ≈ 0) or
rather communication-bound (rcomm ≈ 1 with a small ract). ract =

tcompute

tall × ncores

where tcompute is the cumulated sum of all computational task duration (parallel
time) and ncores the number of cores. ract represents the amount of activity of
all the cores without including communications and runtime overheads.

On Figure 4a, rcomm represent the ratio of serialized hatched areas (MPI calls)
over the overall completion time and ract is the fraction of non-hatched colored
area (OpenMP computing tasks) over the overall two dimensional plotting area
(parallel time).

Results show that rcomm = 0.09 and ract = 0.96 on 1 SKL node and
rcomm = 0.64 and ract = 0.60 on 64 SKL nodes. It means the application is
clearly compute-bound on 1 node as 9% of the overall execution time is spent
in MPI calls and cores are busy to perform computation 96% of the time. On
64 nodes, the application spent a major part of its time in MPI calls (64%), but
cores are still busy 60% of the time, which indicates a good overlap. This is quite
consistent with the schedule of the selected iteration displayed in Figure 4a as
serialized MPI calls take a significant portion of the sequential time and the idle
time is not predominant although it is clearly significant.

Cost of the dependencies While synchronizations are known to cause load im-
balance between threads and could be costly on many-cores systems; the cost of
task dependencies can sometimes exceed them. Figure 4c displays the schedule
of non-recursive tasks with fine-grained dependencies rather than task loops in
recursive tasks of Figure 4a. The task submission takes around 3 times as long as
the first version. This large overhead is due to the high number of dependencies
(9 per task) compared to the task granularity [9]. Still, the AllReduce is post-
poned and the master thread is busy at submitting tasks rather than executing
them. As a result, the overall completion time of this variant is 9.7% slower than
the first one. This justifies the use of task loops in recursive tasks. The overheads
are expected to increase with more worker threads or a finer granularity.

More generally, the number of dependencies per task should be minimized14.
Sometimes, it should be done at the expense of the code maintainability (e.g.
indirect dependencies, over-synchronizations, control-based dependencies). An
analysis of this kind of trade-offs is done in [9].

Impact of the tile granularity Figure 5 displays the overhead coming from the
choice of the tile size regarding the number of KNL nodes used. Such over-
head includes the management of ghosts, runtime costs (e.g. task scheduling),
scheduling effect (e.g. load balancing), hardware effects (e.g. cache effects). A
ratio equal to 1 means that the selected tile size provides the best completion
time of all evaluated tile sizes for a given number of nodes. A ratio greater than

14 The management cost of dependencies could also be lowered by the runtime if ded-
icated studies are done along this line.
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1 means that the completion time sub-optimal since another tile size that results
in a smaller completion time can be picked.

On one hand, a coarse tile granularity on a lot of nodes (under-decomposition)
results in worker starvation since there is not enough tasks to feed them (bottom-
right of the Figure). On the other hand, a small tile size on a few nodes (over-
decomposition) introduces prohibitive runtime costs due to the number of tasks
to schedule proportionally to the overall execution time (top-left of the Figure).
Thus, the most efficient tile size is related to the number of nodes.

Strategies to set the tile size We can emphasize that the cost of an under-
decomposition of the domain causes more problems than an over-decomposition.
Thus, it is better to perform a slight over-decomposition, it provides more flex-
ibility to the runtime to ensure a decent load balance. Finally, choosing 64x64
tiles (see Section 4.1) is not always the best but is an adequate trade-off to ensure
the scalability of this code up to 128 nodes.

Discussion on the granularity The tile size, and more generally the granularity
of tasks is a matter of concerns to reach good performances. This problem is
usually addressed using recursive tasking in OpenMP: tasks can be submitted
from different threads and from other tasks recursively to lower the cost of
scheduling. However, in OpenMP dependencies can only be defined between
sibbling tasks of the same parent task, this is a pitfall to avoid on this use-
case. Weak-dependencies proposal [14] would overcome the restriction if well
integrated in OpenMP. Since MPI tasks are serialized, they must be submitted
from the same thread or parent task and the same rule apply for the advection
tasks since they depend on MPI tasks. An alternative is to work at a coarser
grain using dependencies on recursive tasks. But, this approach mitigates the
submission overhead at the cost of an increased complexity and introduces over-
synchronizations that can harm overlapping. Practically, auto-tuning approaches
can be used to find the best granularity, especially for more complex use-case.

Leveraging task graph tracing OMPT and the tracing capability of KOMP are
the backbone of this paper. First of all, it has guided us to design the application
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by providing constant feedback on the runtime scheduling and the source of over-
heads (dependencies, granularity, synchronizations). For example, it has enabled
us to reduce the critical path by tuning the submitted task graph and to improve
the overlapping at large scale. Moreover, it also enables the visualization of task
scheduling. It proves to be useful to profile the application or even track bugs
(e.g. bad dependency, abnormal slow task) as well as complex hardware issues
(e.g. cache effects relative to the locality). This feature also made it possible to
draw Figures 4. However, there is no free lunch: tracing introduces an additional
overhead which can be significant at fine granularity. That being said, it is still
well-suited to analyze the complex behavior of OpenMP task-based applications
provided that performance measures are close enough with or without tracing.

Combining tasks and MPI The serialization of MPI communications tasks is
more a bypass to prevent issues related to MPI implementations than a definitive
solution. Indeed, the developer nor the user are not in the best position to: adjust
the number of threads allocated to MPI communications, pin them, deal with
issues related to MPI THREAD MULTIPLE. Indeed, the tuning strongly depends on
the MPI implementation, the runtime, the hardware. Moreover, it raises another
problem: in which order MPI tasks should be executed to minimize the overall
execution time? While we have chosen to force a static schedule of such tasks in
the considered use-case, it may not be optimal in general. Indeed, the time of MPI
primitives varies regarding the node architectures, the network hardware, the
bindings of threads, as well as the actual use of the shared network infrastructure.
Moreover, regarding the dependencies and the critical path, it may be worthwhile
to start communications before others. OpenMP currently provides no way to
deal with such a constrained multi-objective optimization with communication.

5 Related Work

Many studies have been previously conducted on building OpenMP+MPI appli-
cations, especially for loop-based applications. But, to our knowledge, no previ-
ous work have studied the use of OpenMP 4.5 task-based features on CPU-based
many-core systems, especially fine-grained dependencies coupled with MPI.

The MultiProcessor Communications environment (MPC) [13] try to fill in
the gap between OpenMP and MPI. While this approach address problems per-
taining to the overlapping in hybrid applications, it mainly focuses on loop-based
applications. So far, MPC only supports OpenMP 3.1 and thus features like data
dependencies, task loops and priorities are not supported. Authors [15] consider
to signal blocking MPI calls to OpenMP for better scheduling. The grain of
their solution seems to be order of magnitude bigger than considered in our
target simulation.

Some task-based runtimes that support OpenMP also support extension rel-
ative to MPI. StarPU [1], for example, supports asynchronous and task-based
send/receive point-to-point communications, and more recently MPI collectives.
The runtime is based on a pooling thread to handle the asynchronous MPI
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communications. It provides two main APIs: a C extension based on pragma
directives and a low-level C API. The first targets only GCC, and as far as we
know, it does not support MPI-related features. The last is flexible, but also
more intrusive as a lot of code is needed to submit and manage tasks. OmpSs [6]
is another runtime supporting MPI in a similar way. It extends OpenMP with
new directives so it can be used by end-users. However, OmpSs relies on its own
compiler. These approaches can be a good starting point to create a standard
interface between OpenMP and MPI or even an OpenMP extension that could
be supported by multiple runtimes as well as MPI implementations.

Although, as of today, designing practical hybrid applications is still chal-
lenging for developers adopting both MPI and OpenMP task-based constructs
to target recent and upcoming many-core systems. This is an active field of
research and the state-of-the-art is moving quickly.

6 Conclusion

This paper evaluated the use of the OpenMP task-related features like priorities
and task loops (introduced in the version 4.5 of the norm) in the context of a
MPI+OpenMP application that solves the Vlasov-Poisson equations on many-
core architectures. It emphasized the impact of using tasks on the overlapping
and the overall performance. A specific focus has been put on the tracing and
visualization tools. The paper has also highlighted limits specific to OpenMP
and provided feedback.

Experiments have been conducted on systems with Skylake and Xeon Phi
processors from 1 up to 128 nodes. Results show that OpenMP tasks enable
achieving a good overlapping. Task priorities are proven to be effective, espe-
cially to schedule MPI communications. The overhead due to tasks submission
and due to dependencies management revealed to be quite high. We managed
to reduce this overhead by using: less dependencies, task loops constructs and
recursive tasks. Finally, OMPT and runtime tracing capabilities have enabled a
fine analysis of the behavior and performance of the code, and thus have been
essential.

We think that specific points should be mainly addressed in the future.
First, the interaction between OpenMP and MPI should be improved in a way
the runtime can reorder opportunistically the scheduling of tasks that embed
MPI communications. Second, fine-grained dependencies between siblings of
recursive tasks should be made possible. Indeed, it is difficult for the user to
express all the available parallelism with the existing task features.
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17. Sonnendrücker, E., et al.: The semi-Lagrangian method for the numerical resolution
of the Vlasov equation. Journal of Computational Physics 149(2), 201 – 220 (1999)

https://openmpcon.org/wp-content/uploads/2018_Tutorial3_Martorell_Teruel_Klemm.pdf
https://openmpcon.org/wp-content/uploads/2018_Tutorial3_Martorell_Teruel_Klemm.pdf
http://www.openmp.org
http://www.openmp.org

	Fine-grained MPI+OpenMP plasma simulations: communication overlap with dependent tasks

