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Abstract
This paper is a comparison of analytical and numerical evaluations for a model system, which consists
of a vertically suspended beam-like structure, guided by a pair of sleeves subjected to static or dynamic
transverse displacements. The goal of these analyses is to evaluate and describe the mechanical behavior
of such system during situations involving significant misalignment of the guiding sleeves, primarily caused
by horizontal seismic vibrations. The analytical evaluation of the beam is performed using a solver in the
novel tool PIRAT that incorporates the Bresse method to determine deflection shape and stress of the beam,
where the numerical calibration uses a finite element solver called Cast3M. Both of these methods also
investigate the evolving contact between the beam and its guiding sleeves (including a rigid lower sleeve
and a semi-rigid upper sleeve) by an iterative algorithm to add additional contact zones / pressures to more
realistically replicate the natural system. Illustrative computations are performed in order to verify that both
methods are able to produce the same results / trends using a static deformation profile for the guiding
sleeves. With the static models sufficiently validated and calibrated, the preliminary dynamic response of
the system is presented. These are produced by replacing the static Bresse method with the dynamic Euler-
Bernoulli equation of motion in the analytical framework. This is also compared to the dynamic capabilities
of Cast3M, which relies on modal analysis, for validation. The work in this paper signifies the next step in
developing a set of tools for considering dynamic responses to ensure the proper behavior of such systems
during seismic activities through the use of analytical evaluations.

1 Introduction / Background

Because they ensure essential safety functions, Reactivity Control Systems (RCS) are critical components
for any nuclear reactor. Seismic events, which require operational RCS, in order to achieve reactor shutdown
with a high reliability, represent the most challenging situations for the RCS design. Indeed, the large
structural deformations that an earthquake could induce have the potential of preventing the anti-reactivity
insertion into the reactor core, necessary to stop the nuclear reaction,.

This topic applies to a large variety of reactor types: Pressurized Water Reactors (PWR) [1, 2], Boiling Water
Reactors (BWR) [3] and Sodium-cooled Fast Reactors (SFR) [4, 5, 6, 7]. As illustrated in Figure 1, RCS
designs, such as the CSR and the RBC systems, respectively described in [8] and [7], both instances for
SFR-type reactors, are typically composed of:

• A Mobile Part (MP), which embeds the neutron absorbing material, retracted above the fissile core
during reactor operation, and inserted into it during shutdown phases.

• Two static sleeves, which guide the MP during the insertion phase triggered by the reactor scram.
The sleeves are respectively suspended underneath the Above Core Structure (ACS), for the Upper



Sleeve (US), and supported by the Below Core Structure (BCS), for the Lower Sleeve (LS), which is
surrounded by neighboring fuel assemblies forming a densely packed lattice.

Figure 1: Example RCS Components

Under seismic situations:

• The collective movements of the core assemblies, induced by the horizontal BCS excitation, lead to
bending deformations of the LS. Because of the important stiffness provided by the close packing of
core assemblies, the LS deformation constitutes a rigid boundary condition for the lower part of the
MP.

• The US also undergoes bending deformations, induced by the horizontal ACS excitation, albeit of
lesser amplitude. These deformations constitute a semi-rigid boundary condition for the upper part of
the MP, due to the finite stiffness of the US and absence of close packed structures surrounding it.

As illustrated in Figure 2, the resulting misalignment between the LS and the US can generate multiple
contacts with the MP, implying horizontal reaction forces that could be detrimental in two ways:

• Friction forces, resulting from these contacts, could counter-balance the gravitational force that drives
the passive insertion of the MP into the reactor core, and thus delay reactor shutdown.

• Bending deformations and contact pressure, could induce various damages, such as excessive stress,
relative to accepted design limits, and premature wear of the coated guide levels, where contacts are
nominally expected to occur.

The French Atomic & Alternative Energy Commission (CEA) recently started a multi-year program to de-
velop a set of simulation tools, and the associated experimental qualification tests, dedicated to RCS insertion
reliability assessment. This work plan was initiated with a static tool, referred to as RC3, developed with
the Cast3M Finite Element solver [9]. It is presently continued with the ongoing development and validation
of a set of tools, based on analytic formulations and implemented with the Python programming language,
within a toolbox called the Python Implementation for Reliability Assessment Tools (PIRAT) to cover:



Figure 2: Possible Contacting Surfaces

• Static studies: the Static Bresse Implementation tool (StaBI) is a finalized substitute for a finite element
analysis, based on the Bresse formulation [10], designed for computing reaction forces (and resulting
deformations, contact pressures, etc) induced by static displacements imposed by the sleeves.

• Dynamic studies: the Dynamic Euler-Bernoulli Implementation for Seismic Events tool (DEBSE),
whose development is in progress, solves the dynamic Euler-Bernoulli equation, designed for produc-
ing outputs similar to those of StaBI, but taking into account their time evolution under some dynamic
excitation relevant to seismic situations.

• Kinetic studies: the Step-by-step Insertion Kinetic Implementation tool (SIKI) will be developed to
perform an iterative computation of the MP insertion, by relying on friction forces evaluated by means
of the static/dynamic tool for each time step of the shutdown sequence, starting from scram, and until
full insertion, including the final damping phase.

This paper discusses the progress and validation of the first two studies.

2 PIRAT

PIRAT uses Python as the script interpreter. Possible future development of the analysis performed by
PIRAT, currently in discussion, could be to develop within the Cast3M framework. The current use of PIRAT
is for an exploratory analysis that was only previouslly performed in [7] with issues that created a desire for
analytical robustness. This desire was to allow a more flexible implementation for various geometries and
desired outputs. The modular structure offered by PIRAT, in addition to the simple interface for numerical
tools, are well adapted to the exploratory work considered. Within PIRAT, the full static solver and the
preliminary work on the dynamic solver are presented in this section. Results from both of these solvers are
compared against similar computations made with custom implementations of Cast3M to verify the accuracy,
pending future comparison to experimental testing.

One of the unique characteristics of PIRAT, thanks to the Python implementation, is the ability to easily
create new geometries and material properties. Geometry is inputted into PIRAT using an Excel spreadsheet
containing the geometric properties and a material flag to be matched to user-defined properties. Adjusting
the geometry, for example increasing the diameter of a section, is a simple change in the spreadsheet. With
RC3, any geometric changes require a new model to be generated, meshed, and then analyzed. This is more
time consuming since the intended use of PIRAT is for the initial design phases. During this phase, the
geometry can vary over many iterations that can accumulate to a large amount of time for remodeling.



2.1 StaBI

For the first solver, a 1-to-1 replacement for RC3 is envisioned. The mathematics used in the StaBI solver
are based on the Bresse formulations as presented in [10] and summarized as:

θ(z) = θ(z0) +

∫ z

z0

Mfy(ζ)

E(ζ)IGy(ζ)
· dζ (1)

ν(z) = ν(z0) + θ(z0) · (z − z0) +

∫ z

z0

Mfy(ζ)

E(ζ)IGy(ζ)
· (z − ζ) · dζ, (2)

where θ(x) is the angular displacement, ν(x) is the transverse displacement,Mfy(x) is the effective moment,
E(x) is the Young’s modulus, and IGy(x) is the area moment of inertia at location x. Since the system of
interest is a combination of multiple sections, the analysis is split into sections with both the transverse and
angular displacement being continuous across each transition.

One of the major desired outputs of StaBI is the contact force values and locations between the MP and the
sleeves (LS and US). Due to this, the effective bending moment is not known a priori. In order to calculate
the force values, the superposition principle is used. At each location of possible contact, the response of the
beam is computed for a unitary force. These responses are then collected into a matrix and used to solve for
the forces via

Fk = [V̄ (zk)]
−1 · [∆(zk)], (3)

with [∆(zk)] being the collection of displacements caused by the sleeves and [V̄ (zk)] is the collection of
responses at each contact location due to a unitary force at each contact zk. Then these forces are used
to determine the final deflection of the MP and can be post-processed in order to get relevant data such as
friction magnitude and bending stress in the beam.

The current implementation of StaBI has several assumptions; some are based on the Bresse theory and
other are based solely on current implementations. The first assumption is that the beam is cantilevered at
one end. Due to previous testing using RC3, this assumption is not expected to have a large effect on the
results as compared to being pinned at the end. Past RC3 computations indicate that there is no large effect
on the force locations and magnitudes due to the boundary condition at the top of the MP. Secondly, the
force due to contact is assumed to be a point force that does not cause any surface deformation. This is to
allow a simple determination of the applied forces due to the contact. Another implementation assumption
is that for each section in the model is treated as a homogeneous and uniform cylinder. This creates the
opportunity to avoid numerical integration; For a single point force, the effective moment within the beam
can be known and then integrated analytically. The simplification comes in Equations 1 and 2 where the
integrals are determined external to Python and the resultant is programmed in, reducing computational time
and complexity in the program. There is a version of StaBI that utilizes numerical integration. However,
there is a very large increase in computational time for the systems tested. For example, one evaluation using
specific parameters using the analytical integration would take StaBI approximately one minute, and the
same parameters but using a numerical integrator that is built into Python takes approximately 17 minutes
on a fairly standard desktop computer. If only a single analysis is performed, this is still acceptable, but this
might be constraining if StaBI is used for a kinetic evaluation that assumes quasi-static state at each time
step via SIKI.

The last major assumption, which creates the most challenge, is how StaBI detects contact. This is done
differently from the method used in RC3, which assigns a constraint on the stiffness matrix in order to
account for contact. StaBI is a solver that does not require a mesh in order to determine the deflection of the
MP, which RC3 requires. However, in order to determine if there is contact, a conforming mesh is assigned to
all parts of the system. The current algorithm sweeps through that mesh and determines if the outer radius of
the MP is in contact or past contact with the inner radius of the sleeves. Then StaBI assigns the point with the
largest discrepancy as another contact point, and the algorithm is looped until there are no additional contact
points. One major caveat found during testing is that enforcing a displacement very close to the actual sleeve



location will result in the algorithm detecting contact very close to previously determined locations, since
each force is treated as a point force. This creates force values that are very large and nonphysical. In order
to alleviate this issue, a clearance adjustment factor is used. This makes it such that there is a very small
gap between the MP and the sleeve. Doing this generally produces larger force values, but allows for a more
robust analysis. For the majority of the work performed in this paper, an adjustment factor of 80% of the
clearance is applied. This is selected as an all-around value for the systems tested to produce reasonable
results with no numerically determined parasitic contact.

2.1.1 Pseudo-code

While there are many detailed steps in StaBI, the general work flow is broken-up into four major parts: 1)
Setup and Geometry, 2) Quasi-Rigid Convergence, 3) Contact Determination, and 4) Post-Processing. These
are the steps currently implemented into the static solver and are similar steps to those that are expected to
be implemented into the dynamic solver as well. Step 1 is specific to each system tested. This includes:
generating the geometry, setting material properties, determining convergence criteria, setting the sleeve
locations, and determining the step size for the contact determination. These all are different depending on
the system being investigated and what the user desires. Step 2 is a large loop that contains step 3 within
it. If a subsystem (US for example) is determined to be quasi-rigid, then iterations on the displacement of
that subsystem must be performed to create a quasi-static equilibrium state of the system. Currently, this is
done by comparing the calculated force value on the MP and the force value on the quasi-rigid subsystem at
the same location. Step 3 loops through adding contact locations until there is no additional contacts found.
Once step 2 is converged, then the post-processing of the data can occur in step 4. This would output values
such as: bending stress, total friction in the system, and Hertzian contact pressure. A more detailed step flow
chart is presented in Figure 3.

Figure 3: Flow Chart of StaBI for Guided Systems with Both Rigid and Quasi-Rigid Sleeves

2.2 Preliminary DEBSE

One of the main goals of the PIRAT tool is to perform the analysis in the dynamic domain to ensure the
insertion reliability during a seismic event. Initially, the expansion of PIRAT to handle dynamic situations is
to replace the Bresse’s equations of motion with the dynamic Euler-Bernoulli beam equations of motion. This
increases the dimension of the system by introducing a dependency of time. Current use of one dimension
in space is a simplification for the current work that can be expanded in the future to account for any drop
velocity. The governing differential equation of motion becomes:



∂2

∂x2
(EI(x)

∂2w(x, t)

∂x2
) + ρA(x)

∂2w(x, t)

∂t2
= q(x, t), (4)

where w(x, t) is the transverse displacement of the beam, EI(x) is the structural rigidity, ρA(x) is the
linear mass density, and q(x, t) is the externally applied distributed load. One thing to note is that this
formulation does not account for axial stretching. As will be discussed in the comparison of DEBSE to
Cast3M, this stretching might be an important factor for select modes. For the majority of the analysis in this
paper, it is assumed that all driving loads are either internal to the system or are applied as a time-dependent
boundary conditions. The implementation of these boundary conditions are similar to the method used in
[11]. Simply, the displacement of the beam is a combination of the free-vibration and the time-dependent
boundary conditions. One example of how this can be written is:

w(x, t) = ϕ0(t)δ(x) + ϕL(t)δ(x− L) + u(x, t) (5)

where ϕx(t) is the time dependent boundary condition at x, δ(x) is the Dirac delta function, and u(x, t) is
the free-vibration of the beam subject to elementary boundary conditions such as: pinned, clamped, and free.

With the knowledge that future work will include free-vibration, the preliminary dynamic analysis is a veri-
fication of the dynamic properties of the example system, in particular the MP subsystem. The free-vibration
analysis being used in DEBSE is currently based on modal decomposition. This allows for a separation of
time and space in the governing equations of motion and can be written as:

u(x, t) =
∑
n

ψn(x)qn(t), (6)

where ψn(x) are the deflection shapes, also called mode shapes, and qn(t) is the time dependent contribution
of mode n [11]. While this summation is countably infinite, it is typically truncated based on frequency
via the natural frequencies. Using this modal decomposition allows for the partial differential equation in
Equation 4 to become a summation of independent ordinary differential equations.

This system of interest contains some interesting aspects that require some special considerations. The major
interesting aspect is the geometric discontinuities across different sections of the MP. Each section of the MP
is modeled as a homogeneous, uniform cylinder with the difference between sections occur instantaneously,
providing no derivative at that point of the beam. The cylinder model is a current simplification to allow
for a more simple evaluation. There are analytical representations of mode shapes for functionally variant
cross-sections [12, 13, 14] that will be included as this tool is further developed. This is mainly an issue
with the first term in Equation 4 that looks at how the structural rigidity changes along the beam. In order
to account for this step change, each section is thought up as a homogeneous beam with specified boundary
conditions, similarly to the method used in [15]. The external boundary conditions are still enforced, but at
the internal boundaries, mode shape continuity is enforced. This can be expressed as:

ψn,i(Li) = ψn,i+1(0) (7a)
∂ψn,i

∂x
(Li) =

∂ψn,i+1

∂x
(0) (7b)

EIi
∂2ψn,i

∂x2
(Li) = EIi+1

∂2ψn,i+1

∂x2
(0) (7c)

EIi
∂3ψn,i

∂x3
(Li) = EIi+1

∂3ψn,i+1

∂x3
(0), (7d)

with Li being the length and ψn,i being the mode shape of section i for mode n. Using this formulation, it
is assumed that each section has a local coordinate system and the modal deflection at any location can be
determined by:



ψn(x) = ψn,i(x− x0i) if x ∈ [x0i, xfi], (8)

where x0i is the starting location and xfi is the ending location of section i in the global coordinate system.

For the validation of DEBSE, Cast3M is used to provide natural frequencies and mode shapes for the MP
system. These are chosen in order to test the basic uses for the dynamic solver. Both natural frequencies and
mode shapes are not dependent on user-input. Other dynamic data, such as frequency response functions and
time history, require the analyst to decide some damping factor and time-dependent boundary conditions in
order to evaluate. Since this can be chosen to be the same for Cast3M and DEBSE, any differences found in
these two are primarily due to the differences in the mode shapes and frequencies.

Applying the modal decomposition to Equation 4, the space component of this equation becomes:

∂4ψn,i(x)

∂x4
= β4n,iψn,i(x), (9)

where βn,i is an unknown coefficient that is related to the natural frequency of the mode n and the material
properties of section i. The general solution to this differential condition is:

ψn,i(x) = a1,n,i sin(βn,ix) + a2,n,i sinh(βn,ix) + a3,n,i cos(βn,ix) + a4,n,i cosh(βn,ix), (10)

with ak,n,i being unknown coefficients for the mode shapes. These coefficients are determined based on the
constraints of the system, which can be written as:

Ex 0
0 D
G




...
an,i

...

 = [0] (11)

or

[B][an] = [0], (12)

where Ex is the external boundary condition for x = 0 and D is the external boundary condition at x = L
applied to the mode shapes, G is the continuity conditions given in Equation 7, and an are the collection of
mode shape coefficients with an,i = [a1,n,i, a2,n,i, a3,n,i, a4,n,i]

T .

The constraint matrix [B] is a function of the coefficient β that is a function of frequency. When the frequency
is set to a natural frequency, the constraint matrix is rank deficient, meaning that the determinate is equal
to zero [16]. In order to determine the natural frequency in DEBSE, a Newton-Raphson method is used on
the determinate of the constraint matrix. For the initial points of the Newton-Raphson method, the natural
frequency of a uniform beam containing the mean properties of the MP subject to the external boundary
conditions is used. Since a uniform beam with elementary boundary conditions contains a known analytical
solution, that value is used. This makes the assumption that this mean natural frequency is relatively close to
the true natural frequency. In order to ensure this, a redundancy check is performed on the natural frequencies
to ensure that the same mode is not considered multiple times. Additionally, the natural frequencies found
in Cast3M are also inputted as initial points to determine the natural frequencies before the redundancy
check. It was found during testing, that using an uniform beam with average material properties would
occasionally skip a mode of vibration. Alternate initial starting points for the Newton-Raphson method are
being investigated, such as an interactive input showing the frequency response function to ensure that each
peak is selected and evaluated. The mode shapes are determined at each natural frequency by setting one
component to a specified value since the constraint matrix is rank deficient.

Once these are determined in DEBSE, they can be compared to the results from Cast3M. The error on the
natural frequencies is calculated by a percent difference once the desired mode in the model is selected. In



order to select which DEBSE mode corresponds to the Cast3M mode, a comparison between the mode shapes
is required. For this analysis, the modal assurance criterion (MAC) is used. The MAC can be determined by:

MACij =
(ψT

i ψj)
2

(ψT
i ψi)(ψT

j ψj)
, (13)

where i and j are mode numbers. The MAC calculation is performed for each mode generated by DEBSE and
by Cast3M. This MAC value has a range of [0, 1] with a MAC value of 0 implying that there is no correlation
between the modes and a value of 1 implying that there is a perfect correlation between the modes. An
important note to make is that the MAC values do not prove orthogonality, they just imply correlation. This
is similar to the saying “Correlation does not ensure dependency” from the statistics field. Using a method
like this will allow a quantitative proof of the corresponding mode shapes. This is used to filter out motion
that is not described by a method, in this report the axially coupled modes of Cast3M, and show if there is
any issue with the convergence of the Newton-Raphson approach to determine the natural frequencies.

3 Example System

In order to test PIRAT, a simplified but realistic RCS system is used. The requirement for the type of system
is a beam like object that is guided by sleeves, such as the one pictured in Figure 4. This is taken as a similar
system to the one analyized in [5, 6, 7]. There are some differences in these systems and the dimensions are
not given. An estimation of the length of the beam and comparative dimensions was performed, resulting in
the example system used in this work. In order to represent the sleeves, a polynomial is used for the LS and
the US is treated as quasi-rigid. Some features, such as the dash-pot, are removed for simplification since
previous testing showed no significant changes due to these additional complexities.

(a) Zero Stroke (b) Full Stroke

Figure 4: Geometric Configuration of the Example System

This system has a maximum stroke around 1000mm, meaning that the MP can move vertically by that
amount. To test this range, stroke values from 0 to 1000mm in increments of 10% the maximum stroke are
simulated using StaBI. There are three main points of reference that correspond to expected guide regions
shown in Figure 4. The first is the bottom section of the MP, thus causing the contact location to vary in



the global coordinate system. If the global reference frame is considered, the Lower Guide (LG) produces a
moving contact, which could add some difficulties to the dynamic analysis if the MP is allowed to drop. The
second area is the guide region at the top of the LS, call the Intermediate Guide (IG). This area has a larger
clearance compared to the other guide regions, but is expected to produce the largest contact force due to the
large imposed displacements. The final expected contact location is the Upper Guide (UG). This is located
at the bottom of the US and has the smallest clearance. The UG is also the location used for the quasi-rigid
convergence loop.

4 Static Misalignment

For this static solver, both StaBI and RC3 produced the same contact points for stroke values up to 800mm.
In the cases with stroke values greater than 800mm, StaBI detected a parasitic contact between the LG and
the IG. The first result to report is the deformation shape of the MP in Figure 5a. This figure shows the
center-line deflection of the three subsystems, contact locations (as cyan dots), and the minimum clearance
of the MP at each altitude point for the case of a stroke value of 0mm. This shows that there is contact at
each of the guide areas that contain a reduced clearance resulting in a total of three nominal contacts. One
interesting aspect of Figure 5a is the near parasitic contact within the US. Figure 5b shows the same data for
when there is a full stroke. Some interesting things to note are the parasitic contact between the LG and IG
and the change in sign for the contact force of the LG.

(a) Zero Stroke (b) Full Stroke

Figure 5: Example Deformation Shape of Example System with Vectors Representing Relative Force Mag-
nitude and Direction

These deflections are compared to the results from RC3 using the same displacement for the quasi-rigid US,
which is scaled to the displacement at the UG, and can be seen in Figure 6a. In Figure 6, the values for
the detected contacts are also presented. These include both using a tolerance adjustment factor of 80% and
90% to show the increase in accuracy. One thing to note, the RC3 simulations are re-performed for each
adjustment factor. This is due to each case having a slightly different US profile due to the deflection at the
UG.

There is some small differences between RC3 and StaBI shown in Figure 6a. First, for the areas that are
bounded by the sleeves, StaBI reports less deflection than RC3 and the opposite of that when the MP is not
bounded by the sleeves (between the IG and UG). Besides that small shift, there is a noticeable discrepancy
near the LG. The cause of this is unknown, since there is a tight tolerance at the LG level. One possibility is
the discrepancy between StaBI and RC3 on the force magnitude. For the LG on this particular example, StaBI



(a) Stroke Value of 0 mm (b) Stroke Value of 700 mm

Figure 6: Comparison of Deflected Shape of Example System

detected a force of 240N while RC3 detected a force of 220N . This is one of the largest differences found
between the two methods but is still within 10%. Another possibility is based on the contact algorithm. The
contact algorithm used in RC3 sweeps through the mesh on the sleeves and finds the closest mesh point of the
MP within tolerance. There is a possibility that for this stroke value, the algorithm did not evaluate a mesh
point on the LG, but only to another section of the MP. One thing to note is that for a stroke value of 0mm,
StaBI and RC3 has the worst agreement among the cases where the same contact zones are determined. To
show a closer agreement, a stroke value of 700mm is shown in Figure 6b. This shows that there is almost
no difference between StaBI and RC3 except a very small shift that was also noted in Figure 6a, but with a
smaller magnitude of difference.

Qualitatively, the benchmark between StaBI and RC3 produces satisfactory results. By looking at the per-
centage difference between the magnitude of the contact forces, a similar conclusion can be determined. For
the cases where StaBI and RC3 produced the same contact zones, there was an average percent difference of
5.6% with a maximum difference of 9.9%. This level of accuracy is sufficient to say that when the contact
algorithms detect the same locations, either StaBI or RC3 will give a good result.

It is an important note that these results used a tolerance adjustment factor of 0.80, meaning that 80% of
the clearance is enforced for the contacts. If this factor is increased to 90%, the accuracy increases. For
this system, the average percent difference is 1.5% with a maximum of 5.0% in magnitude. One interesting
effect of this increase is that the forces from StaBI are not always higher in magnitude compared to RC3.
This shows that there is not a guaranteed conservative estimate on the contact forces as originally thought.
When the adjustment factor is increased to 95%, StaBI detects parasitic contact within the same zones as
other previously determined contact locations. In particular, StaBI usually detects a second contact at the
LG causing the forces at the LG to increase substantially, on the order of 100N to 20, 000N . There is still
future work in the determination of the tolerance adjustment factor and the contact algorithm in general.
This can only be done with either a known benchmark (simplified system tested by various methods) or
some experimental validation.

5 Preliminary Dynamic Analysis

In order to test the accuracy of the DEBSE solver, six different configurations are tested for the MP using a
combination of free (F), clamped (C), and pinned (P) boundary conditions applied to the top of the MP and



the LG. These same configurations were also used in Cast3M in order to verify the natural frequencies and
mode shapes. The algorithm used in Cast3M for modal analysis requires one of two inputs, a set number of
modes or a range of frequencies. For this comparison, the frequencies of interest are those less than 100Hz.
This was chosen since the seismic frequencies are expected to be in the low range. The MP has between 10
and 13 elastic natural frequencies within this range depending on the boundary conditions.

The first results for validation purposes is the comparison of mode shapes. This is done by applying the
MAC formula in Equation 13 to the modes generated by DEBSE and the modes generated by Cast3M. The
results from these calculations can be seen in Figure 7 for the six combinations of boundary conditions. As a
note of nomenclature, the first word in the sub-caption refers to the boundary condition at the bottom of the
MP, the LG, and the second word refers to the condition at the top. For the majority of the modes, there is
an almost one-to-one relationship between the DEBSE modes and the Cast3M modes. In a typical analysis,
a MAC value greater than 0.90 would be considered the same mode.

For the majority of the modes, the MAC value is around 0.99 for the corresponding mode and values less
than 0.10 for the non-corresponding modes with the exception of the Free-Pin and Free-Clamped boundary
conditions. In the Free-Pin configuration, there is no Cast3M mode for the tenth elastic mode discovered in
DEBSE. Additionally, the tenth mode in Cast3M is very similar to the ninth mode from DEBSE producing a
MAC value of 0.63. These four modes are shown in Figure 8a with the blue curves being from Cast3M and
the red curves being from DEBSE. The first thing to note is that Mode 9 for both Cast3M and DEBSE overlap
nearly perfectly and are indistinguishable from each other on this plot. Mode 10 for each produce similar
shapes, but with a phase shift and different amplitudes. The true cause of this is unknown, but it is expected
to be due to in part by the stepped-beam properties. With drastic changes in the geometry and material
properties, there is a possibility of local stretching that is characterized in Cast3M that is undetectable by
DEBSE in the current implementation. DEBSE uses the small deformation version of the Euler-Bernoulli
beam equation. Alternate formulations are possible that can account for axial stretching, but it not currently
implemented. Further investigation is being performed to determine the exact cause of this discrepancy. A
similar case can be seen for the Free-Clamped boundary conditions. For this, there is no missing DEBSE
mode, but there is a strong coupling between Cast3M mode 10 and 11. The MAC value for DEBSE mode
10 and Cast3M mode 11 is 0.835. This is a very large MAC value for separate modes. To further investigate,
these modes shapes are plotted in Figure 8b. Cast3M and DEBSE mode 10 are almost identical with mode
11 from Cast3M matching the curve but with different amplitudes further along the beam. The cause of
this is also unknown, but might be due to the local stretching that was previously discussed for the Free-Pin
boundary condition.

The other main validation is the difference in natural frequencies between the two methods. This is computed
as a percentage difference of the corresponding modes that contained MAC values larger than 0.90. The
results from this comparison can be seen in Table 1. For the modes that matched well, there is very good
agreement in the natural frequencies, resulting in a maximum percent difference of 0.36%. This shows that
for a given bending mode, DEBSE is able to correctly identify the natural frequency and mode shape.

Boundary Conditions Nmodes Mean Difference [%] Max Difference [%]
Clamp-Clamp 11 0.14 0.34

Pin-Pin 11 0.13 0.33
Free-Free 11 0.16 0.36
Free-Pin 10 0.13 0.34

Free-Clamp 12 0.14 0.34
Pin-Clamp 11 0.14 0.33

Table 1: Mean and Maximum Percentage Difference Between DEBSE and Cast3M
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Figure 7: MAC Plots for Various Boundary Conditions
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Figure 8: Normalized Mode Shapes for Select Boundary Conditions

6 Remarks/Future Work

The static solver, StaBI, is shown to produce similar results to RC3 when the contact algorithms produce
the same contact locations. This is the major part of the future work for this solver. The contact algorithm
of adding an additional contact for each iteration with no ability to remove a contact is the portion of the
solver that requires the most investigation. It is currently unknown how this algorithm will be changed, but
it is difficult to determine which algorithm is a better match to the real system without any experimental
data to compare to. Gathering of this experimental data is currently being discussed and planned. This data
is expected to be gathered at either the CARNAC facility in Cadarache [17] or at the TAMARIS facility in
Saclay [18].

The next step for using the static solver would be to introduce the SIKI tool using the StaBI solver. This
system is expected to drop in case of a seismic event. So in order to get some information about this insertion,
a kinetic analysis is expected to be performed. This entails using an explicit ”time-marching” algorithm with
each time step being treated as quasi-static. The analysis would not require much changes to the solver, but
might require some optimization in order to allow for performing the analysis within a reasonable time.

While the natural frequencies and mode shapes are not the desired end result for the dynamic expansion, they
do provide a useful foundation to show that the solver can handle the simple calculations. There is a possible
issue when it comes to computational time for each simulation. Since the natural frequencies are determined
by taking the determinate of the constraint matrix, as the matrix increases in size, the required time to
determine each natural frequency increase. This matrix increases in size as more sections are introduced
since there are four additional coefficients and four continuity equations that are added to the system. While
this is not an issue for just looking at the MP, this might become more of an issue when contact is added.
One possible method to introduce contact is to replace the location of contact with a moving Pin boundary
condition. Using this method, along with modal decomposition, would require an initial determination of
frequencies and an additional determination for each addition and removal of contact locations. Currently
for the MP, it takes roughly ten minutes to compute the first fifteen natural frequencies while checking for
duplicates. It also takes approximately ten minutes to calculate the mode shapes for the MP with 1206 node
points. One expected future work is to better optimize these procedures or find an alternative approach to
determine the time history of the system. A possible alternative would be to apply the contact as constraints
on the system. This would allow for a single modal characteristics evaluation and provides extra equations
that might allow for the determination of the contact force required.

The next steps in DEBSE are to essentially perform the same analysis as the static solver, but also as a func-



tion of time. This includes: contact determination, force calculation at contact locations, contact removal,
modeling contact, and moving contact. One interesting aspect about performing this dynamic analysis is
that this type of analysis has not previously been performed at CEA. Previous iterations used a quasi-static
approach to simulations and then used experimental systems to ensure dynamic capabilities for qualification.
Using this dynamic simulations will be able to replicate the dynamic experiments at a fraction of the cost,
and allow for additional information to be determined providing more information to the design engineers.
While a dynamic experiment will still be required for qualification, there is less chance of geometric changes
due to failure resulting in requiring additional experimentation with a new geometry. Using this PIRAT tool
will allow for engineers to produce a safer system at an expectantly lower cost.

7 Conclusions

PIRAT is a novel tool that allows the calculation of contact location and forces using an analytical approach.
The static solver uses the Bresse’s formulations that allow for the determination of the displacement of a
system due to a force and also allows for an inverse solution in order to determine the force magnitudes due
to constrained displacements. This tool is used on an example prototype system and is compared to previous
work done using finite elements in Cast3M called RC3. These two methods show very good agreement for
the majority of cases. This agreement did not occur when the different contact algorithms produced different
contact locations. Without experimental validation data, it is unsure of which algorithm is more realistic to
the physical system, thus experimental testing is currently being planned.

The final desire for this PIRAT tool is to perform the same analysis in a dynamic sense. While this is a
complicated expansion, some preliminary work has been performed for the dynamic solver. This work is
comprised of a modal analysis of the Mobile Part with no contact with the Lower or Upper Sleeve. The
results presented are the natural frequencies and the mode shapes of the step-changed Mobile Part beam.
These results are compared to a similar analysis performed in Cast3M using the built-in eigen solvers. This
compares the shape and natural frequencies for the modes less than 100Hz. DEBSE was able to produce
nearly identical results for the natural frequencies and mode shapes except when there was possibly axially
stretched modes found in Cast3M, which uses 2D finite elements compared to 1D equations of motion for
DEBSE. For modes that had a MAC value larger than 0.90, the difference in the natural frequency was less
than 0.4%.

This StaBI tool has proven to be accurate for the static analysis compared to the work previously performed
using finite elements in a custom implementation in Cast3M. While there are differences in the contact algo-
rithms, these tools provide very similar results for most cases tested. The differences between the algorithms
and the physical system are not yet known, but are in planning. Since the desire of analysis is to predict
if there is a failure during a seismic event, preliminary steps are performed in creating a dynamic solver
within PIRAT. Initially, this work compares the natural frequencies and mode shapes of DEBSE and those
produced by finite elements in Cast3M. DEBSE shows to be extremely accurate while being much easier to
make design changes compared to Cast3M due to the implementation. The PIRAT tool is able to take beam-
like structures that are bounded by guiding sleeves and determine the contact force and deflection caused
primarily by the seismic induced misalignment.
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