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Abstract

Unlike finite elements methods, finite volume methods are far from
having a clear functional analytic setting allowing the proof of general
convergence results. In [4], compactness methods were used to derive
convergence results for the Laplace equation on fairly general meshes.
The weak convergence of nonlinear finite volume methods for linear hy-
perbolic systems was proven in [5] using the Banach-Alaoglu compactness
theorem. It allowed the use of general L2 initial data which is consis-
tent with the continuous theory based on the L2 Fourier transform [1].
To our knowledge this was the first convergence results applicable to non
differentiable initial data. However this weak convergence result seems
not optimal with regard of numerical simulations. In this paper we prove
that the convergence is indeed strong for a wide class of possibly nonlinear
upwinding schemes.
The context of our study being multidimensional, we cannot use the spaces
L1 and BV classically encountered in the study of 1D hyperbolic systems
[2]. We propose instead the use of generalised p-variation function, ini-
tially introduced by Wiener [6] and first studied by Young [7]. These
spaces are compactly embedded in Lp (see [9, 8]). They can therefore fit
into the L2 framework imposed by Brenner obstruction result [3]. Using
estimates of the quadratic variation of the finite volume approximations
we prove the compactness of the sequence of approximations and deduce
the strong convergence of the numerical method.
We finally discuss the applicability of this approach to nonlinear hyper-
bolic systems.
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