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In this work, we address the question of how a closed quantum system thermalises in the presence
of a random external potential. By investigating the quench dynamics of the isolated quantum
spherical p-spin model, a paradigmatic model of a mean-field glass, we aim to shed new light on
this complex problem. Employing a closed-time Schwinger-Keldysh path integral formalism, we
first initialise the system in a random, infinite-temperature configuration and allow it to equilibrate
in contact with a thermal bath before switching off the bath and performing a quench. We find
evidence that increasing the strength of either the interactions or the quantum fluctuations can act
to lower the effective temperature of the isolated system and stabilise glassy behaviour.

Introduction - Investigating how physical systems re-
act to external perturbations is a key tool in under-
standing their nature. Among physical perturbations,
quenches play a central role in uncovering how many-
body systems equilibrate [1], and when they fail to do
so. The failure to equilibrate is of particular interest and
has been the subject of a great deal of contemporary
research. Understanding how and why many-body sys-
tems can fail to reach thermal equilibrium is not only of
fundamental value (as it allows us to test the hypothe-
sis underlying equilibrium statistical physics), but it also
has practical applications: systems which fail to equili-
brate can often exhibit rich new dynamical phenomena
not seen in typical thermal states [2–5]

In recent years, two main mechanisms of ergodicity
breaking in many-body quantum systems have emerged.
On the one hand, quantum integrable systems have an
extensive number of conserved charges and so do not
thermalize to a state whose macroscopic properties are
determined by only a few quantities (such as energy and
density) [6]. On the other hand, there is also the many-
body equivalent of Anderson localisation, a.k.a. Many
Body Localization (MBL) [7–10]. In this case, the ab-
sence of thermalization is related to an emergent integra-
bility [11]. However, unlike quantum integrable models
that can be solved at (typically isolated) integrable points
in the phase diagram, MBL systems display robust emer-
gent integrability across the whole many-body localized
phase. Several approaches have been proposed to con-
struct the corresponding charges or (local) integrals of
motions [12–14].

Both integrable and MBL systems display strong er-
godicity breaking in the sense that their unitary dynam-
ics never reach a thermal state on any timescale. How-
ever, in between systems that are able to thermalize and
the ones that are not, there is a huge class of systems for
which thermalization is possible but only on very long
timescales. These are glassy systems, whose dynamics
display ergodicity breaking due to metastability. In this
case, the dynamical evolution is trapped by exponentially
many metastable states that forbid equilibration on short
timescales. In finite dimensions, such metastable states

have a finite (but very long) lifetime, while in the mean
field limit their lifetime diverges with the system size (or
dimension) due to the divergence of the free energy barri-
ers between them. Nevertheless those systems are never
completely out of equilibrium since in the end they re-
lax on timescales that scale exponentially in either the
system size or dimension [15, 16].

In contrast with MBL and integrable systems, glassy
systems do not depend crucially on isolation from their
environment or the presence of quenched disorder. In-
stead, the crucial feature is the roughness of the emerg-
ing free energy landscape which is robust both when the
temperature is finite but low enough and independently
of whether quenched disorder is present [17, 18]. The
dynamical behavior of quantum glasses has been exten-
sively studied in recent years, either motivated by the
idea of a disorder-free localization [19–24] or through
the solution of simplified models which are mean field in
nature. In this case, the analysis has been mainly per-
formed in a dissipative setting [25–30] where such models
are coupled to thermal environments, or limited to small
systems sizes through exact numerical studies of eigen-
state properties [31–33], leaving out the question of what
happens in the thermodynamic limit when the system
evolves under its own closed dynamical evolution with-
out any coupling to the bath.

In this work we address this question by focusing on
the unitary dynamics of the isolated spherical quantum
p-spin model, a paradigmatic example of a mean-field
glass, whose Hamiltonian

H =
1

2m

∑

i

Π2
i − J (t)

N∑

i1<...<ip

Ji1...ipσi1 ...σip (1)

describes a set of spins σi all-to-all coupled by random
p-body interactions Ji1...ip drawn from a Gaussian dis-
tribution with zero mean and unit variance. In order
to make the model more tractable but still non-trivial,
we treat the spins as continuous variables [34] and en-

force the spherical constraint
∑N
i σ

2
i = N by adding a

Lagrange multiplier (hereafter denoted z). We further
add a conjugate momentum Πi where [Πi, σj ] = i~(t)δij
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FIG. 1: Non-equilibrium phase diagram, starting from an
initial temperature T0. The system is first equilibrated in
contact with a thermal bath before cutting off the bath and
performing a quench in both the strength of the random inter-
actions and quantum fluctuations, (J0, ~0) → (JF , ~F ). The
boundary between the paramagnetic and aging regime shifts
and displays a strong dependence on the strength of quantum
fluctuations, both before and after the quench. In particu-
lar, when quantum fluctuations are kept constant throughout
the quench, i.e. ~0 = ~F , the aging regime is suppressed as
compared to the classical case (left panel). As opposite, when
quantum fluctuations are suddenly increased (decreased) the
aging regime is enhanced (suppressed) as compared to the
classical case (right panel). Details of how the boundaries
were obtained are given in the main text.

are canonical commutation relations, and we allow ~(t)
to be time-dependent in order to be able to change the
strength of quantum fluctuations - for details, see the
Supplementary Material [35]. This model has been ex-
tensively studied in both its classical version [17, 36–42]
as well as in its quantum guise when coupled to a ther-
mal bath [25–27, 29, 43–45]. At low temperature, the
model displays a dynamical glass transition Td due to
the emergence of long-lived glassy states. Below this
temperature equilibration is never reached and the sys-
tem ages forever (but not on exponential timescales).
The dynamical temperature is a decreasing function of
the strength of quantum fluctuations, as one may expect
[26]. Though the isolated dynamics of the quantum p-
spin model have not previously been studied, the classical
isolated dynamics was recently investigated in [46]. Here
we study the unitary quantum evolution of this model:
we prepare a typical initial configuration at some tem-
perature T0 in the paramagnetic phase and then we sud-
denly change both the strength of the random couplings
J (t) and the strength of quantum fluctuations measured
by ~(t), keeping the system isolated. The resulting non-
equilibrium phase diagram, plotted in Figure 1, features
a high-temperature paramagnetic phase, where the sys-
tem relaxes toward equilibrium, and a low-temperature
phase where aging and breakdown of time-translational
invariance emerge. Surprisingly, we find that the phase

boundary between the paramagnetic and aging regimes
strongly depends on whether quantum fluctuations are
suddenly changed (right panel) or kept constant through-
out the evolution (left panel). In particular we find that a
sudden increase of quantum fluctuations promotes rather
suppresses glassy effects (right panel, top curve), in strik-
ing contrast to what is expected from the equilibrium
phase diagram. On the other hand, when the strength of
quantum fluctuations is kept constant (left panel, bottom
curve) the aging regime in the quantum model shrinks
with respect to its classical counterpart, as expected ther-
modynamically. The resulting picture is that of an en-
hanced aging regime due to the interplay of quantum
fluctuations and non-equilibrium effects. We interpret
this intriguing result in terms of an effective temperature
Teff < T0 for the isolated disordered quantum system,
which in the absence of an external thermal bath is able
to cool itself down through quantum fluctuations, even-
tually crossing the glass transition.

Dynamical Equations for Correlation and Response -
Throughout this work we will focus in particular on the
dynamics of correlation and response functions, which
are defined by

C(t, t′) =
1

2
〈[σ(t), σ(t′)]+〉 (2)

R(t, t′) = θ(t− t′) i

~(t′)
〈[σ(t), σ(t′)]−〉 (3)

where [A,B]± = AB ± BA. The dynamics of the model
can be completely solved using the Keldish formalism
[47]. The fully connected nature of the model defined in
Eq. (1) allows us to derive closed dynamical equations
that describe the evolution of correlation and response
functions starting from an uncorrelated infinite temper-
ature initial state. After disorder-averaging and taking
the N →∞ limit, the equations of motion for the corre-
lation and response functions can be obtained following
the method of Ref. [43] and are given by

[m∂2t+z(t)]R(t,t′)=δ(t−t′)+
∫ ∞

0

dt′′Σ(t,t′′)R(t′′,t) (4)

[m∂2t+z(t)]C(t,t′)=
∫ ∞

0

dt′′Σ(t,t′′)C(t′′,t′)

+

∫ t′

0

dt′′D(t,t′′)R(t′,t′′) (5)

where we have defined the self-energies Σ(t, t′) and
D(t, t′) as:

Σ(t,t′)=−pJ (t)J (t′)
~(t′)

Im

[
C(t,t′)−i~(t′)

2
R(t,t′)

]p−1
(6)

D(t,t′)=
pJ (t)J (t′)

2

×Re

[
C(t,t′)− i

2
(~(t′)R(t,t′)+~(t)R(t′,t))

]p−1

(7)
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We notice that with respect to the classical dynami-
cal equations [46], Eqs. (6-7) have extra self-energy con-
tributions proportional to ~(t) which arise from purely
quantum fluctuations [25]. We perform the dynamical
evolution subject to a time-dependent Lagrange multi-
plier z(t) which is used to enforce the global spherical
constraint. We can derive the dynamical equation for
this by taking the equal-time limit of Eq. 5 to obtain
[43]:

z(t) =

∫ t

0

dt′′ [Σ(t, t′′)C(t′′, t) +D(t, t′′)R(t, t′′)]

−m∂2t C(t, t′)|t′→t− (8)

Equations 4,5 and 8 are the three dynamical equations
which we will base the rest of this paper on. They have
a causal structure and therefore they can be straightfor-
wardly discretised and solved numerically - for further
details, see the Supplementary Material [35].

Finite Temperature Initial State Preparation and Dou-
ble Quench - The dynamical equations (4,5 and 8) de-
scribe the evolution of the system from an initial infinite
temperature initial state uncorrelated with the disorder.
Here we are instead interested in studying dynamics from
an initial finite temperature state. Within the Keldysh
formalism this would require formulating the dynamical
equations on a three branch contour corresponding to
imaginary time, as recently proposed in [48]. To avoid the
complexities of this approach, we instead perform the ini-
tial thermalisation numerically through a double-quench
protocol. Specifically, we first quench from infinite tem-
perature to some T0 > Td and J (0 < t < tq) ≡ J0 = 1
and ~(0 < t < tq) ≡ ~0 and allow the system to ther-
malise in contact with a thermal bath, which we assume
to be a set of harmonic oscillators in thermal equilib-
rium at some temperature T0, as in Ref. 25. This re-
sults in modifed self-energies Σ̃(t, t′) and D̃(t, t′) in Eq. 7
due to the bath coupling, whose explicit expressions are
given in [35]. Then, for t > tq we switch off the cou-
pling to the bath and let the system evolve unitarily with
J (t ≥ tq) ≡ JF and ~(t > tq) ≡ ~F . All temperatures
are measured in units of J0. Supporting data demon-
strating that our system is well-equilibrated to the bath
temperature is shown in Supplementary Material [35].

Results - For concreteness we will set p = 3, though
we expect our results to hold for any p > 2. In Fig. 2 we
plot the dynamics of correlation function C(τ + tw, tw)
at fixed J0 = 1 for different type of quenches. First
we notice (top panel) that upon increasing the strength
of quantum fluctuations the dynamics slows down and
a plateau in the correlation function begins to emerge
as ~F increases from zero. Such a plateau is associated
with a non-zero Edwards-Anderson glassy order param-
eter. On the contrary, the inset plot in the same panel
shows how a decreasing ~F < ~0 makes the system ther-
malize more rapidly. In the central panel we plot the

FIG. 2: Correlation functions after the second quench for a
variety of different parameters, with N = 15000 steps, tmax =
100 and tq = tmax/2. In each case, J0 = 1.0 and the wait
times are tw = 16.67 (dotted), tw = 30 (dashed) and tw=40
(solid). a) The effects of quantum fluctuations on a system
prepared at T0 = 1.0 with ~0 = 0.0 and JF = 2. A plateau
emerges as ~F is increased. Inset: the same quantities for a
system prepared with ~0 = 1.0. b) The effects of quenches
in J on the dynamics of a state with Tbath = 0.8 and ~0 =
~F = 0.0: quenches with JF > J0 pump energy into the
system, while quenches with JF > J0 extract energy and
can lead to aging behaviour. Inset: the same quantities for
a system prepared with ~0 = 1.0. c) A comparison of the
initial bath temperatures on the dynamics of a state with
~0 = 0 and ~F = 1 and JF = J0 = 1. Aging behaviour is
visible at temperatures higher than the equilibrium transition
tempertaure Td ≈ 0.6. Inset: the same quantities for the
quench ~0 = 1.0→ ~F = 0.0.

dependence of the dynamics from the interaction quench
at fixed ~0 = ~F = 0.0, resulting in an enhanced plateau
for JF > J0, while a faster relaxation toward equilibrium
emerges for JF < J0, with a related behavior emerging
in the quantum case ~0 = ~F = 1 (see inset). Finally, we
study the quench dynamics at fixed JF = J0 for differ-
ent values of the bath temperature (bottom panel). We
find that cooling the system strengthens the plateau and
enhance the waiting time dependence. We remark that
for the timescales accessible to our current simulations,
the correlation function still decays and does not display
a true plateau: this is likely an effect of not being able to
access sufficiently long waiting times tw to see the true
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FIG. 3: Red: The equilibrium phase boundary, as obtained
numerically using a single quench from infinite temperature
with N = 15000 steps and tmax = 100. Blue: The effective
temperature after the second quench for a system initially
equilibrated at Tbath = 0.8 and JF = J0 = 1.0, also with N =
15000 and tmax = 100, with tq = tmax/2. As the strength of
quantum fluctuations is increased, the effective temperature
of the system decreases until it reaches approximately the
equilibrium transition temperature, here at a value ~F ≈ 0.7.
Beyond this, Teff displays the same non-monotonic behaviour
seen in Ref. 46, indicating a violation of FDT and suggesting
that the system has entered the glass phase.

plateau, as evidenced by the strengthening of the plateau
for larger tw. By approximating C(τ + tw, tw)|τ→∞ by
the value of the correlation function at the longest times
accessible to our simulation, and identifying this value
with the Edwards-Anderson order parameter qEA, we can
plot an approximate non-equilibrium phase diagram for
the isolated quantum system, shown in Fig. 1. Within
our simulation times, as clearly shown by Fig. 2, we can-
not reach the true t→∞ value of qEA. Instead, we can
set a threshold value and approximate that all q ≤ qth
are slowly decaying paramagnetic solutions, whereas for
q > qth the system is in a true glassy phase. The re-
sults of this are shown in the phase diagram in Fig. 1
by dashed lines, using qth ≈ 0.2, though the qualitative
shape of the phase diagram does not depend strongly on
this choice [54].

Effective Temperature and Quench-Induced Cooling -
The results presented above indicate that quantum fluc-
tuations and non-equilibrium effects can strongly en-
hance glassiness and increase the region of parameters
where aging effects are observed. This is surprising at
first, since glassiness is a low temperature property, while
exciting the system with a global quantum quench injects
extensive energy and should intuitively induce heating,
as often observed in quantum quench studies [49, 50]. In
order to understand the physical origin of this effect it is
instructive to consider the effective temperature at which
the isolated system thermalizes after the unitary time
evolution following the switch-off of the thermal bath.
This can be estimated from the fluctuation-dissipation
relation, as we discuss in the SM. In general terms one
could expect that after a global quantum quench the
system would thermalize to a larger effective tempera-

ture. As we show in Fig. 3 this is not the case when
the strength of quantum fluctuations is increased, but
rather the effective temperature decreases with ~F and
eventually crosses the dynamical critical temperature of
the equilibrium problem, resulting in an enhanced ag-
ing behavior. A decrease of the effective temperature
with quantum fluctuations can be also rationalized from
an energetic argument. Indeed the effective temperature
roughly corresponds to the temperature at which the in-
ternal energy matches the energy of the initial state, con-
served during the unitary evolution. Upon increasing
quantum fluctuations the internal energy increases, i.e.
the classical paramagnetic state has lower energy. By
extracting the local minimum of Teff and identifying it
with the transition in our numerical data, we can draw a
phase boundary with no free parameters, shown in Fig.
1 by the solid lines.

Conclusions - In this work we have studied the quench
dynamics of an isolated quantum glass. Remarkably,
we have shown that suddenly increasing the strength of
quantum fluctuations enhances aging behavior, in contra-
diction with common expectations based on the physics
of quantum glasses coupled to thermal environment. The
key feature of this effect relies on the possibility of the
isolated quantum system to lower its own temperature
due to the effect of quantum fluctuations. Therefore our
results suggest that quantum fluctuations in isolated, in-
teracting, disordered systems can indeed favour glassy
behaviour and ergodicity breaking. For future work, it
would be beneficial to confirm the results obtained here
by performing the initial equilibration step analytically,
likely by adding a third branch to the Keldysh contour
corresponding to imaginary time and performing the dis-
order average using the replica trick. The corresponding
dynamical equations for a quench of disordered interac-
tions are already available in [51] and this may ultimately
even allow the system to be initialised at T < Td, letting
us study the dynamics of an equilibrium glass state when
quenched in different ways. In addition, our analysis re-
lies on the assumptions that the timescales over which
we look at the evolution of the system are ∼ O(1) with
respect to N (since they are obtained via a saddle point
approximation). It would be very interesting to under-
stand what happens on larger timescales, and whether
the aging we see here persists to timescales exponentially
long relative to the system size. Finally, it would be
worth extending similar real-time dynamical studies to
other mean field models of quantum glasses, including
the Ising p-spin and the quantum Random Energy Model
whose properties in absence of a thermal bath have been
recently investigated [52, 53].
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In this Supplementary Material, we provide additional technical details about the derivation of the
dynamical equations, the numerical procedure used to solve the dynamical equations and additional
data confirming that the initial equilibration phase of our double-quench procedure performs as
expected.

I. DERIVATION OF THE DYNAMICAL EQUATIONS

A. Linear Response

In order to allow the strength of quantum fluctuations in this calculation to be parametrised by a time-dependent
~(t), we must be precise about how this time-dependence enters in the various quantities which we are interested
in computing. In particular, to define the response function in the presence of a time-dependent ~(t), we must first

revisit linear response theory. Defining the Schrödinger equation as i~(t)∂tψ(t) = Ĥψ(t), linear response theory leads
to the definition:

R(t, t′) =
i

~(t′)
Θ(t− t′)〈[O(t), O(t′)]〉 (1)

where the ~(t′) in the response function takes the earlier of the two time arguments, and O(t) represents an arbitrary
local observable. This will be important in evaluating the saddle-point equations of the disorder-averaged action.

B. Generating Functional

The generating functional can be written as:

Z[ξ+, ξ−] =

∫
Dσ+Dσ− exp

[
i

(
S̃[σ+]− S̃[σ−] +

∫
dt

~(t)
(ξ+(t)σ+(t)− ξ−(t)σ−(t))

)]
〈σ + |ρ(0)|σ−〉 (2)

where ρ(0) represents the element of the initial density matrix at t = 0 and is chosen to be uncorrelated with the
disorder (i.e. a random, infinite-temperature initial state). The tilde notation signifies that the time-dependent factors
of 1/~(t) have been absorbed into the definition of the action and appear under the relevant time integrals. The action

S̃ can be defined in terms of a quadratic term S0 and a disordered interaction term V [σ, J ]:

S̃s[σ, J ] = S̃0[σ]−
∫ ∞

0

dt

~(t)
V [σ, J ], (3)

S̃0[σ] =

∫ ∞

0

dt

~(t)

[m
2
σ̇2 − z

2
(σ2 −N)

]
, (4)

V [σ, J ] = J (t)
N∑

i1<...<ip

Ji1...ipσi1 ...σip . (5)

The quadratic part S0 contains a kinetic term, chosen such that the eventual dynamical equations are written in terms

of second derivatives with respect to time. In the presence of the global spherical constraint that enforces
∑N
i σ

2
i = N

through the introduction of a Lagrange multiplier z, the variables σi are real, continous dynamic variables constrained
to lie between −

√
N < σi <

√
N ∀i.

This action can be split into components σ+ and σ− residing on the forward and backwards Keldysh contours
respectively, to give an action:

S̃[σ+,σ−, J ] = S̃0[σ+]− S̃0[σ−]−
∫ ∞

0

dt

~(t)

(
V [σ+, J ]− V [σ−, J ]

)
(6)

ar
X

iv
:1

90
4.

03
14

7v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  5

 A
pr

 2
01

9



2

where the relative minus sign comes from reversing the integration limits on the reverse contour. For clarity, in the
following we will drop the tilde notation, but it is to be understood that the time-dependent ~(t) remains under the
relevant integrals in all of the following expressions.

C. System-Bath Coupling

The coupling between the system and bath can be treated exactly as in Ref. 1. The time-dependent ~(t) presents
no complications, as we switch off the system-bath coupling at a time tq, defined as a time where the system has
initially equilibrated with the thermal bath. Therefore, all factors of ~(t) can simply be replaced by ~0 in the following
expressions. We couple the quantum p-spin Hamiltonian linearly to a bath of harmonic oscilllators assumed to be in
thermal equilibrium. This coupling can be described by the Feynman-Vernon influence functional:

Sbath =
1

~0

∫ tq

0

dt

∫ tq

0

dt′
(
−[σ+(t)− σ−(t)]η(t− t′)[σ+(t′) + σ−(t′)] + i[σ+(t)− σ−(t)]ν(t− t′)[σ+(t′)− σ−(t′)]

)

(7)

where η and ν are the correlation and response functions of the bath, and are time-translation invariant due to the
bath being in equilibrium. They are given by:

η(t− t′) = −Θ(t− t′)
∫ ∞

0

dωI(ω) sin[ω(t− t′)], (8)

ν(t− t′) =

∫ ∞

0

I(ω) coth

(
1

2
β~0ω

)
cos[ω(t− t′)] (9)

where I(ω) is the spectral function of the bath. We choose an Ohmic bath with I(ω) = 1
π exp (−|ω|/Λ), for which

explicit expressions for both ν(t− t′) and η(t− t′) can be straightfowardly found, and we choose the integration cutoff
to be Λ = 5.

D. Disorder Averaging

Under the assumption that ρ̂(0) is uncorrelated with the disorder, we can perform the disorder average explicitly.
Assuming the distribution of the disorder variable Ji1...ip is given by a Gaussian with zero mean and variance of the
form:

P [J ] =

√
Np−1

πp!
exp


−N

p−1

p!

∑

i1 6=...6=ip
(Ji1...ip)2


 (10)

such that

(Ji1...ip)2 =

∫
dJP [J ](Ji1...ip)2 =

p!

2Np−1 (11)

where the factors of N and p are included to simplify later expressions. The prefactor J (t) shown in the main text
therefore acts as a a time-dependent disorder strength that we can use in the double-quench procedure. The average
of any operator is given by:

〈σ(t)〉 ≡ ∂ lnZ[ξ+, ξ−, J ]

∂ξ+(t)

∣∣∣∣∣
ξ=0

=
1

Z[0, 0, J ]

∂Z[ξ+, ξ−, J ]

∂ξ+(t)

∣∣∣∣∣
ξ=0

(12)

from which it follows that the only averaging to be done is over Z itself rather than lnZ. The disorder average
therefore reduces to just averaging over the p-spin vertex, the only term to have a disorder dependence. It can be
performed explicitly to give a disorder-averaged generating functional:

Z[ξ+, ξ−, J ] =

∫
Dσ−Dσ+ exp

[
i

(
Seff [σ+,σ ] +

∫
dt(ξ+(t)σ+(t)− ξ−(t)σ−(t))

)]
(13)
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with the disorder-averaged effective action:

Seff [σ+,σ ] = S0[σ+]− S0[σ−]− VD[σ+,σ−] + Sbath[σ+,σ ], (14)

VD[σ+,σ−] =
iN

4

∫
dtdt′

J (t)J (t′)
~(t)~(t′)

∑

α,β=±
αβ

(
1

N
σα(t)σβ(t′)

)p
(15)

where α, β = ± are the Schwinger-Keldysh contours.

E. Transformed Order Parameters

The quadratic part of the action may be written in matrix form as:

S
(2)
eff [σ+,σ−] = −1

2

∫
dtdt′σα(t)Oαβp (t, t′)σβ(t′) (16)

where the matrix elements are given by:

O++
p (t, t′) =

1

~(t)
[m∂2t + z+(t)]δ(t− t′)− 2

~0
(iν(t− t′)− η(t− t′))Θ(t− tq)Θ(t′ − tq), (17)

O+−
p (t, t′) =

1

~0
(2η(t− t′) + 2iν(t− t′))Θ(t− tq)Θ(t′ − tq), (18)

O−+p (t, t′) =
1

~0
(−2η(t− t′) + 2iν(t− t′))Θ(t− tq)Θ(t′ − tq), (19)

O−−p (t, t′) = − 1

~(t)
[m∂2t + z−(t)]δ(t− t′)− 2

~0
(iν(t− t′) + η(t− t′))Θ(t− tq)Θ(t′ − tq). (20)

We now introduce new variables Qαβ(t, t′) (where α, β = ±) which will allow us to decouple the p-interaction term:

1 =

∫ ∏

αβ

DQαβδ
(

1

N
σα(t)σβ(t′)−Qαβ(t, t′)

)
, (21)

∝
∫ ∏

αβ

DQαβDλαβ exp

(
− i

2
λαβ

(
σα(t)σβ(t′)−NQαβ(t, t′)

))
. (22)

F. Saddle-Point Equations

Following the notation of Ref. 1, we can define the following matrices:

Λ(t, t′) =

[
λ++(t, t′) λ+−(t, t′)
λ−+(t, t′) λ−−(t, t′)

]
, Q(t, t′) =

[
Q++(t, t′) Q+−(t, t′)
Q−+(t, t′) Q−−(t, t′)

]
(23)

to allow us to compactly encode all correlations between contours. Further, since taking derivatives of the action with
respect to Q will naturally lead to terms of the form Qp−1, we also need to define the matrix:

F [Q](t, t′) =

[
[Q++(t, t′)]p−1 −[Q+−(t, t′)]p−1

−[Q−+(t, t′)]p−1 [Q−−(t, t′)]p−1

] J (t)J (t′)
~(t)~(t′)

(24)

where the time-dependent parameters J (t) and ~(t) are included in the definition of F [Q] as it is necessary to keep
track of these time-dependences throughout the following procedure. In this notation, the saddle point equation with
respect to Λ(t, t′) is given by:

iΛ(t, t′) = Q−1(t, t′)− iOp(t, t′) (25)

And with respect to Q(t, t′):

iΛ(t, t′) =
p

2
F [Q](t, t′) (26)
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We can combine these two saddle-point equations to eliminate the variable Λ and obtain:

Q−1(t, t′)− iOp(t, t′) =
p

2
F [Q](t, t′) (27)

Multiplying from the right with the matrix Q results in the final equation:

iOp ⊗Q(t, t′) = I − p

2
F [Q]⊗Q(t, t′) (28)

where the ⊗ symbol denotes the operational product and we have defined I = Iαβ(t, t′) = δαβδ(t− t′). The saddle-
point equations with respect to the Lagrange multiplier zα reduce to the definition of the spherical constraint on both
contours, and are not shown explicitly here.

G. Dynamical Equations

We can express both C(t, t′) and R(t, t′) in terms of appropriate sums over Qαβ(t, t′), and so the dynamical equations
for these variables can be obtained from the saddle-point equations. Specifically:

R(t, t′) =
i

~(t′)
[Q++(t, t′)−Q+−(t, t′)] (29)

and so the dynamical equation for the response function follows from subtracting the ++ and +− components of
Eq. 28. Note that the time-dependent ~(t) presents a complication with respect to the derivation of Ref. 1, and that
adding together these components of Eq. 28 gives:

(
~(t′)
~(t)

)
[m∂2t + z(t)]R(t, t′) = δ(t− t′) +

(
~(t′)
~(t)

)∫ t

0

dt′′Σ(t, t′′)R(t′′, t′) (30)

where the self-energy Σ(t, t′) is defined below. Multiplying through by ~(t)/~(t′) and using that (~(t)/~(t′))δ(t− t′) =
δ(t− t′), we recover the same dynamical equation as in Ref. 1. Similarly, the correlation function is given by:

C(t, t′) =
1

2
[Q+−(t, t′) +Q−+(t, t′)] (31)

the dynamical equation for which is obtained from the addition of the +− and −+ components of Eq. 28. The
detailed derivation follows the steps of Ref. 1 with no additional complications and as such is not reproduced here.

H. Final Dynamical Equations

We can write both dynamical equations in a compact form as:

[m∂2t + z(t)]R(t, t′) = δ(t− t′) +

∫ t

0

dt′′Σ(t, t′′)R(t′′, t′), (32)

[m∂2t + z(t)]C(t, t′) =

∫ t

0

dt′′Σ(t, t′′)C(t′′, t′) +

∫ t′

0

dt′′D(t, t′′)R(t′, t′′) (33)

where we have defined the self-energy Σ(t, t′) and the vertex D(t, t′) as the following:

Σ(t, t′) = −4η(t− t′)Θ(t− tq)Θ(t′ − tq)−
pJ (t)J (t′)

~(t′)
Im

[
C(t, t′)− i~(t′)

2
R(t, t′)

]p−1
, (34)

D(t, t′) = 2~0ν(t− t′)Θ(t− tq)Θ(t′ − tq) +
pJ (t)J (t′)

2
Re

[
C(t, t′)− i

2
(~(t′)R(t, t′) + ~(t)R(t′, t))

]p−1
. (35)

From the structure of the saddle-point equations, we can also obtain the equal-time relations:

C(t, t) = 1 ∂tC(t, t′)|t′→t− = ∂tC(t, t′)|t′→t+ = 0 (36)

R(t, t) = 0 ∂tR(t, t′)|t′→t− =
1

m
∂tR(t, t′)|t′→t+ = 0. (37)
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At this point, we have the equations for the evolution of the correlation and response functions, but we need to
perform this evolution subject to the time-dependent Lagrange multiplier z(t) which is used to enforce the global
spherical constraint at all times. We obtain the dynamical equation for z(t) by taking the t′ → t− limit of Eq. 33
above:

z(t) =

∫ t

0

dt′′ [Σ(t, t′′)C(t′′, t) +D(t, t′′)R(t, t′′)]−m∂2t C(t, t′)|t′→t− (38)

II. NUMERICAL CONSIDERATIONS

The equations of motion can be straightforwardly discretised and solved numerically, however for an isolated system
numerical errors can lead to a violation of energy conservation, with an error that increases in time proportionally
with the step size δt. This error can prevent the numerical algorithm from reaching long times after the second
quench. We overcome this problem by following the procedure of Ref. 2 and replacing the second-derivative term in
z(t) by an energy density:

z(t) =
(p+ 2)

p

∫ t

0

dt′′ [Σ(t, t′′)C(t′′, t) +D(t, t′′)R(t, t′′)] + 2E(t) (39)

where E(t) = Ek(t) + Ep(t) is the total energy density of the system. For the isolated system, we can fix E(t)
immediately following the second quench, which enforces energy conservation and allows us to reach long times while
maintaining reasonable numerical accuracy. This can be derived in the following way. The kinetic energy is given by:

Ek =
m

2

∑

i

〈σ̇i(t)2〉 = −m
2
∂2tC(t, t′)

∣∣
t′→t− (40)

as discussed in Ref 2. The potential energy density4 is given by3:

Ep = − 1

N



〈
J (t)

∑

i1...ip

Ji1...ipσi1(t)...σip(t)

〉
 =

1

p

∫ ∞

0

dt′ [Σ(t, t′)C(t, t′) +D(t, t′)R(t, t′)] (41)

and by combining these two expressions and using that the total energy is E(t) = Ek(t) + Ep(t), we can rewrite
the Lagrange multiplier and obtain the expression above. For the classical system, we checked numerically that
these quantities reproduce known classical results. For the quantum system, we verified that the resulting energy
matches that obtained with free unconstrained time-evolution for short periods following the second quench, before
the numerical error becomes significant.

III. FLUCTUATION-DISSIPATION THEOREM

The quantum fluctuation-dissipation relation for an equilibrium system is:

R(τ) =
2i

~
Θ(τ)

∫ ∞

−∞

dω

2π
exp[−iωτ ] tanh

(
β~ω

2

)
C(ω) (42)

where C(ω) is the Fourier transform of the (time-translation invariant) correlation function C(τ) with τ = t− t′. In
the case where β~ω/2 � 1, i.e. in the limits of high temperature, low frequency or ~ → 0, we recover the classical
result:

R(τ) = − 1

T

dC(τ)

dτ
. (43)

The generalised quantum fluctuation-dissipation theorem for a system out of equilibrium1 is given by:

R(t, t′) =
2i

~
Θ(t− t′)

∫ ∞

−∞

dω

2π
exp[−iω(t− t′)] tanh

(
βeff~ω

2

)
C(t, ω) (44)
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FIG. 1: The ratio C(t, ω)/Im [R(t, ω)] computed numerically (black dots) and fitted with a function of the form shown in Eq.
46 (green solid line) for a system coupled to a bath with tmax = 100, dt = 0.0066̇, J = 1, Tbath = 1.0 and ~ = 1.0. The red
dashed line is a guide to the eye at limy→∞ coth y = 1. We see that the numerical data is very well fitted by the coth function
and quantum FDT holds.

where βeff = 1/Teff is the inverse effective temperature and

C(t, ω) = 2Re

∫ t

0

dt′′ exp[iω(t− t′′)]C(t, t′′) (45)

is a partial Fourier transform of the correlation function. In principle, the effective temperature is a function of both
times t and t′ as well as ~(t), however we suppress this dependence for clarity of presentation.

To check that our system is well-equilibrated before we cut off the bath and perform the second quench, we can
compute the Fourier-transformed correlation and response. From the above quantum FDT relation, the ratio of these
is given by:

C(t, ω)

Im [R(t, ω)]
= ~ coth

(
β∗~ω

2

)
(46)

We can compute this ratio numerically and fit it with a coth function to extract the temperature of the system: results
are shown in Fig. 1. We see very good agreement between the quantum FDT and the numerical data, confirming
that in equilibrium, our numerical procedure behaves as expected.

After the second quench, the system is manifestly out of equilibrium and the FDT only holds for the low-frequency
degrees of freedom. Following the results of Ref. 1 who showed that the correlation and response of the quantum
system in the aging regime are related in a remarkably similar way to the classical FDT, we use a generalisation of
the classical result (Eq. 43) with T → Teff . To extract this temperature, it is convenient to define the integrated
response:

χ(t, t′) =

∫ t

t′
dt′′R(t, t′′). (47)

For a classical system in equilibrium, a plot of χ(t, t′) against C(t, t′) will be a straight line with gradient −1/T .
Violations of FDT will result in a deviation away from a straight line and often a visible separation of time scales,
however we can still use this relation to extract an effective temperature in the long-time limit.
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FIG. 2: The integrated response χ(t, τ) of the classical p-spin model plotted parametrically against the correlation function
C(t, τ) for a variety of τ = 5, 6.25.12.5, 20 (from black to red resepectively). In the left column, the system is in the glass
phase: time-translation invariance is broken and the FDT shows the clear existence of two time scales, each characterised by a
different effective temperature (i.e. slope of the line). In the right column, the system is in the paramagnetic phase: the plots
display time-translation invariance and the curves lie on top of one another. At T0 = 0.8, the system is paramagnetic but close
to the transition: the dynamics in this regime are extremely slow, reflected by the waiting-time dependence starting to emerge
at long times. All data were taken with tmax = 50 and δt = 0.0066̇.

IV. EQUILIBRATION

A. Equilibration with a bath

In order to establish the accuracy of the double-quench protocol, we first test the quality of the initial equilibration
step by using the FDT to extract the temperature of the system in the time window 0 < t < tq and check that it
reproduces known features of the equilibrium system. The interated response plotted against the correlation function
for a variety of wait times and bath temperatures are shown in Fig. 2, in the well-studied classical case of ~0 = 0.
We see that in the paramagnetic phase, the system displays time-translation invariance (TTI) and obeys classical
equilibrium FDT, whereas at low temperature, the FDT is violated and there is a clear separation of time scales:
an early-time transient regime which displays time-translational invariance, followed by the onset of an aging regime
where TTI is broken and the system is no longer in equilibrium.

B. Effective Temperature

In Fig. 3, we show the effective temperature extracted from the equilibrium FDT relation plotted against the bath
temperature, for two different maximum times tmax = 50 (with N = 7500) and tmax = 100 (N = 15, 000) in blue
and red respectively. We see that the dependence on tmax is slight, giving us good confidence that the pre-quench
equilibration used in the main text is sufficiently accurate. In the paramagnetic phase, the error ∆T = T0 − Teff is

controlled predominantly by the step-size δt used - we typically use δt = 0.0066̇ in order to obtain a good compromise
between retaining numerical accuracy and being able to reach a suitably large tmax.
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FIG. 3: The effective temperature Teff obtained from the FDT relation plotted against the bath temperature T0. The black
dashed line is a guide to the eye with slope equal to one. Both sets of data points use the same step size (δt = 0.0066̇). Note the
non-monotonic behaviour of Teff on crossing the phase transition from above: this feature can be used to identify a transition
temperature from the numerical data.

A key feature of Fig. 3 is the non-monotonic behaviour of the effective temperature Teff , which rises sharply as the
bath temperature decreases and we pass through the phase transition. This behaviour has been seen in a variety of
other works, most notably Ref. 2. In the present work, we take the minimum value of the effective temperature T ∗eff
to indicate the phase transition in our numerical data; this is how we compute the equilibrium phase boundary shown
in the main text. The true temperature of the equilibrium phase transition in the classical p-spin model is Td ≈ 0.6.
Due to the finite timescale of our simulation and the increasingly slow dynamics on approach to the transition, the
transition in our data occurs at a slightly higher bath temperature: this is symptomatic of the difficulties in extracting
a glassy phase transition from dynamical data taken on finite timescales. We expect this finite-time error to result in
a small systematic shift of all of our results, but to have no qualitative effect.

C. Equilibration of the isolated system

After the second quench, the system is out of equilibrium but we can still use the generalised FDT in the low-
frequency limit to extract an effective temperature. Representative plots of the integrated response for a system
equilibrated with a classical bath at T0 = 0.8 are shown in Fig. 4. For small quenches in ~F , the system remains in
equilibrium and continues to obey the classical FDT, as evidenced by Fig. 4(a). As we increase ~F , the system enters
an aging regime and no longer obeys classical FDT. To extract an effective temperature, we fit the late-time part of
the χ vs C curve: the results of this are shown in the main text.

FIG. 4: The same quantities as Fig. 2, but now after the second quench. In each case, the system was first equilibrated at
a temperature T0 = 0.8 with ~0 = 0.0. For small ~F , the system continues to respect the classical FDT and the plots are
approximately straight lines, however as ~F increases above the transition at approximately ~F ≈ 0.7, we see that the system
violates classical FDT and the parametric plots take a highly non-trivial form with two distinct time sectors.
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