

Determination of Ba, Cs, Mo, Zr and U in SIMFuel samples by ICP-AES and ICP-MS for the study of fission products behavior during a nuclear severe accident.

A. Labet, M. Aubert, S. Pontremoli, C. Winkelmann, C. Legall, F. Audubert

▶ To cite this version:

A. Labet, M. Aubert, S. Pontremoli, C. Winkelmann, C. Legall, et al.. Determination of Ba, Cs, Mo, Zr and U in SIMFuel samples by ICP-AES and ICP-MS for the study of fission products behavior during a nuclear severe accident.. European Winter Conference on Plasma Spectrochemistry (EWCPS 2019), Feb 2019, Pau, France. cea-02394096

HAL Id: cea-02394096 https://cea.hal.science/cea-02394096

Submitted on 24 Feb 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Determination of Ba, Cs, Mo, Zr and U in SIMFuel samples by ICP-AES and ICP-MS for the study of fission products behavior during a nuclear severe accident

A. LABET, M. AUBERT, S. PONTREMOLI, C. WINKELMANN, C. LE GALL, F. AUDUBERT CEA - DEN/DEC F - 13108 Saint-Paul-Lez-Durance, Cadarache, FRANCE

Context and purpose

The development of realistic models for fission products behavior during a nuclear severe accident requires experimental data on fission products speciation into the fuel. In this context, several batches of dense UO₂ samples containing fission products surrogates under different chemical forms have been prepared and sintered, to be further submitted to thermal treatments in order to characterize fission products speciation under controlled temperature and oxygen potential conditions.

To that end, a large number of as-fabricated samples from these experiments were analyzed by ICP-AES and ICP-MS after dissolution. A separation step by liquid chromatography on UTEVA resin was essential before the ICP-AES measurements to overcome the problems of spectral interferences and matrix effects caused by uranium.

This study emphasizes the complementarity of these two techniques in nuclear fuel characterization. The advantage of the ICP-AES analysis on simultaneous device is explained in details. The importance of the integrated collision reaction cell in ICP-MS to avoid many problems of polyatomic interferences for the quantification of Cs and Ba is highlighted.

<u>Analysis by ICP-MS</u>

Integrated Collision Reaction Cell (iCRC)

Analytik Jena PQMS Elite apparatus

tion : 0.0023 ug/L tentration: 0.0009 ug/L : c/s = (49.4 + 2324 + 57780*conc)*[Rapport EI]

9.0 1.80 0.00 0.98 5.0 1.25 15 60 Examples of spectral interferences : ¹³³Cs interfered by ⁹⁸Mo³⁵Cl, ⁹⁶Zr³⁷Cl, ⁹⁶Mo³⁷Cl... ¹³⁸Ba interfered by ⁹⁸Mo⁴⁰Ar ⁹⁵Mo^{+o}Ar ¹³⁷Ba interfered by ⁹⁷Mo⁴⁰Ar, ¹⁰⁰Mo³⁷Cl 97**Mo**40**Ar**,

Value

<u>Results</u>

Examples of final results in mg/g

Sample number	C048531	<i>C</i> 048532	<i>C</i> 067011	<i>C</i> 067012	<i>C</i> 067013
Βα	6,930 ± 0,693				
Cs	0,109 ± 0,011	1,196 ± 0,120	2,125 ± 0,213	1,579 ± 0,158	1,510 ± 0,151
Mo	2,479 ± 0,248	1,144 ± 0,114	0,348 ± 0,035	0,122 ± 0,012	0,154 ± 0,015
Zr	7,476 ± 0,748				
υ	824,6 ± 16,5	860,1 ± 17,2	848,5 ± 17,0	858,2 ± 17,2	816,7 ± 16,3

Conclusions

The results of chemical quantitative analysis obtained by ICP-AES and ICP-MS are very important and they allowed acquiring valuable information for the continuation of the study. Indeed, the dispersion of the additives in the UO_2 matrix after sintering is not homogeneous in the pellets. The initial mixing of the different powders has not been effective. This is demonstrated by the chemical characterizations performed on several pellets from the same initial batch which showed that the final amount of additives varied a lot from a sample to another. Moreover, important Cs and Mo release took place during the sintering.