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Introduction 

• Predictive simulations = backbone of nuclear reactor safety 

• Most of the tools developed when computing resources and capabilities 
were limited 

 Shift towards high-fidelity methods taking advantage of progress in 
computing (hardware/software) 

• Reactor operating closer to their safety limits due to less conservative 
safety evaluations 

 Importance of core monitoring (+ operational problems more frequent 
due to ageing fleet) 

• Presentation of four projects funded by the European Commission on 
advanced numerical simulation and modelling for reactor safety 
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Short description of the respective projects 

• CORTEX: CORe monitoring Techniques and EXperimental validation and 
demonstration 

Aim: develop a core monitoring technique for the early detection, 
localization and characterization of anomalies using neutron noise 
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Short description of the respective projects 

• HPMC: High Performance Monte Carlo Methods for Core Analysis 
McSAFE: High Performance Monte Carlo Methods for SAFEty Analysis 

Aim: develop high fidelity multi-physics simulation tools based on 
Monte-Carlo techniques for neutron transport 
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Short description of the respective projects 

• NURESAFE: NUclear  REactor SAFEty simulation platform 

Aim: develop a European reference tool for higher fidelity simulation of 
LWR cores for design and safety assessment 
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Dynamic 3D coupling of codes : core physics, thermohydraulics, fuel thermomechanics. 
Release of industry-like applications. Uncertainty quantification   



Key objectives and achievements for advanced numerical simulation and modelling 

• From “divide-and-conquer”… 
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Key objectives and achievements for advanced numerical simulation and modelling 

• From “divide-and-conquer” to integrated models 

10 

“Exact” form of the 
transport equation 

solved for the entire 
core 

Navier-Stokes + 
energy equations 

solved for the entire 
core 

mesoscopic model  mesoscopic model  

© K. Jareteg 
(Chalmers 

University of 
Technology) 



Key objectives and achievements for advanced numerical simulation and modelling 

• CORTEX: 

– Development of modelling capabilities for estimating the transfer function 
Several complementary approaches: 

• Use of existing codes or codes specifically developed for noise analysis 

• Codes working in either the time- or in the frequency-domain 

• Use of coarse mesh or fine mesh approaches 
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Key objectives and achievements for advanced numerical simulation and modelling 

• CORTEX: 

– Validation of the modelling capabilities against experiments: 
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Key objectives and achievements for advanced numerical simulation and modelling 
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Key objectives and achievements for advanced numerical simulation and modelling 

• CORTEX: 

– Inversion of the reactor transfer function using machine learning: 
• Detection of abnormal fluctuations and their classification 

• Inversion of the reactor transfer function 

• Handling of the scarcity of in-core instrumentation 

• Handling of intermittences 
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Key objectives and achievements for advanced numerical simulation and modelling 

• HPMC and McSAFE: Optimal Monte Carlo-thermal-hydraulics coupling: 
– HPMC: Internal/external coupling 

– McSAFE: ICOCO-based coupling and internal master-slave coupling based on Serpent 
MP-interface with advanced SCF pre-processor, MED coupling library, in-build 
interpolation (1D, 2D) (SALOME) 
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McSAFE: Multi-physics 
Platform tools McSAFE: Analysis of cores with square and HEX FAs 



Key objectives and achievements for advanced numerical simulation and modelling 

• McSAFE: Multiphysics N, TH and TM coupling based on Monte-Carlo: 

– E.g. SERPENT/SUBCHANFLOW/TRANSURANUS: master-slave coupling (one 
single executable) 

17 

 

Main coupling Serpent-TU-SCF 

implementation scheme 

Test case: PWR FA 17x17: PC Xeon 6132 COZ with 28 cores: 90 min  

FA Vertical Cut: Axial Power 

Radial power at max FAX 

Radial coolant temp at Z=133.1 cm 



Key objectives and achievements for advanced numerical simulation and modelling 

• McSAFE: dynamic Monte Carlo capability for transient analysis: 

– New versions of dynSERPENT, dynTRIPOLI, dynMCNP 
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dynTRIPOLI kinetic simulation: role of precursors  

Minicore 3x3 FA 

- Control rod 

extraction with 
31.5 cm/s 

Testing: SPERT-III REA  
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Demonstration dynSERPENT/SUBCHANFLOW 

• Red line: TRIPOLI-4 simulation 

with precursors 

• Blue line: TRIPOLI-4 simulation 

without precursors and n neutrons 

created at each fission on average  

• Green line: TRIPOLI-4 

simulation without precursors and 

np neutrons created at each fission 

on average 

dynTRIPOLI code (kinetic capability)  



Key objectives and achievements for advanced numerical simulation and modelling 

• NURESAFE: Enhancement of multi-physics simulation capabilities: 
– Integration of existing codes into the SALOME software platform which provides coupling 

capacities, uncertainty quantification and standardized users interface 

– Development of advanced 2-phase CFD models in some existing CFD codes 

– Delivery of safety-relevant industry-like applications for LOCA, pressurized thermal shock, 
MSLB, boron dilution accident, some BWR ATWS 

– Validation of the modelling capacities against experiments 
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THE SALOME OPEN-SOURCE SOFTWARE PLATFORM 



Key objectives and achievements for advanced numerical simulation and modelling 

• NURESAFE:  Development of multi-scale and multi-physics simulation capabilities for 
safety analyses: 
– 3D code coupling (system, core TH, neutron kinetics), (CFD 

models, core TH) , (fuel thermomechanics, core TH)  

– MSLB simulation for PWR and VVER (nodal and pin-by-pin 
modelling)  

– BWR ATWS: simulation of OECD/NEA Benchmark based on the 
Oskarshamn-2 1999 event  

– Simulation of OECD/NEA BWR Peach Bottom Turbine Trip 
Benchmark 

– LOCA: coupling system code, CFD and fuel thermomechanics 
codes for simulation of situations with ballooned fuel rods  

– Pressurized Thermal shock: high fidelity prediction of wall 
temperature using CFD models 

– BWR TH applications: simulation of steam injection in a pressure suppression pool 
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Key objectives and achievements for advanced numerical simulation and modelling 

• NURESAFE:  Advancement of the fundamental knowledge in 2-phase 
thermal-hydraulics: 
– Coupling Interface Tracking models with phase-average models  all flow regimes models 

– DNS and LES modelling of pool and convective boiling 

– DNS and LES modelling of bubbly flow  
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Key objectives and achievements for advanced numerical simulation and modelling 

• NURESAFE: Validation of simulation capabilities against experiments: 
– Validation of core neutron kinetics codes: 3D steady state experiments (ZR-6 at KFKI, 

V1000-LR0 experiments at REZ) 
– ROCOM (HZDR) tests: coolant mixing during MSLB 
– KOZLODUY-6 vessel mixing experiments (MSLB modelling) 
– TOPFLOW PTS (HZDR) steam-water experiments and KAERI CCSF tests: Pressurized 

Thermal Shock (prediction of mixing of safety injection flow and wall temperature) 
– LOCA: FEBA, ACHILLES, PERICLES experiments (reflooding with ballooned rods) 
– LOCA: MOBY-DICK tests (CEA) for validation of break-flow critical flow prediction 
– PSBT tests: core boiling flow (validation of void fraction prediction by CFD models) 
– PERSEO experiment (ENEA): validation of coupling CFD and TH system codes 

techniques 
– CHAPTAL experiments (CEA-EDF): modelling of high pressure bubbly flow in a vertical 

tube 
– Validation of all regimes flow models against CASTILLEJOS experiment 
– And some other experiments….. 
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Conclusions 

• Advancement in the simulation capabilities for two-phase flows 

• Maturity of the Monte Carlo-based methods for depletion and dynamic 
calculations 

• Truly multi-physics and multi-scale calculations for industrial 
applications 

• Extension of the capabilities to the modelling of stationary fluctuations 

• Use of machine learning for anomaly backtracking 
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Conclusions 

• Future trends: 

– More and more physics to be accounted for 

– Use of “hybrid” methods 

– Increase use of machine learning for predictive modelling 
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