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ABSTRACT 
 

Predictive modelling capabilities have long represented one of the pillars of reactor 
safety. In this paper, an account of some projects funded by the European 
Commission within the seventh Framework Program (HPMC and NURESAFE 
projects) and Horizon2020 Program (CORTEX and McSAFE) is given. Such projects 
aim at, among others, developing improved solution strategies for the modelling of 
neutronics, thermal-hydraulics, and/or thermo-mechanics during normal operation, 
reactor transients and/or situations involving stationary perturbations. Although the 
different projects have different focus areas, they all capitalize on the most recent 
advancements in deterministic and probabilistic neutron transport, as well as in DNS, 
LES, CFD and macroscopic thermal-hydraulics modelling. The goal of the simulation 
strategies is to model complex multi-physics and multi-scale phenomena specific to 
nuclear reactors. The use of machine learning combined with such advanced 
simulation tools is also demonstrated to be capable of providing useful information 
for the detection of anomalies during operation. 

 
 

1. Introduction 
The safe and reliable operation of nuclear power plants relies on many intertwined aspects 
involving technological and human factors, as well as the relation between those. On the 
technological side, the pillars of reactor safety are based on the demonstration that a reactor 
can withstand the effect of disturbances or anomalies. This includes the prevention of incidents 
and should an accident occur, its mitigation. 
 
Predictive simulations have always been one of the backbones of nuclear reactor safety. Due 
to the extensive efforts the Verification and Validation (V&V) of the corresponding modelling 
software these represent, most of the tools used by the industry are based on coarse mesh in 
space and low order in time approaches developed when computing resources and capabilities 
were limited. Because of the progress recently made in computer architectures, high 
performance computing techniques can be used for modelling nuclear reactor systems, thus 
replacing the legacy approaches by truly high-fidelity methods. 
 
In parallel with the more faithful modelling of such systems, the monitoring of their 
instantaneous state is becoming increasingly important, so that possible anomalies can be 
detected early on and proper actions can be promptly taken. On the one hand, over 60% of 
the current fleet of nuclear reactors is composed of units more than 30 years old, therefore 



 

 

operational problems are expected to be more frequent. On the other hand, the conservatism 
in design previously applied to the evaluation of safety parameters has been greatly reduced, 
thanks to the increased level of fidelity achieved by the current modelling tools. As a result, 
nuclear reactors are now operating more closely to their safety limits. Operational problems 
may be also accentuated by other factors (e.g. use of advanced high-burnup fuel designs and 
heterogeneous core loadings). 
 
In this paper, a brief account of four projects previously or currently funded by the European 
Commission in the area of the simulation and the monitoring of nuclear reactor systems is 
given. Despite the differences in nature between those projects, the key objectives and 
achievements with respect to advanced numerical simulation and modelling for reactor safety 
will be given particular emphasis. The paper will conclude with some recommendations for the 
future. 
 
A glossary defining all the used abbreviations can be found at the end of the paper. 
 

2. Short description of the respective projects 
2.1 CORTEX 
The CORTEX project (with CORTEX standing for CORe monitoring Techniques and 
EXperimental validation and demonstration) is a Research and Innovation Action financed by 
the European Commission. The project formally started on September 1st, 2017 for a duration 
of four years. The overall objective of CORTEX is to develop a core monitoring technique 
allowing the early detection, localization and characterization of anomalies in nuclear reactors 
while operating. 
 
Being able to monitor the state of reactors while they are running at nominal conditions is 
extremely advantageous. The early detection of anomalies gives the possibility for the utilities 
to take proper actions before such problems lead to safety concerns or impact plant availability. 
The analysis of measured fluctuations of process parameters (primarily the neutron flux) 
around their mean values has the potential to provide non-intrusive on-line core monitoring 
capabilities. These fluctuations, often referred to as noise, primarily arise either from the 
turbulent character of the flow in the core, from coolant boiling (in the case of two-phase 
systems), or from mechanical vibrations of reactor internals. Because such fluctuations carry 
valuable information concerning the dynamics of the reactor core, one can infer some 
information about the system state under certain conditions. 
 
A promising but challenging application of core diagnostics thus consists in using the readings 
of the (usually very few) detectors (out-of-core neutron counters, in-core power/flux monitors, 
thermocouples, pressure transducers, etc.), located inside the core and/or at its periphery, to 
backtrack the nature and spatial distribution of the anomaly that gives rise to the recorded 
fluctuations. 
 
Although intelligent signal processing techniques could also be of help for such a purpose, 
they would generally not be sufficient by themselves. Therefore, a more comprehensive 
solution strategy is adopted in CORTEX and relies on the determination of the reactor transfer 
function or Green’s function, and on its subsequent inversion. 
 
The Green’s function establishes a relationship between any local perturbation to the 
corresponding space-dependent response of the neutron flux throughout the core. In 
CORTEX, state-of-the-art modelling techniques relying on both deterministic and probabilistic 
methods are being developed for estimating the reactor transfer function. Such techniques are 
also being validated in specifically-designed experiments carried out in two research reactors. 
 
Once the reactor transfer is known, artificial intelligence methods relying on machine learning 
techniques are used to recover from the measured detector signals the driving anomaly, its 
characteristic features and location. 



 

 

 
More information about the CORTEX project can be found in [1]. 
 

2.2 HPMC and McSAFE 
The projects HPMC (High Performance Monte Carlo Methods for Core Analysis) and McSAFE 
(High Performance Monte Carlo Methods for SAFEty Analysis) are two collaborative research 
projects funded by the European Commission in the seventh Framework Program (2011 to 
2013) and Horizon 2020 Program (2017 to 2020) with the main goal of developing high fidelity 
multi-physics simulation tools for the improved design and safety evaluation of reactor cores. 
The peculiarity of HPMC and McSAFE is the focus on Monte Carlo neutronics solvers instead 
of deterministic ones, in order to take profit of the huge and cheap available computer power 
currently available. 
 
The scientific goal of the HPMC was the “proof of concept“ of newly developed multi-physics 
codes for depletion analysis taking into account thermal hydraulic feedbacks, static pin-by-pin 
full LWR core analysis considering local feedback, and the development of time-dependent 
Monte Carlo codes including the behaviour of prompt and delayed neutrons for accident 
analysis. 
 
Based on the success and promising results of the HPMC project, the goal of the McSAFE 
project that started in September 2017 is to become a powerful numerical tool for realistic core 
design, safety analysis and industry-like applications of LWRs of generation II and III [2], [3]. 
For this purpose, the envisaged developments will permit to predict important core safety 
parameters with less conservatism than current state-of-the-art methods and they will make it 
possible to increase the performance and operational flexibility of nuclear reactors. Moreover, 
the multi-physics coupling developments are carried out within the European Simulation 
platform NURESIM developed during different projects in the seventh Framework Program 
such as NURESIM, NURISP and NURESAFE [4], heavily relying on the open-source 
SALOME-software platform. In this context, the European Monte Carlo solvers MONK, 
SERPENT, and TRIPOLI are coupled with the subchannel thermal-hydraulic code 
SUBCHANFLOW and with the thermo-mechanic solvers TRANSURANUS using the ICoCo-
methodology [5]. At present, the application and demonstration are done for LWRs and SMRs. 
However, the peculiarity of the codes and methods make their application possible to the Gen- 
III and Gen-IV reactors as well as to research reactors, for which the complicated geometry 
and physics of the core can only be adequately simulated by Monte Carlo codes. 
 
Finally, all developed methods and codes are validated against plant data of European VVER 
and PWR plants as well as using test data of the SPERT Series IV E REA.  
 

2.3 NURESAFE 
NURESAFE (NUclear  REactor SAFEty simulation platform) is a collaborative research project 
funded by the European Commission in the seventh Framework Program [5], [6]. The project 
started early 2013 for a duration of three years. The main objective of NURESAFE was to 
develop a European reference tool for higher fidelity simulation of LWR cores for design and 
safety assessment.  
 
The simulation tool developed by the NURESAFE project includes deterministic core physics 
codes, thermal-hydraulics and fuel thermo-mechanics codes, all integrated in a software 
platform whose name is NURESIM. This platform provides a capability for code coupling, 
capability of paramount importance as the main phenomena occurring in reactors involve an 
interaction between the above-mentioned physics. The NURESIM platform also offers an 
uncertainty quantification, which is necessary for validation and safety evaluation.  
 
The scope of the NURESIM platform includes the simulation of steady states of LWRs and 
design basis accidents of LWRs. This platform was initially created in the framework of former 
collaborative projects within the sixth and seventh Framework Programs (NURESIM and 



 

 

NURISP), during which core physics and thermal-hydraulics codes were first integrated. In 
NURESAFE, the platform was extended to more codes, particularly fuel thermo-mechanics 
codes. An important part of the NURESAFE work was also dedicated to: 
 The demonstration of the multi-physics capability of the platform.  
 Advanced CFD modelling. 
 Uncertainty quantification and validation.   
 

3. Key objectives with respect to advanced numerical simulation and 
modelling for reactor safety 

3.1 Introduction 
As earlier mentioned, most of the modelling tools used by the nuclear industry were developed 
when computing resources and capabilities were limited. Although nuclear reactors are by 
essence multi-physics and multi-scale systems, the techniques that were then favoured relied 
on modelling the different fields of physics and sometimes the different scales by different 
codes that were only thereafter coupled between each other. In the current best-estimate 
approaches, the modelling of neutron transport, fluid dynamics and heat transfer is thus based 
on a multi-stage computational procedure involving many approximations. 
 
On the neutronic side, deterministic approaches have been used primarily, due to their lower 
computational cost compared to probabilistic methods (i.e. Monte Carlo). Deterministic tools 
nevertheless rely on many approximations, with the neutron transport equation solved explicitly 
after reducing the complexity of the task at hand (typically using space-homogenization, 
energy-condensation, and angular approximation techniques) [7]. The problem is first solved 
over a small region of the computational domain using approximate boundary conditions, and 
the “fine-grid” solution then computed is used for producing equivalent average properties 
locally. In a second step, a global “coarse-grid” solution is found for the full computational 
domain, in which only average local properties are considered, i.e., in which the true complexity 
of the system is not represented explicitly. Typically, three to four of such “bottom-up” 
simplifications are used to model a full reactor core. Although used on a routine basis for 
reactor calculations, the approximations used in each of the computational steps are almost 
never corrected by the results of the calculations performed in the following steps when a 
“better” (i.e. taking a larger computational domain into account) solution has been computed.  
 
In the probabilistic approach on the other hand, no equation as such is solved. Rather, the 
probability of occurrence of a nuclear reaction/process of a given type on a given nuclide at a 
given energy for a given incoming particle (which can still exist after the nuclear interaction) is 
used to sample neutron life histories throughout the system [8]. Using a very large number of 
such histories, actual neutron transport in the system can be simulated without requiring any 
simplification, and statistically meaningful results can be derived by appropriately averaging 
neutron tallies. However, due to the size and complexity of the systems usually modelled, 
Monte Carlo techniques are extremely expensive computing techniques, which limited their 
use for routine applications in the past. 
 
With the advent of cheap computing resources, both the deterministic approach and the 
probabilistic approach are now being used on massively parallel clusters to circumvent the 
limitations mentioned above. In the deterministic case, the process of averaging (“bottom-up”) 
is now being complemented by a de-averaging process (“top-down”) in an iterative manner, so 
that a better modelling of the boundary conditions can be achieved using the information 
available from the coarser mesh. The modelling of full cores in a single computational step is 
also being contemplated. In the probabilistic case, the use of large clusters allows modelling 
full reactor cores, and efforts are being pursued to include the feedback effects induced by 
changes in the composition and/or density of the materials [9], [10]. Due to the complexity and 
level of details in the deterministic approach based on the averaging/de-averaging process, 
there are situations where the deterministic route can become quite expensive, being almost 
on par with the probabilistic route for high-fidelity simulations. 
 



 

 

On the thermal-hydraulic side, the strategy is to average in time and in space the local 
conservation equations expressing the conservation of mass, momentum and energy. The 
double averaging results in a set of macroscopic conservation equations that are tractable for 
a large system as a nuclear reactor, unfortunately at the expense of filtering the high-frequency 
and small-scale phenomena [7]. In addition, the averaging process introduces new unknown 
quantities (expressing for instance the wall transfer and possible interfacial transfer between 
the phases) that are usually determined using empirical or semi-empirical correlations. These 
correlations are heavily dependent on the flow regimes. Such a modelling strategy is often 
referred to as a system code approach. With the advent of cheap computing power, current 
efforts focus on modelling much finer scale using CFD tools instead. 
 

3.2 CORTEX 
For the CORTEX project, since a majority of the diagnostic tasks are based on the inversion 
of the Green’s function, the key objectives in the area of advanced numerical simulation and 
modelling can be summarized as follows:  (a) the development of modelling capabilities for 
estimating the transfer function, (b) the validation of such tools against experiments specifically 
designed for that purpose, and (c) the inversion of the reactor transfer function using machine 
learning.  
 
Concerning (a), one of the strategic objectives of the project is to determine the area of 
applicability of existing tools for noise analysis and to develop new simulation tools that are 
specifically dedicated to the modelling of the effect of stationary fluctuations in power reactors 
with a high level of fidelity. The ultimate goal is to develop modelling capabilities allowing the 
determination, for any reactor core, of the fluctuations in neutron flux resulting from known 
perturbations applied to the system. Two tracks are followed. Existing low-order computational 
capabilities are consolidated and extended. Simultaneously, advanced methods based on 
deterministic neutron transport and on probabilistic (i.e. Monte Carlo) methods are developed 
so that the transfer function of a reactor core can be estimated with a high resolution in space, 
angle and energy. Since the modelling of the response of the system to a perturbation 
expressed in terms of macroscopic cross-sections is equally important as the modelling of the 
actual perturbation, large efforts are spent on converting actual noise sources into 
perturbations of cross-sections. For that purpose, emphasis is put on developing models for 
reproducing vibrations of reactor vessel internals due to FSI. Finally, the evaluation of the 
uncertainties associated to the estimation of the reactor transfer function is given particular 
attention, together with the sensitivity of the simulations to input parameters and models. 
 
Concerning (b), although the tools allowing estimating the reactor transfer function can be 
verified against analytical or semi-analytical solutions for simple systems and configurations, 
the validation using reactor experiments specifically designed for noise analysis applications 
is essential. Two types of neutron noise measurements are considered: a so-called absorber 
of variable strength and a so-called vibrating absorber. 
 
Finally, concerning (c), the backtracking of the driving perturbation (not measurable) from the 
induced neutron noise (measurable at some discrete locations throughout the core) is 
performed using machine learning. With the tools referred to above, the induced neutron noise 
for many possible scenarios of considered perturbations is estimated. The results of such 
simulations are then provided as training data sets to machine learning techniques. Based on 
such training sets, the machine learning algorithms have for primary objective to identify the 
scenario existing in a nuclear core from the neutron noise recorded by the in- and ex-core 
neutron detectors and, when relevant, retrieve the actual perturbation (and its location). 
 

3.3 HPMC and McSAFE 
The major objectives of the HPMC project were the following:  
a) Optimal Monte Carlo-thermal-hydraulics coupling: the objective was to realise efficient 

coupling of the Monte Carlo codes SERPENT and MCNP with the thermal-hydraulic 
subchannel codes SUBCHANFLOW and FLICA4, suitable for full core applications.  



 

 

b) Optimal Monte Carlo burn-up integration: the objective was to realise an efficient 
integration of burnup calculations in the Monte Carlo codes SERPENT and MCNP, suitable 
for full core applications. 

c) Time-dependence capabilities in Monte Carlo methods: the objective was to develop an 
efficient algorithm for modelling time-dependence in the Monte Carlo codes SERPENT and 
MCNP, applicable to safety analysis and full core calculations.  

 
Based on the promising results of the HPMC project, the McSAFE project started in September 
2017 with the goal to move the Monte Carlo-based multiphysics codes towards industrial 
applications, e.g. simulation of depletion of commercial LWR cores taking thermal-hydraulic 
feedback into account, analysis of transients such as REA. For this purpose, a generic and 
optimal coupling approach based on ICoCo and the open-source NURESIM platform is 
followed for the coupling of the European Monte Carlo solvers such as MONK, SERPENT and 
TRIPOLI with subchannel codes e.g. SUBCHANFLOW and fuel thermo-mechanics solvers 
e.g. TRANSURANUS.  Moreover, dynamic versions of TRIPOLI, SERPENT and MCNP6 
coupled with SUBCHANFLOW are developed for analysing transients.  Especially, 
SERPENT/SUBCHANFLOW is being coupled with TRANSURANUS for the depletion analysis 
of commercial western PWR and VVER cores while considering thermal-hydraulic feedback. 
Emphasis is put on the extensive validation of the tools being developed within McSAFE. For 
the validation of the depletion capabilities, plant data are used, whereas for the validation of 
the dynamic capability of the coupled Monte Carlo – thermal-hydraulics codes under 
development, experimental data of unique tests e.g. the SPERT REA IV E are used. Finally, 
high fidelity tools based on Monte Carlo requires a massive use of HPC in order to solve full 
cores at the pin level. Methods for optimal parallelization strategy, scalability of Monte Carlo-
based simulations of depletion problems and time-dependent simulations, are also scrutinized 
in the McSAFE project. Since memory requirements for such problems may represent a limiting 
factor, methods for the optimal use of memory during depletion simulations of large problems 
needs to be further developed.  
 

3.4 NURESAFE 
The main objectives of NURESAFE were:  
 To enhance the prediction capability of the computations used for safety demonstration of 

the current LWR nuclear power plants through the dynamic 3D coupling of the codes, 
simulating the different physics of the problem into a common multi-physics simulation 
scheme. 

 To advance the fundamental knowledge in two-phase thermal-hydraulics and develop new 
multi-scale thermal-hydraulics models. Emphasis was put on coupling interface tracking 
models with phase-averaged models. Moreover, pool and convective boiling were given 
special attention, together with the physics of bubbly flow. 

 To develop multi-scale and multi-physics simulation capabilities for LOCA, PTS and BWR 
thermal-hydraulics, thus allowing more accurate and more reliable safety analyses. The 
aim was to develop a European reference tool for higher fidelity simulation of LWR cores 
for design and safety assessments. The delivery of safety-relevant industry-like 
applications was also one of the primary objectives of the project, so that the various 
applications could be used by the industry at the completion of the project. 

 To develop generic software tools within the NURESIM software platform and to provide a 
support to developers for integration of the codes into this platform.  

 

4. Key achievements with respect to advanced numerical simulation and 
modelling for reactor safety 

4.1 CORTEX 
Since the start of the project, the key achievements in the area of advanced numerical 
simulation and modelling along the three objectives identified in Section 3.2 can be 
summarized as follows. 
 
  



 

 

Development of modelling capabilities for estimating the transfer function 
The work carried out so far is performed along several lines. 
 

In the area of mechanical vibrations, an extensive review of the past work on vibration of 
reactor internals was carried out. The focus was on both obtaining a coverage of all possible 
sources of neutron noise, a phenomenological description of each corresponding scenario, 
and of the observed neutron noise patterns when actual plant measurements were available. 
First simulations using thermal-hydraulic perturbations generated by a system code were later 
fed into a FEM code modelling mechanical structures. 
 
In parallel to those activities, neutronic capabilities are being developed. For coarse mesh 
approaches, three parallel tracks are pursued. Nodal codes used for the simulation of other 
core transients in the time-domain are used. To use some of these codes, the first step is to 
generate a set of time-dependent macroscopic cross-sections that simulate the movement of 
the fuel assemblies on a fixed computational coarse grid, based on the results of the FSI 
simulations. Procedure are being implemented to generate the whole set of cross-sections. In 
addition to the use of existing time-dependent tools with a set of time-dependent cross-
sections, another approach is pursued based on the development of an ad-hoc software 
relying on FEM. The FEM method has a large versatility for solving balance equation using 
different spatial meshes and a code is being developed along those lines. It will offer the 
possibility in the future to have a moving mesh following the vibration characteristics 
determined from the FSI calculations. The main advantage of the FEM route lies with the fact 
that only static macroscopic cross sections for the initial configuration of the core are 
necessary. Finally, a third and complementary approach based on a mesh refinement 
technique in the frequency domain is being developed. The modelling of vibrating reactor 
internals requires the definition of perturbations on very small spatial domains compared to the 
size of the node size used in coarse mesh modelling tools. This makes it necessary to 
development mesh refinement techniques around the region where the perturbation exists. 
This mesh refinement technique is currently implemented in a frequency-domain core 
simulator earlier developed. For fine mesh approaches, deterministic methods relying on the 
method of discrete ordinates (Sn) are being developed. Moreover, a neutron noise solver 
relying on the method of characteristics is being implemented. In probabilistic methods, an 
equivalence procedure between neutron noise problems in the frequency-domain and static 
subcritical systems is being developed. A method using complex statistical weights and a 
modified collision kernel for the neutron transport equations in the frequency domain have 
been implemented in a Monte-Carlo code. Likewise, another method using complex-valued 
weights in the frequency domain has been implemented. 
 
As can be seen above, several complementary approaches are being developed. They either 
rely on existing codes or codes specifically developed for noise analysis. Moreover, these 
codes work either in the time- or in the frequency-domain. These tools use either a coarse-
mesh approach (possibly with a moving mesh) or a fine-mesh approach regarding the spatial 
discretization. Finally, both deterministic and probabilistic methods are considered. 
 
Validation of the modelling capabilities against experiments 
Concerning the validation of such tools against experiments specifically designed for neutron 
noise, two research facilities are used: the AKR-2 facility at TUD, Dresden, Germany, and the 
CROCUS facility at EPFL, Lausanne, Switzerland. Pictures of those two facilities are given in 
Fig.  1. 
 



 

 

  
(a) CROCUS (courtesy of EPFL) (b) AKR-2 (courtesy of TUD) 

Fig.  1 Overview of the CROCUS and AKR-2 facilities. 

The perturbation was simultaneously recorded by seven and 11 neutron detectors, for the first 
AKR-2 and CROCUS campaigns, respectively, located throughout the respective cores, 
together with the recording of the actual perturbation introduced. The data acquisition systems 
were successfully benchmarked against an industry-grade data acquisition system from TUV 
Rheinland ISTec GmbH. In terms of perturbations, AKR-2 has the ability to perturb the system 
in two ways: either by rotating a neutron absorbing foil (thickness of 0.02 cm x length of 25 cm 
x width of 2 cm) along a horizontal axis or by moving a neutron absorbing disc (thickness of 
1.0 mm x diameter of 12.7 mm) along a horizontal axis. In the former case, the foil rotates at 
a distance of 2.98 cm from its axis at a frequency of up to 2.0 Hz, whereas in the latter case, 
the disc is moving horizontally with a maximum displacement amplitude of 20 cm at a 
frequency up to 2.0 Hz. At CROCUS, up to 18 fuel rods located at the periphery of the core 
can be displaced laterally with a maximum displacement up to ±2.5 mm from their equilibrium 
positions at a frequency up to 2 Hz. The first noise measurements for the three types of noise 
sources (rotating absorber and vibrating absorber at AKR-2; vibrating fuel rods at CROCUS) 
have been performed as part of the validation of the data acquisition systems. 
 
Since both the perturbations and the corresponding induced neutron noise are recorded in the 
experiments described above, such experiments can be used to validate the neutronic tools 
aimed at estimating the Green’s function of the reactor and being developed within CORTEX. 
Such noise measurements, where both the perturbations and the corresponding neutron noise 
are recorded, represent a world premiere. 
 
Inversion of the reactor transfer function using machine learning 
Preliminary tests were performed using simulated signals, either in the time-domain or in the 
frequency-domain. Several scenarios corresponding to different types of noise sources were 
considered: localized absorbers of variable strength in the frequency-domain, travelling 
perturbations along fuel channels in the frequency domain, fuel assembly vibrations in the 
time-domain, and inlet coolant perturbations in the time-domain. First successful machine 
learning tests on the absorbers of variable strength were based on “unrolling” the three-
dimensional induced neutron noise into the juxtaposition of two-dimensional images, each 
corresponding to the plane-wise response of the reactor core to the perturbation [11].  Fig.  2 
represents such two-dimensional information that was then fed to a Deep CNN to retrieve the 
actual location of the perturbation. The recovery of the exact spatial location of the noise source 
was thereafter improved by using instead a three-dimensional CNN, so that the axial coupling 
information could be fully exploited in the unfolding [12]. In addition, both the absorber of 
variable strength data and the travelling perturbation data were used. The network could both 
recognize the type of perturbation applied and recover the actual location of the perturbation 
being applied. For the time-domain data, the different scenarios could be successfully 
identified using a LSTM network. 



 

 

 
(a) Phase information (b) Amplitude information 

Fig.  2 Example of the reactor response to a localized absorber of variable strength unrolled 
as two-dimensional images (courtesy of University of Lincoln) [11]. 

 

4.2 HPMC and McSAFE 
Optimal Monte Carlo-thermal-hydraulics coupling 
The HPMC project demonstrated the potentials and capabilities of Monte Carlo based multi-
physics coupled codes for improved static core analysis taking local interdependencies 
between neutronics and thermal-hydraulics into account.  At the completion of the project, two 
coupled codes, SERPENT/SUBCHANFLOW and MCNP/SUBCHANFLOW, had been 
developed for static full core simulations at the pin level. Those codes were successfully 
applied to the analysis of a PWR core with UOX and MOX fuel assemblies, while taking local 
thermal-hydraulic feedback into account and using HPC clusters [9], [10]. As an illustrative 
example, the capability of the coupled code SERPENT/SUBCHANFLOW to perform a pin-level 
analysis of a full PWR core with local thermal-hydraulic feedback is shown in Fig.  3. The 
problem consists of 55777 neutronic nodes (pins and guide tubes), 2.2 million fluid cells, as 
well as 23.4 million solid cells (thermal-hydraulic solver). A total of 4x106 neutrons per cycle 
and 650 inactive and 2500 active cycles were used in the SERPENT calculations. The 
simulation was performed at the KIT IC2 HPC cluster using 2048 cores. A converged solution 
was achieved after 5.8 CPU-year (1.03 days).  
  

 

Fig.  3 3-D pin power predicted by SERPENT/SUBCHANFLOW for the PWR UOX/MOX core 
[10]. 

  



 

 

Optimum Monte Carlo burn-up integration 
Another important outcome was the exploration and development of various schemes for 
stable depletion calculation using Monte Carlo codes such as the SIE method [13] for stable 
steady state coupled Monte Carlo-thermal-hydraulics calculations. 
 

Time-dependence capabilities in Monte Carlo methods 

A highlight of the project was the implementation of a time-dependence option in MCNP5 
(dynMCNP) that required source code modifications [14]. This option includes the generation 
and decay of delayed neutron precursors, possible control rods movement, etc. To reduce the 
statistical error in the generated reactor power in successive time intervals, a method of forced 
decay of precursors in each time interval was implemented. Moreover, variance reduction 
methods (like the branchless collision method) were introduced. Thermal-hydraulic feedback 
was also implemented. To let the time-dependent thermal-hydraulic calculations take the 
heating history into account, further extensions of the codes were necessary. 
 

Finally, various ways for parallel execution of a Monte Carlo calculation using the MPI and 
OpenMP application programming interfaces were investigated and their efficiency measured 
in terms of the speedup factor. For application on large computer clusters with different 
computer nodes and multiple processors per node, the optimum combination of MPI and 
OpenMP was determined. Application of OpenMP was introduced in the SERPENT2 code. 
The MCNP code was modified to use all available processor cores for neutron history 
simulation [15]. 
 
The main achievements close to the midterm of the McSAFE-project are described hereafter. 
 
Full core multiphysics depletion 
Methods for depletion of full core using Monte Carlo codes are being developed. First of all, 
the efficiency and stability of Monte Carlo burnup simulations were studied by optimal 
combination of free parameters that allow to solve full core problems [16]. In addition, a 
collision-based domain decomposition scheme for SERPENT2 is being developed to solve 
large-scale high-fidelity problems with large memory demands (e.g. full core pin-by-pin 
depletion). For this purpose, memory-intensive materials are split among MPI tasks, enabling 
the memory demand to be divided among nodes in a high-performance computer [17].  
Investigations were also performed to identify the computational requirements for depletion 
calculations taking thermal-hydraulic feedback into account for 3-D problems (e.g. 5x5 fuel 
assemblies mini-core) [18]. Potential bottlenecks and limitations, e.g. huge RAM-requirements 
which increase linearly with the number of fuel assemblies – 40 GB for eight fuel assemblies, 
could be identified. Alternatives were also proposed to overcome the challenges, such as a 
collision-based domain decomposition. 
 

Code integration 
The European Monte Carlo codes TRIPOLI, SERPENT, and MONK as well as the fuel thermo-
mechanics code TRANSURANUS were fully integrated into the European NURESIM 
simulation platform (SUBCHANFLOW – SCF was already part of the platform). Each solver 
owns a specific meshing. New flexible and object-oriented coupling schemes based on the 
ICoCo-methodology are being developed for each of the codes integrated into the NURESIM 
platform. The following coupled code versions are available: MONK/SCF, SERPENT/SCF, 
TRIPOLI/SCF. 
 
Dynamical multiphysics calculations 
Another important task in the McSAFE project is to extend general-purpose Monte Carlo codes 
(SERPENT2, TRIPOLI-4 and MCNP6) to dynamic version that can accurately calculate 
transient behaviour in nuclear reactors considering local thermal-hydraulic feedback. New 
versions of Monte Carlo codes with time-dependent capabilities (called dynamicMC) are at the 
end of the development phase for the analysis of transients. These Monte Carlo codes are 
coupled with the SCF thermal-hydraulic solver, thus leading to the coupled codes: 



 

 

dynMCNP/SCF, dynTRIPOLI/SCF, dynSERPENT/SCF. The code extensions and 
modifications are described in more detail in [14], [19] and [20]. The coupling schemes must 
be appropriate for massive HPC-simulations. The peculiarity of time-dependent Monte Carlo 
is to describe the behaviour of delayed neutrons, which have a significant influence on the 
statistical uncertainty (standard deviation) of the power prediction. An additional challenge is 
the short lifetime of prompt neutrons (roughly 100 μs in an LWR) compared to the large decay 
time of precursors of delayed neutrons for the method development.  To test the dynamic 
capability of the Monte Carlo codes, different REA scenarios are being developed within 
McSAFE.  
 

4.3 NURESAFE 

Simulation platform 
One of the main outcomes of the NURESIM and NURISP projects was the release of the 
NURESIM platform that is heavily used in NURESAFE. The NURESIM platform is based upon 
the software simulation platform SALOME.  SALOME is an open-source project, 
(http://salome-platform.org), which implements the interoperability between a CAD modeller, 
meshing algorithms, visualisation modules and computing codes and solvers, as represented 
in Fig.  4. It mutualises a pool of generic tools for pre-processing, post-processing and code 
coupling. Its supervision module provides functionalities for code integration, dynamic loading 
and execution of components on remote distributed computing systems, and supervision of 
the calculation. Support is provided to developers for integration of the codes into the SALOME 
software and for producing and managing the successive versions of the NURESIM platform 
on a dedicated repository. Innovative deterministic and statistical methods and tools for 
quantification of the uncertainties developed within NURESAFE give a better knowledge of 
conservatisms and margins. 

 

Fig.  4 SALOME global view. 

The NURESIM platform provides a set of state-of-the-art software devoted to the simulation of 
normal operation and design basis accidents of LWR (i.e. BWR, PWR, and VVER). The 
platform includes 14 codes covering different physics: neutronics, thermal-hydraulics, fuel 
thermo-mechanics at different scales, 2 thermal-hydraulics system codes, 2 single-phase CFD 
codes, 2 two-phase CFD codes, 3 sub-channel thermal-hydraulic analysis codes, 2 advanced 
fuel thermo-mechanics codes, 2 DNS codes, 3 neutron-kinetics codes. All these codes were 
extensively benchmarked and validated against experiments during the course of the 
NURESAFE project.  
 
SALOME is connected to URANIE, an open-source platform aimed at providing methods and 
algorithms about uncertainty and sensitivity, and verification and validation analyses in the 
same framework (https://sourceforge.net/projects/uranie/). The URANIE and SALOME 
platforms work nicely together. Any calculation scheme developed in SALOME can be used 
within URANIE. 

http://salome-platform.org/
https://sourceforge.net/projects/uranie/


 

 

 

Through the link with URANIE, users of the NURESIM platform successfully performed in the 
NURESAFE project sensitivity analyses and model calibration studies.   
 
3D dynamic coupling of codes 
Individual models, solvers, codes and coupled applications, were run and validated through 
modelling “situation targets” corresponding to given nuclear reactor situations and including 
reference calculations, experiments, and plant data. As safety analysis was the main issue 
within the project, all these situation targets consisted in some accidental scenarios. The 
challenging “situation targets” were selected according to the required coupling between two 
different disciplines.  Industry-like applications were released at the end of the project for the 
following “situation targets”:    
 Square lattice PWR MSLB. 
 One selected BWR ATWS. 
 VVER MSLB. 
The analysis also included uncertainty quantification using the URANIE open-source software.  
The BWR ATWS analysis framework featured coupled simulations combining system thermo-
hydraulics, 3-D neutronics, thermo-mechanical evaluation of fuel safety parameters, and 
uncertainty evaluation. The MSLB transient analysis provided more accurate assessment of 
margins between predicted key parameters and safety criteria. The outcome of the transient 
simulation was evaluated with respect to local re-criticality and maximum reactor power level. 
As an illustrative example, the results of the PWR MSLB are presented hereafter.  
 
A two-step modelling approach was applied. In the first step, reference results were produced 
using the platform codes with higher resolutions of coupling between core nodal and sub-
channel scale. In the second step, CFD evaluations were included into the solution. In that 
way, an improvement in the prediction of the target safety parameters could be achieved. In 
order to increase the confidence of the CFD results, a validation was also performed by 
comparing the calculation results with experimental data from the HZDR test facility on coolant 
mixing ROCOM. The cross-section libraries were created using new methods of grid point 
selection [21]. Various combinations of system codes, core thermal-hydraulic codes and 

neutronic codes were used. Fig. 5 highlights the 3-D distributions at time t=86s after the 
initiation of the MSLB. 
 
 

 

Fig. 5 Distribution of power density (MW/m3, left) and coolant temperature (°C, right) at 86 s 
after the initiation of the MSLB event. 

The obtained results confirmed that the NURESIM platform is applicable for challenging 
coupled transients in PWRs. Furthermore, by accomplishing the coupling of reactor dynamics 
codes and CFD codes, the superiority of the NURESIM platform was demonstrated. The 



 

 

conducted advanced calculations demonstrated the excellent status and the readiness for 
industrial applications of the NURESIM platform and the integrated codes. 
 
Advanced CFD modelling 
Advancement in the fundamental knowledge of CFD modelling was pursued and new models 
based on detailed DNS for momentum exchange and boiling heat transfer situations typical of 
LWR thermal-hydraulics were developed. New benchmark data bases for fundamental and 
applied problems were developed. The existing computational multiphase flow strategies were 
first extended in order to cope with a wider range of practical applications. Novel methods for 
pool and convective boiling in a channel were also developed. Advanced strategies for 
modelling turbulent bubbly flow in a channel and in a rod bundle were analysed. Finally, the 
novel models and simulation techniques were implemented in codes, validated and applied in 
this context. New versions of the CFD platform codes NEPTUNE_CFD, TransAT and TRIO_U 
were delivered to end-users, including the most advanced numerical simulation features and 
the associated modelling approaches for the physics pertinent to both PWRs and BWRs.  
 
Three specific issues were addressed within NURESAFE:  
 All-topology flow modelling by coupling interface tracking models with phase-averaged 

models. 
 DNS and LES of pool and convective boiling [22]. 
 DNS and LES of bubbly flows [23], [24]. 
 

Multi-scale and multiphysics simulations 
In the area of multi-scale and multiphysics simulations of LOCA, PTS and BWR thermal-
hydraulics, multi-scale and multiphysics simulation capabilities for more accurate and more 
reliable safety analyses were developed. 
 
LOCA is usually simulated with industrial versions of thermal-hydraulic system codes. 
Although system codes are able to address most safety needs, the status and limits of the 
current methods and tools for plant analysis were reviewed during the NURISP project and 
areas for improvements were pointed out. Advanced tools and methods for multi-scale and 
multi-physics analyses and simulations of LOCA, including situations with deformed or 
ballooned rods and possible fuel relocation, were developed. The addition to system thermal-
hydraulic codes of two-phase CFD tools and of advanced fuel models allowed revisiting 
these transients for more accurate and reliable predictions. This required improving and 
coupling CFD to system codes or improving system codes and system codes coupled with 
fuel thermo-mechanics codes. Furthermore, methods for uncertainty and sensitivity analysis 
applied to system codes were improved. In this framework, a special focus was put on the 
issue of the quantification of the uncertainties of the closure laws. This work was based on a 
benchmarking of the possible methods using reflooding experimental data (FEBA and 
PERICLES). 
 
Concerning PTS, better simulation capabilities were achieved by improving the CFD 
modelling thanks to the analysis of new experimental data (including TOPFLOW steam-water 
tests and KAERI CCSF test). In addition, sensitivity and uncertainty methods were applied to 
CFD codes and state-of-the-art methods on validation, uncertainty and uncertainty of CFD 
applications to reactor issues were reviewed. 
 
In the field of BWR thermal-hydraulics, progress in the simulation of two-phase thermal-
hydraulics phenomena specific to BWR was achieved. This includes dry-out prediction, 
transient core thermal-hydraulics and steam injection in pressure suppression pool. CFD 
codes and sub-channel codes were used, improved and validated during the project. 
 

  



 

 

5. Training, education and dissemination activities 
5.1 CORTEX 
The dissemination of the project results is carried out along five parallel lines of actions: 
involvement of end-users into the project, organization of workshops, organization of short-
courses, peer-reviewed publications, and presentations at conferences and meetings. 
 
Concerning the involvement of end-users, the project involves, beyond academic partners, 
research institutes, TSOs, utilities, fuel and reactor manufacturers, as well as services 
companies. Those organizations are either directly contributing to the project as project 
partners or participating to the project via the Advisory End-User Group, having a consultative 
role to the consortium. 
 
Three workshops will be organized: 

 Two workshops on the experiments performed at the research reactors and on the 
validation of the neutronic models based on such experiments, where experimentalists and 
modellers will present, describe and discuss their results. 

 One (final) workshop on the demonstration of the methods developed within the project on 
actual plant data. During this workshop, the entire consortium will: (a) summarize the 
findings and the lessons learnt throughout the project, (b) give recommendations on 
techniques and instrumentations for core monitoring and surveillance (in order to improve 
the reliability and safety of the nuclear units); and (c) provide an outlook for the future in 
this area. 

 
Eight short courses were/will be developed: 

 Two courses on reactor dynamics and neutron noise. Both courses were already given and 
had 47 registered participants in total. The first course covered the fundamentals of reactor 
kinetics and the theory of small space-time dependent fluctuations. The second course 
dealt with additional aspects, such as core thermal-hydraulics, its coupling to neutron 
kinetics and reactor stability, and included hands-on training on the AKR-2 reactor at TUD.  

 Two courses/workshops on signal processing methods and their applications. Both 
courses/workshops were already arranged and attracted 64 attendees. The first course 
was an introduction to basic techniques for signal analysis and their possible applications. 
The second course dealt with advanced signal processing methods and statistical 
characterization of plant measurements, which can be applied to reactor core monitoring 
and dynamic sensor surveillance. 

 One hands-on training session on the simulation of reactor neutron noise in power reactors 
using a time-domain neutron kinetics code. The students will have the opportunity to model 
different types of disturbances, such as fuel assembly vibrations, inlet disturbances, flow 
fluctuations, etc. and study their effect on the neutron flux throughout the entire system. 

 One course on uncertainty and sensitivity analysis. Emphasis will be put on the application 
of such methods to the estimation of the reactor transfer function and the corresponding 
neutron noise. 

 Two hands-on training sessions on the two research facilities used in the project. The 
sessions will consist of the following exercises: reactor start-up procedures, control rod and 
critical experiments, and a set of neutron noise experiments. 

 
In the area of publications, after 18 months as a running project, the following has been 
achieved: 

 One journal publication (two more under review). 

 Eight conference publications (ten more under review). 

 Seven conference presentations. 
In addition, most of the deliverables (26 in total – ten were already delivered) are/will be publicly 
available. 
 



 

 

All the publicly available resources are directly accessible on the project website http://cortex-
h2020.eu. In addition to the publications and deliverables listed above, newsletters are 
distributed once a year. The consortium is also heavily using LinkedIn 
http://linkedin.com/company/cortex-h2020 to inform about the project. Promotional materials 
(video, leaflet, poster) are also available. 
 

5.2 HPMC and McSAFE 
The dissemination, education and training activities of both projects rely on the following pillars: 

 Dissemination plan for the identification of end users and stakeholders (industry, 
academia, regulators, TSO). 

 Creation of a public website http://www.mcsafe-h2020.eu. 

 Organisation of a dedicated training course to be held in April 2020 where the main tools 
of McSAFE will be presented and demos of selected applications will be shown to the 
community. 

 Presentation of the main results at international conferences, e.g. PHYSOR, M&C, etc., 
publication of the main results in scientific journals, presentation at the NUGENIA Forum, 
the FISA Conference, etc. 

 Establishment of a Users’ Group consisting of institutions which will get access to the use 
of the codes being developed and extended within McSAFE, for performing simulations of 
own problems. Important feedback from the Users’ Group is expected regarding the 
capabilities and user-friendliness of the codes.  

 Creation of a Technical Advisory Board consisting of selected experts of the community of 
stakeholders and aimed at reviewing the McSAFE developments and at providing advice 
and comments on the main developments. 

 Delivery of 57 deliverables in total, from which around 30 are already finalized. Some of 
them are publicly available on the project website. 

 Education and training of young scientists through doctoral programs and through the 
involvement of master and bachelor students in the project at the different partner 
institutions.   

 

5.3 NURESAFE 
In order to foster the dissemination and facilitate the use of the platform codes, 15 training 
sessions of a few days each were given to the staff of the NURESAFE partners and to external 
users’ organisations during the course of the project. The end-users of the NURESIM platform 
and of the individual codes could thereafter efficiently use the tools and methods.  
 
Two public NURESAFE general workshops were held in Budapest on June 16-17, 2014 and 
in Brussels on November 4-5, 2015, respectively, in order to present the new methods, models 
and functionalities that were developed. About 50 people attended each of the workshops.  
 
Many publications were made:  

 12 articles were published in peer-reviewed journals (Annals of Nuclear Energy, 
International Journal of Heat and Fluid Flow, Multiphase Science and Technology, Nuclear 
Engineering and Design). 

 28 presentations were delivered at international conferences (NURETH, ICONE, 
CFD4NRS, SNA-M&C, ….). 

 
An active Users’ Group was set up when starting the project. The objective was to give the 
opportunity to organizations which were not members of the NURESAFE consortium to use 
and test the new methods and tools. Five universities and companies were members of the 
NURESAFE Users’ Group: 3 non-European and 2 European. They provided fruitful feedback 
on the use of the codes in some challenging situations, especially in thermal-hydraulics.  
 

  

http://cortex-h2020.eu/
http://cortex-h2020.eu/
http://linkedin.com/company/cortex-h2020
http://www.mcsafe-h2020.eu/


 

 

6. Utilization and cross-fertilization 
CORTEX is by essence an international project, since one of the partners is from USA and 
another one is from Japan. Moreover, the project gathers academic partners, research 
institutes, TSOs, utilities, fuel and reactor manufacturers, as well as services companies in 
order to develop a core monitoring technique in close dialogue with all relevant stakeholders. 
This will result in a method directly applicable for the industry. Finally, additional interest was 
received from the USA for developing a similar method as the one being developed in 
CORTEX. 
 
Although neutron noise core monitoring has been used in a “rudimentary” manner in some 
plants worldwide, the methodology proposed in CORTEX and relying on machine learning 
techniques combined with dedicated neutron noise simulations has never been attempted. 
Moreover, the development of neutron noise simulation capabilities at an industrial level also 
represents a novelty in CORTEX. Being able to infer from the detector readings the existence, 
location and features of possible anomalies would represent a world-premiere. 
 
If successful, the project will also be able to identify the root-cause of some operational 
problems during exploitation. CORTEX will for instance investigate the increase of the neutron 
noise levels observed in some Pre-KONVOI PWRs, events remaining unexplained and which, 
in some cases, led to reduced power operation or reactor scrams [25]-[28]. 
 
In the area of Monte Carlo simulations, the main tools being developed within HPMC and 
McSAFE are high-fidelity tools, which can also provide reference solutions to any low-order 
solution (e.g. nodal diffusion solvers) used by regulators and the industry in real life situations 
and for licensing purposes. Since the tools are able to provide unique full core solutions at the 
pin level taking into account local thermal hydraulic feedback, such tools substantially improve 
the modelling accuracy when predicting depletion and simulating static core configurations. In 
addition, the dynamic capability added to the Monte Carlo codes coupled with thermal 
hydraulic subchannel codes pave the way for the analysis of transients (e.g. REA, MSLB) with 
an unequalled accuracy as of today. Hence, these tools are very well suited for being used by 
the industry as a complement to low-order solutions. Finally, for all cases where no 
experimental data are available at a fine resolution, these tools can predict local safety-relevant 
parameters. With the maturity of the being developed Monte Carlo solutions, the project will 
allow industry-like problems to be modelled. This will provide a possibility to assess the 
adequacy of deterministic based solution methods that are routinely used by the industry and 
that rely on many approximations and limitations, as highlighted in Section 3.1. 
 
The end-users of the NURESIM software platform also benefit since the end of the project from 
the improvements made within the NURESAFE project in simulation capabilities, more 
precisely when e.g. they perform industrial studies, safety analyses, optimisation of reactor 
operation and reactor design. The end-users are the members of the NURESAFE consortium 
(22 organisations) and the members of the NURESAFE Users’ Group (five organisations). 
They can be categorized into 1) utilities (three utilities operating the majority of the European 
fleet of nuclear reactors), 2) one reactor and fuel manufacturer and vendor (Framatome), 3) 
three TSOs to safety authorities and 4) universities and research institutes. The standardised 
environment offered by the platform and the interoperability of codes facilitate collaborative 
work between all partners. Collaborative work contributes to the increase of the leadership of 
European science for nuclear reactor simulation. 
 
Since the end of the NURESAFE project, further use and development of the software platform 
are pursued thanks to: 

 A continuous maintenance by CEA of the software repository dedicated to the NURESIM 
platform. 

 Further development and maintenance of the general-purpose software SALOME and 
URANIE (two open-source software supporting the entire platform). 

 Further development and maintenance of each individual software by code owners. 



 

 

This above resulted in long-term frameworks that have already been used for many years. 
  

7. Conclusions and future recommendations 
Using the NURESIM platform, challenging DNS & LES simulations were performed within 
NURESAFE to analyse bubbly flow with and without phase change in order to understand 
intricate phenomena that are beyond measurements capabilities. New modelling routes were 
proposed based on these results and were documented and implemented in the platform 
available to all stakeholders. Novel ideas were explored, and some others were further refined, 
such as combining large-scale and small-scale prediction techniques. Such techniques should 
in the medium term replace state-of-the-art methods that are limited to one flow regime. These 
novel techniques are applicable to more complex core-level thermal-hydraulic situations 
involving boiling. Solution procedures taking advantage of the coupling between various codes 
tackling different physics and scales were successfully developed. 
 
In the area of Monte Carlo methods, the methods for depletion and dynamic calculations are 
close to their culmination. The developed coupled codes based on the ICoCo-methodology 
are now implemented in the European simulation platform NURESIM and the testing and 
validation phase will soon start. For this purpose, different benchmark problems of different 
size are being developed so that all partners will apply the developed tools for the analysis of 
those problems. Moreover, the validation of the codes under development using plant 
/experimental data is of paramount importance for McSAFE. Therefore, plant data of two 
European reactors (PWR-KONVOI, VVER-1000) are being prepared and documented for the 
validation of the advanced depletion capability of the tools. On the other hand, selected SPERT 
III REA E test data will be used for the validation of the dynamic versions of the Monte Carlo 
codes. Finally, application to LWR and SMR are foreseen to demonstrate the extended 
capabilities of the multi-physics codes. Generally, it can be stated that considerable efforts are 
still needed for high-fidelity simulations based on Monte Carlo codes in an HPC-environment 
in order to perform core analysis with acceptable statistics for the key parameters of interest. 
 
Beyond the major developments in computing capabilities for normal operation and design 
basis accidents, the monitoring of reactors and the early detection of anomalies will become 
increasingly important, due to the ageing fleet of reactors in Europe. By extending the current 
simulation platforms to the modelling of stationary fluctuations and their effect, such simulation 
tools can be used for creating large data sets that can thereafter be used to detect, from given 
measured reactor parameters, possible anomalies. For such a purpose, machine learning was 
demonstrated in CORTEX, using simulated test data, to be potentially capable of retrieving 
anomalies. Tests on actual plant data remain nevertheless to prove the viability of this 
technique. In addition, although the phenomena considered so far in CORTEX do not require 
taking the thermal-hydraulic feedback into account, the estimation of the coupled 
neutronics/thermal-hydraulics reactor transfer function might be necessary for other scenarios. 
 
In the area of neutron transport, it should also be noted that the methods being developed 
would allow modelling full core in pure transport. The limitations and approximations otherwise 
introduced when pre-generating assembly-wise macroscopic cross-sections would then be 
eliminated, thus greatly enhancing the level of faithfulness of neutron transport simulations for 
strongly heterogeneous cores (such as when using new fuel assembly designs, MOX fuel, 
etc.). 
 
In essence, the different situations needing accurate modelling require the inclusion of more 
and more physics. Beyond neutronics, thermal-hydraulics, and thermo-mechanics, other as 
important physics might need to be included: fuel physics, structural mechanics, coolant and 
radiation chemistry, radionuclide transport, etc. Truly multi-physics and multi-scale modelling 
approaches still need to be developed at a more mature level for tackling such situations. This 
includes the development of new models, their coupling, as well as the use of the latest 
advancements in numerical analysis optimized for HPC. In this respect, the development of 
hybrid methods, such as deterministic and probabilistic methods in neutron transport, or DNS, 



 

 

LES, CFD, and macroscopic approaches in fluid dynamics and heat transfer, should be 
favoured and optimized. This requires having different scientific communities collaborating and 
capitalizing on each other’s strengths and expertise. With so challenging modelling targets, the 
use of machine learning for predictive modelling should also be considered, where machine 
learning could be used in place of or in addition to more traditional modelling approaches. The 
enormous amount of measured data at commercial reactors, research reactors, and 
experimental facilities represent a definite asset, in a machine learning-based modelling 
strategy, that should be utilized as much as possible. 
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9. Glossary 
ATWS  Anticipated Transient Without Scram 
BWR  Boiling Water Reactor 
CAD  Computer-Aided Design 
CFD  Computational Fluid Dynamics 
CNN  Convolutional Neural Network 
CORTEX CORe monitoring Techniques and EXperimental validation and demonstration 
DNS  Direct Numerical Simulation 
EPFL  Ecole Polytechnique Fédérale de Lausanne 
FEM  Finite Element Method 
FSI  Fluid-Structures Interaction 
HPC  High Performance Computing 
HPMC  High Performance Monte Carlo Methods for Core Analysis 
HZDR  Helmholtz-Zentrum Dresden-Rossendorf 
LES  Large Eddy Simulation 
LSTM  Long Short-Term Memory 
LWR  Light Water Reactor 
LOCA  Loss-Of-Coolant Accident 
McSAFE High Performance Monte Carlo Methods for SAFEty Analysis 
MOX  Mixed Oxide 
MPI  Message Passing Interface 
MSLB  Main Steam Line Break 
NURESAFE NUclear REactor SAFEty simulation platform 
NURESIM European Platform for Nuclear Reactor Simulations 
NURISP NUclear Reactor Integrated Simulation Project 
OpenMP Open Multi-Processing 
PTS  Pressurized Thermal Shock 
PWR  Pressurized Water Reactor 
RAM  Random Access Memory 
REA  Rod Ejection Accident 



 

 

SIE  Stochastic Implicit Euler 
SMR  Small Modular Reactor 
SPERT Special Power Excursion Reactor Test Program 
TSO  Technical Support Organization 
TUD  Technical University of Dresden 
UOX  Uranium Oxide 
VVER  Vodo-Vodyanoi Energetichesky Reactor 


