ICAPP 2019 – International Congress on Advances in Nuclear Power Plants, Juan-Les-Pins, France, May 12-15, 2019 Evaluation of the Control Rods Withdrawal in a Small Modular Sodium Fast Reactor and Analysis of the Impact on the Core Design H. Guo^{*}, P. Sciora, T. Kooyman, L. Buiron CEA/DEN/DER/SPRC, * Corresponding Author, E-mail: hui.guo@cea.fr

DE LA RECHERCHE À L'INDUSTRI

Introduction

Small Modular Sodium Fast Reactor (SMSFR):

- Enlarge the application range of nuclear energy
- ✓ Reduce the impact on capital costs

Main characteristics of SMSFR						
Core Power	320 MWth					
Fuel Cycle	375×5 EFPD					
No. Fuel Assembly	42 54					
Plutonium content	22.3 % 27.2 %					
Fuel Volume	1.27 m ³					
Blanket Volume	0.45 m ³					
Average P _{vol}	250 MWth/m ³					
Peak P _{lin}	420 W/cm					
Peak Burn-up	150 GWd/t					
Peak Flux	3.3×10 ¹⁵ n/cm ² /s					
Void Effect	-1.47 \$					
Doppler Constant	-1.99 \$					
Reactivity Loss	-8.5 pcm/EFPD					

Potential Solutions

SMSFRs usually exhibit an important burn-up reactivity loss and thus a high excess reactivity at start-up.

Control Rod Withdrawal (CRW) Accident

Any malfunction of a control rod drive would lead to a CRW accident, which is an Unprotected Transient Over-Power (UTOP) that would lead to local or even global fuel melting of fuel.

Uncertainty of linear power density (%)

2. Reinforce Doppler effects

			•2,32 •6,54	-2,50 -2,98 -6,92 -6,88 -6,88	-5,76 -6,42 -6,91 -5,91	-5,40 -5,89 -5,89
SMSFR-6CRs	2.41×10 ⁻³	-4,36	-7,31	-7,23	-5,90 28/ 3	-3,99 -3,99
SMSFR-7CRs	2.35×10 ⁻³	-6,52 -2,29 -6,87	-7,26	28/30 -6,43	-4,44 -0,81	-0,66 30/ 5,19
SMSFR-9CRs	2.17×10 ⁻³	-3,02	28/28	-4,49	-0,78	0 16,31
SMSFR-12CRs	2.03×10 ⁻³	-2,57	-6,96 -6,88	-5,88 -4,04	-0,68 32/2	32/ 17,59 19,
b_0 : Relative va	riation of	-5,84	-6,42	.5.93 32/26	-1,58 0,91	7,11
the global pov	ver per unit		-5,20	-4,83	-1,25	2,7

of inserted reactivity

20,64 x 1E-5 / pcm 7,84 x 1E-5 / pcm 5,05 x 1E-5 / pcm 2,25 x 1E-5 / pcm ,46 x 1E-5 / pcm 6,66 x 1E-5 / pcm ,87 x 1E-5 / pcm ,07 x 1E-5 / pcm ,72 x 1E-5 / pcm 4,52 x 1E-5 / pcm -7,31 x 1E-5 / pcm

3. Burnable poisons (BP) in SFRs

Compensation ability of burnable poisons (pcm)

To achieve 375 EFPD operations without fuel melting risk in CRW, the BPs should compensate for 2888 pcm reactivity loss.

Conclusions and Perspectives

 k'_i : Relative variation of the local power per unit of inserted reactivity

Coro	Case	Withdrawn CR	Maximal excess	Mean worth	Allowed cycle	
Core		position	reactivity (pcm)	(pcm/CR)	length (EFPD)	
SMSFR-6CRs	Case1	34/28	642	107		
SMSFR-7CRs	Case2	30/30	630	90	0	
	Case3	34/28	794	113	9	
SMSFR-9CRs	Case4	34/28	1073	119	25	
	Case5	32/30	927	103	55	
SMSFR- 12CRs	Case6	34/28	1446	120		
	Case7	32/30	1347	112	76	
	Case8	32/28	1368	114		

Even with an important number of control rods, the allowed cycle length is very limited in SMSFR because of CRW accidents, which means a high refuel frequency and reduced economic efficiency.

The high burnup reactivity loss in small reactor leads to the fuel melting in CRW accidents, which limits their allowed cycle length and thus the economic efficiency.

The potential solutions are investigated: ✓ Improvement of the calculation accuracy ✓ Adding of the Doppler Effect ✓ Application of burnable poisons

Perspectives:

Coupling APOLLO3 and CATHARE3 Design of burnable poisons in fast reactors