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Abstract

Recent advances in NGS sequencing, microarrays and mass spectrometry for omics data production have enabled the
generation and collection of different modalities of high-dimensional molecular data. The integration of multiple omics
datasets is a statistical challenge, due to the limited number of individuals, the high number of variables and the
heterogeneity of the datasets to integrate. Recently, a lot of tools have been developed to solve the problem of integrating
omics data including canonical correlation analysis, matrix factorization and SM. These commonly used techniques aim to
analyze simultaneously two or more types of omics. In this article, we compare a panel of 13 unsupervised methods based
on these different approaches to integrate various types of multi-omics datasets: iClusterPlus, regularized generalized
canonical correlation analysis, sparse generalized canonical correlation analysis, multiple co-inertia analysis (MCIA),
integrative-NMF (intNMF), SNF, MoCluster, mixKernel, CIMLR, LRAcluster, ConsensusClustering, PINSPlus and multi-omics
factor analysis (MOFA). We evaluate the ability of the methods to recover the subgroups and the variables that drive the
clustering on eight benchmarks of simulation. MOFA does not provide any results on these benchmarks. For clustering, SNF,
MoCluster, CIMLR, LRAcluster, ConsensusClustering and intNMF provide the best results. For variable selection, MoCluster
outperforms the others. However, the performance of the methods seems to depend on the heterogeneity of the datasets
(especially for MCIA, intNMF and iClusterPlus). Finally, we apply the methods on three real studies with heterogeneous data
and various phenotypes. We conclude that MoCluster is the best method to analyze these omics data. Availability: An R
package named CrIMMix is available on GitHub at https://github.com/CNRGH/crimmix to reproduce all the results of this
article.
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Introduction
Recent technological improvements for omics data production
including NGS sequencing, microarray and mass spectrometry
have enabled the production and collection of different modali-
ties of high-dimensional molecular data such as genomic, epige-
nomic, transcriptomic, proteomic, lipidomic and metabolomic
[1, 2]. Combining these various types of multi-omics datasets
and clinical data could have the potential to enhance a compre-
hensive view of the mechanisms of disease or biological process
[3–5]. Understanding molecular behaviors, pathway interactions
and relationships between and within the different types of data
could improve the diagnosis, prognosis and monitoring therapy
treatment of cancer [6]. For instance, The Cancer Genome Atlas
(TCGA) [7] and the International Cancer Genome Consortium
[8] produced and collected thousands of tumor samples at dif-
ferent molecular levels including DNA (somatic mutation, copy
number variation), DNA methylation, RNA (or microRNA) and
also proteins for the same patients [9]. Although cancer is the
main application that uses multi-omic integration, the analysis
of complex diseases or single-cell is now emerging [6, 10–14].
Metabolomic and lipidomic were also combined with genomic
for a better knowledge of phenotypes [13, 15–17]. The analy-
sis of multi-omics datasets could be performed using specific
statistical unsupervised integrative methods, which allow the
combination of multiple blocks. These methods could provide
new subgroups of patients of a specific disease [18, 19] and
identify candidate biomarkers.

However, integrating multi-omics datasets involves several
challenges including the high dimension of datasets (for
instance, whole genome sequencing analyzes the 3 billions
of base pairs of the human genome), the limited number
of patients, the heterogeneity of datasets and the modeling
of interactions between the different types of omics data
[20, 21]. Indeed, multi-omics data are obtained using several
technologies that generate different types of datasets with
various dimensions. Due to the high dimensionality of the
produced data, a lot of methods are based on dimension
reduction techniques [22] or SM for clustering [23]. Recently,
several unsupervised and supervised integrative methods for
multi-omics have been compared [20, 22–26].

In this article, we evaluated 13 unsupervised methods that
are mainly based on three types of statistical approaches: matrix
factorization (MF), canonical correlation and co-inertia analysis
(CCA and CIA) and similarity matrices (SM). MF and CCA are
based on the same principles, namely dimension reduction and
latent variable models [22].

The selected unsupervised methods include regularized
and sparse generalized canonical correlation analysis [27, 28],
integrative non-negative matrix factorization [29], multiple
co-inertia analysis [30], similarity network fusion [18], two
multiple kernel learning methods [31, 32], multi-omics factor
analysis (MOFA) [33], low-rank approximation method [34],
consensus clustering [35, 36], perturbation clustering [37]
and two integrative clustering methods (iClusterPlus [38] and
MoCluster [39]).

Methods
One of the most important criteria to select the methods is the
availability of the code. Thus, we assess 13 methods that are
freely available as R packages, which ensures a good documen-
tation. These methods are listed in Table 1 and described below. Ta
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Notations

In the following, A denotes a matrix, a a vector and a a scalar.
For each method, we consider K matrices X1, . . . XK as input of
each method. Each matrix Xk is of size n × Jk (n is the number of
samples and Jk the number of variables for the block k).

Regularized generalized canonical correlation analysis
and sparse generalized canonical correlation analysis

Regularized generalized canonical correlation analysis (RGCCA)
has been introduced by Tenenhaus et al. in [27]. This method
considers a connection network between the various blocks of
data by defining a design matrix C = cjk : cjk = 1 if blocks j and
k are connected and 0 otherwise. The RGCCA is defined as the
following problem for one latent variable by block:

max
a1 ...,aK

K∑
j,k=1,j �=k

cjkg(Cov(Xjaj, Xkak)) (1)

subject to the following constraints τk‖ak‖2 + (1 − τk)Var(Xkak) =
1, k = 1, . . . K. The parameter τ is defined by the user and can
be seen as a shrinkage parameter. τ is in fact a parameter that
controls the compromise between covariance and correlation. If
τk = 1, then the users give priority to the covariance between the
latent variables Xkak compared to the correlation. Otherwise, if
τk = 0, then the users give priority to the correlation between
latent variables. The function g can be either the identity, the
absolute value or the square function. For more details on this
parameter see [27].

The authors of [27] proposed an algorithm to solve the prob-
lem defined by 1 and also an R package called RGCCA.

The authors of [28] expand RGCCA to address the variable
selection.

The sparse generalized canonical correlation analysis
(SGCCA) is defined as the following problem:

max
a1 ...,aK

K∑
j,k=1,j �=k

cjkg(Cov(Xjaj, Xkak)) (2)

subject to the following constraints ‖ak‖2 = 1 and‖ak‖1 ≤
sk, k = 1, . . . , K, where sj is a positive constant that determines
the amount of sparsity aj, j = 1, . . . , J. The smaller sj, the larger
the degree of sparsity for aj.

In both RGCCA and SGCCA, users need to tune multiple
parameters: for RGCCA: τ and the number of latent variables for
each block and for SGCCA sj and the number of latent variables
for each block.

Multiple co-inertia analysis

Multiple co-inertia analysis (MCIA) [30] is an exploratory data
analysis method that identifies relationships between multiple
high dimensional datasets. The first step is to apply on each
dataset separately a table ordination method, such as principal
component analysis (PCA). This step allows to transform data
into comparable lower dimensional spaces. After this step, we
obtain K transformed matrices X̃k for each considered dataset,
and X̃k is centered.

MCIA can be written as a particular case of RGCCA. Following
equation 1, g = x2 and cjk = 1, MCIA optimize the equation:

max f(a1, . . . , aK) = max
K∑

k=1

cov2
(
X̃kak, X̃a

)
(3)

where X̃ = (X̃1| . . . |X̃K) is a superblock with the constraint ‖ak‖2 =
Var(Xa) = 1 and a = (a1| . . . |aK). a represents the global loading
vector where the individuals will be represented. MCIA allows
only one common latent variable space with a. MCIA is available
in R package omicade4.

Integrative-NMF

The main goal of the MF technique is to decompose a matrix
Xk into two matrices: a common basis matrix denoted W and a
specific coefficient matrix denoted Hk by assuming that

Xk≈WHk (4)

where Xk is a matrix of size n × Jk, W is a matrix of size n × d and
Hk is a matrix of size d × Jk. The latent variables for this model
are Hk and W.

The non-negative matrix factorization (NMF) is an approach
that has already been used for disease subtype classification.
For instance, it has been used in cancer subtype discovery from
gene expression data [19, 41]. In [29] an extension is proposed to
include simultaneously a single analysis multiple omic datasets
and named it integrative-NMF (intNMF). intNMF uses the model
define by equation 4 where all coefficients of W and Hk are non-
negative. The classical objective function in this kind of problem
is defined as the Frobenius-norm. intNMF solves the following
problem:

min
W,H1,...Hk

K∑
k=1

‖Xk − WHk‖F (5)

subject to W ≥ 0 and Hk ≥ 0. intNMF added a parameter
θk for each dataset, specified by users, which aims to control
the weight of each dataset in the analysis. Then the objective
function becomes

min
W,H1,...Hk

K∑
k=1

θk‖Xk − WHk‖F s.t W ≥ 0 andHk ≥ 0. (6)

By default, θk is the maximum of the mean sums of squares on
the matrix among all data divided by the mean sums of squares
of each data (see equation 7). This implies that the dataset with
the largest values has a weight of 1, and the dataset with the
smallest values has a weight larger than 1.

θk = maxk=1,...,K mean‖Xk‖F

mean‖Xk‖F
. (7)

Several algorithms are well-known to solve this kind of prob-
lem [42]. intNMF does not assume any distributional form for the
data Xk and the non-negative constraint could induce a certain
level of sparsity in both W and Hk. An R package named intNMF

is available and is easy to use.
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iCluster and iClusterPlus

iCluster and iClusterPlus [38, 42] also aim to recover W and
Hk the latent variables in equation 4. The updated version,
iClusterPlus, allows modeling Poisson, binomial, Gaussian
and multinomial distributions. Here, we present only modeliza-
tion for continuous and binary data, the two types of datasets
that have been used in this article. As previously, Xk is a matrix
of size n × Jk.

The continuous data model can be written as follows:

xijk = αjk + hjkwi + εijk (8)

where εijk ∼ N (0, σ 2
jk).

The Binary model can be written as follows:

log
P(xijk = 1|wi)

1 − P(xijk = 1|wi)
= αjk + hjkwi. (9)

In equation 9, P(xijk|wi) is the probability of gene j mutated
in sample i given the latent factor wi. αjk is an intercept term,
and hjk is a row vector of size p that determine the weight of the
genomic feature j.

To obtain a sparse model, the likelihood is solved with a lasso
penalty (L1-norm) on Hk (equation 10).

max
αjk ,hjk

�(xijk, wi; αjk, hjk) −
K∑

k=1

Jk∑
j=1

λk‖hjk‖1 (10)

As intNMF, the latent variables of iClusterPlus are the matri-
ces W and Hk. This method is implemented in the package
named iClusterPlus, which is well documented and relatively
easy to use.

MoCluster approach

Another MF method that we assess is MoCluster [39]. The model
can be expressed as those described by equation 4.

The first step of MoCluster uses the consensus PCA (CPCA)
algorithm to estimate the block latent variables for each block
denoted Hk, k = 1, . . . K. Then, to define a common space of
variable the algorithm maximizes the correlation between Hk

and H (the joint latent variables). The MoCluster algorithm intro-
duces sparsity in feature coefficient vectors (H) to improve the
biological interpretation of clustering results. The sparsity is
included by the way of a Soft-thresholding operator that controls
the number of nonzero coefficient. The main advantage of the
CPCA algorithm, in contrast to iCluster/iClusterPlus that uses
an EM-algorithm, is the time-saving. Then, W matrix used to
perform clustering of samples is defined by the projection of the
samples on the new subspace defined by H.

CPCA is closely related to RGCCA and MCIA, but has had
less exposure to the omics data community. CPCA optimizes
the same criterion as RGCCA and MCIA and is subject to the
same constraints of normality as MCIA [22, 43], i.e. ‖H‖ = 1. The
algorithm used in [39] guarantees the orthogonality of the global
scores H and tends to find common patterns in the datasets.

MoCluster is implemented in the R package named mogsa

and is well documented.

MOFA

More recently, the model MOFA has been introduced in [33]. It
can be written as that of intNMF:

Xk = WHk + εk, k = 1, . . . K (11)

W ∈ R
n×d is the weight matrix for the individuals, Hk ∈ R

d×Jk is
the loading matrix for variables in the low dimensional space
and εk ∈ R

n×Jk denotes the residual noise.
For the Gaussian model εk

ij ∼ N (0, 1/τ k
j ), with Gamma prior

on the precision parameters 1/τ k
j . 1/τ k

j ∼ G(a0, b0), with a0 = b0 =
1e − 14 to obtain informative priors.

Then, in the Gaussian case, Xk
ij ∼ N (Wi•Hk

•j, 1/τ k
j ). Authors

added sparsity constraints on both W and Hk matrices by
using an automatic relevance determination prior: a re-
parametrisation of spike-and-slab priors.

MOFA models other kinds of noise such as binary and count
data. MOFA uses respectively Bernoulli and Poisson distributions
for these two kinds of data. The model likelihood is given by
Xk

ij ∼ B(f(Wi•Hk
•j)) for the Binary data where f denotes the logistic

inverse function f(x) = (1 + e−x)−1.
MOFA is implemented in R as a well-documented open-

source software and comes with tutorials and example work-
flows.

SNF

To finish, we explored five methods based on SM. The first one
is the similarity network fusion [18] that aims to cluster the
patients into several groups in order to discover new subtypes
of a given disease. A patient similarity network for a dataset k
is represented by a graph Gk = (V, Ek) where V corresponds to
the patients and the edges Ek are weighted by how similar the
patients are. Xk is still the datasets k of size n × Jk. The first step
of this method consists in computing an SM Wk for each type of
dataset k = 1, . . . K.

Wk(i, i′) = exp
(

−ρ2(Xk(i, •)Xk(i′, •))

μεi,i′

)
(12)

The parameter μ can be empirically set. Authors advise to set
this parameter in the range of [0.3, 0.8] and is 0.5 by default.

Let us denote by Ni the set of Xk(i, •)’s neighbors including
itself in a graph Gk for the dataset k. The size of Ni can be defined
by the user and is equal to 10 by default. Then, ρki = ρ(Xk(i, •), Ni)

is the average value of the distance between Xk(i, •) and each
neighbors in the Ni.

εi,i′ is used to fix the scaling problem and is defined by the
following formula:

εi,i′ = mean(ρki) + mean(ρki′ ) + ρ(Xk(i, •), Xk(i′, •))

3
.

The next step is to combine the different SM and to perform
clustering on this output. Two matrices P and S are defined. The
first one P carries the full information about the similarity to all
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others and the second one S only represents the similarity to the
J most similar patients for each patient.

Pk(i, i′) =
{

Wk(i,i′)
2

∑
i�=i′ Wk(i,i′) , i �= i′

1/2, i = i′

Sk(i, i′) =
{ Wk(i,i′)∑

i′∈Ni
Wk(i,i′) , i′ ∈ Ni

0, otherwise

By using a new matrix P̃k defined by

P̃k = Sk ×
∑

k′ �=k Pk′

K − 1
× ST

k , k = 1, . . . , K. (13)

Then, the SM used to perform the clustering is the normal-
ized matrix sum defined by the previous equation 13.

An R package named SNFtool that implemented this method
is available.

MixKernel

Recently, Kernel learning methods emerged in multi-omics anal-
ysis [31, 44]. Kernel learning methods compute SM of datasets
from kernels. Consequently, it is easy to combine the kernel of
each dataset to obtain a global SM.

For a given set of observations (xi)i=1,...,N, taking values in an
arbitrary space X , we call kernel a function K : X × X → R that
provides pairwise similarities between the observations: Kij :=
K(xi, xj). Moreover, this function is assumed to be symmetric Kij =
Kji and positive. According to [45], this ensures that K is the dot
product in a uniquely defined Hilbert space of the images.

This kernel can thus be used in subsequent analyses (support
vector machine, kernel PCA (KPCA), kernel self-organizing map)
as it is supposed to provide an integrated summary of the
samples. We used here the KPCA method on our simulations.
The R package MixKernel enables to run the expanded KPCA.

CIMLR

Recently, CIMLR [32], a multikernel learning method, has been
developed to classify cancers. First, the method uses the several
Gaussian kernel defined by

K(Xk(i, •), Xk(j, •)) = 1

εij

√
2π

exp

(
−‖Xk(i, •) − Xk(j, •)‖2

2

2ε2
ij

)
(14)

where Xk(i, •) and Xk(j, •) are the i-th and the j-th rows of the
matrix Xk. ε2

ij is a variance term that can be calculated with
different ways [46].

CIMLR method performs the above computation for each
block independently, to obtain a set of P Gaussian kernels with
different variance per block. Then, it optimizes the following

equation defined in [46]:

min
S,L,w

−
∑

i,j

{
P∑

l=1

K∑
k=1

wlkKl(Xk(i, •), Xk(j, •))

}
Sij+

β‖S‖2
F + γ tr(LT(In − S)L) + ρ

∑
l

∑
k

wlk log(wlk)

subject toLTL = IC,
∑

l

∑
k

wlk = 1, wlk ≥ 0,

∑
j

Sij = 1, andSij ≥ 0 (15)

where, n is the number of individuals, C the number of clusters,
i and j are two individuals and l the Kernel index from 1 to P.
The equation is solved for S the n×n SM, wlk the weights of each
kernel in each block of data and L an auxiliary low-dimensional
matrix of size n × C enforcing the low rank constraint on S. In

and IC are n × n and C × C identity matrices, β, γ and ρ are non-
negative tuning parameters and ‖S‖2

F is the Frobenius norm of S.
The clustering is deduced from S by the k-means method.

CIMLR includes a second step to define which are the relevant
features. For each subgroup, a hypergeometric test is used on
variables to discriminate those that drive the clustering. From
this test, a P-value is then attributed to each variable.

The package CIMLR is available.

PINS and PINSPLUS

PINS (Perturbation clustering for data INtegration and disease
Subtyping) is a method based on SM. For the steps detailed below,
let us first assume that there is one block of data. The first step
of PINS [37] consists in computing a SM and then performing
a hierarchical clustering of the patients that is cut for each
possible number of clusters from c = 2 to c = C, where the
partitioning in c clusters is denoted by Cc. After this step, we
have (C − 1) partitions. Then, PINS uses a pair-wise connectivity
matrix for each partitioning. Two individuals are connected if
they are clustered together. The connectivity matrix Mc from the
partitioning Cc is defined by

Mc =
{

1 if individuals i, j belong to the same group
0 otherwise

(16)
C − 1 connectivity matrices are computed (for each partition

Cc); therefore, C−1 connectivity matrices Mc have been obtained.
PINS generates perturbed matrices to evaluate the stability

of clustering. The method consists in perturbing the dataset by
adding Gaussian noise to the original data. From these perturbed
datasets, they compute connectivity matrices and then an aver-
age of these connectivity matrices.

If the original connectivity matrix Mc for a given c is identical
to the average of perturbed connectivity matrices this means
that perturbations do not affect the clustering results. The best
number of subgroups is the one that minimizes the difference
between the original (without the perturbation) connectivity
matrix and the perturbed connectivity matrix.

For multi-omics data integration, they compute one connec-
tivity matrix for each dataset and then they perform an average
of these matrices. The choice of the best number of subgroups
is made using the perturbation procedure described above on
such averaged (over blocks) connectivity matrices. Finally for the
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best number of subgroups, they apply a hierarchical clustering
on the average connectivity matrix. The package PINSPlus that
implements PINS methods faster than the original package PINS
[40] has been used.

Consensus clustering

The Consensus clustering method described in [35] combines
several omics datasets in order to cluster patients. The first step
is the concatenation of the K matrices X1, X2, . . . , XK, denoted by
the super block X = (X1| . . . |XK). After computing a SM on X, a
first clustering is carried out for each number of clusters from
c = 1 to c = C.

Then, a connectivity matrix is defined by the same equa-
tion as in PINSPlus (equation 16) for each possible value of c.
ConsensusClustering perturbs the original superblock X by sub-
sampling individuals. The P perturbed datasets are denoted by
X(1), . . . , X(P). Then, I(p) is a n×n matrix that indicates if individuals
i and j are both present in the same dataset X(p), and the p-th
connectivity matrix associated to X(p) is denoted by M(p)

c .
A consensus matrix (Cc) for c clusters is an n × n matrix that

stores, for each pair of individuals, the proportion of cluster-
ing runs in which two individuals are clustered together. Cc is
obtained by taking the average over the connectivity matrices of
every perturbed dataset.

Cc(i, j) =
∑

p M(p)
c (i, j)∑

p I(p)(i, j)
(17)

By definition, Cc is symmetric and provides a similarity mea-
sure that can be used as an input of a hierarchical clustering
method. The package R ConsensusClusteringPlus presented
in [36] has been used.

LRAcluster

LRAcluster [34] is based on the low-rank approximation method.
For LRAcluster, individuals are in columns and features are in
rows. Then, here Xk(j, i), is the value of the feature j and the
individual i for the block k. The user can specify the distribution
Pr(Xk(j, i)|θk

ji ) of each block among Gaussian, Binary and Poisson
distributions where θk

ji is the parameter for each distribution. In
this article, we used the Gaussian and the Binary distributions.
Then, the likelihood function is defined by

L(θk; Xk) = −
∑

ji

ln(Pr(Xk(j, i)|θk
ji )). (18)

The overall likelihood function is the sum of the likelihood
functions of the different blocks (equation 19).

L(θ) =
∑

k

L(θk; Xk) (19)

The assumption of the model is that θ has a low-rank structure.
This assumption is used to penalize the degree of freedom of the
model and leads to the following optimization problem:

arg min
θ

L(θ) + μ|θ |∗ (20)

where θ = (θ1, . . . , θK), μ is a tuning parameter and |θ |∗ is the
nuclear norm of the matrix θ [47]. The authors of LRAcluster
implement a fast low-rank approximation described in [34].
Then, they use a singular vector decomposition (SVD) of θ , and
then, to identify clusters, k-means or hierarchical clustering can
be used on the reduced low-dimensional space given by the SVD.
An R package is available at http://bioinfo.au.tsinghua.edu.cn/
member/jgu/lracluster/.

Results
In this section, we compared the 13 unsupervised methods
described in the previous section. First, we simulated hetero-
geneous datasets to evaluate the classification into subgroups
and we also evaluated the performance in terms of detection
of the variables that can drive subgroups. However, simula-
tions cannot illustrate perfectly the biological mechanisms with
true interactions. For this reason, we also evaluate the per-
formance of methods for three real studies [11, 48, 49]. These
three studies contain multiple types of omics datasets, including
proteomics, metabolomics, transcriptomics, epigenomics and
genomics (somatic mutations, and copy number variations). Dif-
ferent phenotypical outcomes have been studied including the
type of physical exercise, the diet and the subtype of cancer. The
subgroups that compose these three studies are also different.
For instance, two studies contain two balanced subgroups with
a limited number of samples, whereas the third study is com-
posed of four subgroups with a larger number of samples (see
Application to three real studies section).

We evaluate the performance of all the methods at multi-
ple levels: the computing time in Computing time section, the
ability of each method to classify the individuals into the true
subgroups (Clustering evaluation section for simulated data and
Clustering evaluation section for real datasets) and the ability to
find the relevant variables in each dataset that drive the multiple
subgroups of patients (Variable importance evaluation section
for simulated data and Analysis of variable selection section for
real data).

Note that MOFA has difficulties to converge on all simulation
benchmarks and it does not find the simulated structures even
on easy benchmarks. For this reason, the results do not appear
in the Results section. Furthermore, we found that the sparsity
parameters are not easy to tune.

Simulations

We simulated datasets from three kinds of distributions (Gaus-
sian, Beta-like and Binary). These distributions simulate the het-
erogeneity of the various multi-omics datasets. For instance, the
Gaussian distribution could represent abundance quantification
such as metabolomic, proteomic and transcriptomic data. Then,
the Beta-like distribution could simulate the percentage of DNA
methylation. Finally, the Binary distribution could represent the
presence/absence of a mutation in a gene.

We present below the procedure to generate simulated
datasets.

i. Define the total number of individuals (n)
ii. Define the group of each individual (with nl the number of

individuals in subgroup l)
iii. Define the number of datasets and their size (K and Jk)
iv. Choose the type of omics of each dataset (Gaussian, Beta-

like, Binary)

http://bioinfo.au.tsinghua.edu.cn/member/jgu/lracluster/
http://bioinfo.au.tsinghua.edu.cn/member/jgu/lracluster/
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Figure 1. Illustration of the simulated matrix generated at step 1. The red and blue boxes follow either Gaussian distribution or a Binary distribution, the white squares

represent zero values.

v. Tune parameters for each type of dataset (mean and stan-
dard deviation for Gaussian and Beta-like, proportions for
Binary)

vi. Define the percentage of relevant variables that drive sub-
groups

vii. Set background noise
viii. Finally, we obtain K matrices X1, . . . , and XK

To simulate matrices we perform the following steps.
Step 1: We consider two groups of size C1 and C2 such as C1 +

C2 = n. Then, we simulate the red and blue sub-matrices of sizes
C1 × r1 and C2 × r2, where r1 and r2 are the numbers of relevant
variables (Figure 1). The intersection between the two groups of
relevant variables can be non-empty.

• Gaussian: the two sub-matrices follow N (m1, σ 2
1 ) and

N (m2, σ 2
2 ).

• Binary: the two sub-matrices follow B(p1) and B(p2).
• Beta-like: the two sub-matrices follow N (m1, σ 2

1 ) and
N (m2, σ 2

2 ) with m1 negative and m2 positive.

The non-relevant variables for each group are set to zero.
Step 2: Noise is simulated by different ways according to the

type of data that the user wants to simulate.

• Gaussian: a matrix of size n× Jk following N (0, σ 2) is added to
Xk.

• Binary: a matrix of size n × Jk following B(p).
• Beta-like: a matrix of size n × Jk following N (0, σ 2) is added to

Xk.

Step 3: For Beta-like the transformation f(x) = 1/(1+ exp(−x))

is used to obtain a distribution between 0 and 1.
For more details on the simulations, see Section A1.1 in the

appendix.

Computing time

The first question that we address is the computing time of each
method to analyze datasets with a large number of individuals.
For example, TCGA datasets often contain more than 300 indi-
viduals per cancer type. Additionally, as we related in the intro-
duction (Introduction section), the dimension of omics datasets
could be very high. Thus, we decided to compare the computing
time of the methods when the number of individuals increases.

Let us denote by Xk (of size n × pk) the dataset simulated
with the procedure described above. We compare the different
methods at the computing time level using three heterogeneous
datasets (X1, X2, and X3) where J1 = 1000, J2 = 500 and J3 = 5000.
The total number of individuals varies in a fixed grid (n = 60,
120, 180 and 240). The number of individuals could be considered
as small, but the collection of multiple omics data for the same
patient is expensive and limited by the quantity of biological
materials.

Figure 2 shows that all methods have computing time
between few seconds to few minutes per run. The fastest
method is SNF (less than one second for all values of n) due
to the computation of only one SM (Methods section). The three
slowest methods are iClusterPlus, CIMLR and intNMF (Figure 2).
For iClusterPlus, this is due to the high complexity of the Monte
Carlo Newton–Raphson Algorithm for maximizing a penalized
log-likelihood (equation 10). For intNMF, the authors use a
derived non-negativity constrained alternating least squares
algorithm that remains slow. CIMLR is also slow probably due
to the large number of kernels that are computed an by the
optimization of the equation 15 (CIMLR section). Nevertheless,
there is no parameter to optimize for this method unlike
intNMF and iClusterPlus. Besides, for SGCCA, PINSPlus and
ConsensusClustering methods, the computing times slightly
increase when the number of individuals raises. Therefore,
analyses of a large number of individuals could be performed
with these methods.

Influence of parameter tuning

All methods have parameters that are necessary to tune
(Methods section). Indeed, MoCluster, SGCCA, RGCCA, intNMF
and MCIA require to tune the number of latent profiles. Then,
SGCCA, MoCluster and iClusterPlus need to tune the sparsity
parameters. Finally, RGCCA involves to tune the shrinkage
parameter τ (Methods section). The results of this part are in
the supplementary materials S1. The influence of the number
of latent variables d, the shrinkage parameter τ and the sparsity
parameters have been studied through the Adjusted Rand Index
(ARI) and the receiver operating characteristic (ROC) curves.

Tuning parameters of methods could be time consuming.
For this reason, we show the influence for sparsity parameter
for MoCluster and SGCCA only. Indeed, Computing time section
shows that iClusterPlus is one of the slowest methods and it
has a lot of parameters to tune (Methods section). Consequently,
the investigation of the influence of its parameters was not
performed.

A too small or too high value of d decreases the ability to
recover the relevant variables and the true clustering. For a too
high sparsity, a large number of relevant variables is missed,
and for a too low sparsity the false positive rate (FPR) increases.
Furthermore, ARI is not always optimal when the sparsity is low.

Then, in the vignette, we evaluate the performance of RGCCA
with various values of τ . We demonstrate that on the simulated
data τ does not influence the results.

In the following, for all the methods based on latent variables,
we fix this number to the true number of simulated clusters. For
sparse methods, we show the results with the sparsity param-
eters that give the best results for the ARIs and we fixed τ to 1
(the default parameter).
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Figure 2. Computing time comparison. Each method is run 10 times for 60, 120, 180 and 240 samples in the datasets. Methods are in x-axis and time in logarithm of

(seconds) is in y-axis.

Simulation scenarios

We simulate eight benchmarks with multiple parameters.
The eight benchmarks have features described in Table 2. For
benchmarks 1 to 4, only the signal to noise ratio changes from
one to another. Then, only the proportion of relevant variables
has changed between benchmarks 5 and 1. Finally, the number
of subgroups changes from one to another from benchmarks
6 to 8. All benchmarks have been simulated 50 times. These
benchmarks will enable us to highlight the cases where some
methods fail.

Choice of the number of clusters

On benchmark 1, we evaluate the ability of methods to recover
the true number of clusters (Section A1.2 in the appendix).
In this benchmark, we simulate 4 unbalanced groups (see
Simulation scenarios section in Table 2). Computing time
section shows that iClusterPlus and intNMF are the two slowest
methods. Moreover, these methods require to be run once for
each C (the number of clusters). For this reason, we limited
the performance evaluation of the choice of C to a subset of
simulated datasets.

In Figure 3, LRACluster, MoCluster and SGCCA are the best
methods to select the true C with a median equal to 4. PINSPLUS
recover between 2 and 4 clusters, while RGCCA select between
3 and 5 clusters, and iClusterPlus between 2 and 5. Then, SNF,
RGCCA, intNMF and mixKernel recover only 2 on 3 clusters.
Finally, the three worst methods to recover C are ConsensusClus-
tering, CIMLR and MCIA (indeed C is overestimated for the first
two methods, while it is really underestimated for the last one).

In the following, we used the simulated number of clusters
to compare the classifications given by the methods.

Clustering evaluation

In this section, the ability of all the methods to classify the
samples in the correct subgroups was compared (Figure 4).

To evaluate the performance of each method to classify the
samples into subgroups, the ARI is computed [50]. The ARI is
a score that measures the similarity between two clusterings.
Here, the ARI is computed between the simulated clustering
and the clustering given by the methods. Seven methods (SNF,
intNMF, MoCluster, ConsensusClustering, CIMLR, PINSPLUS and
iClusterPlus) provide their own classification.

For the other methods (LRAcluster, mixKernel, SGCCA,
RGCCA and MCIA), we performed a usual hierarchical clustering
using the Euclidean distance associated with Ward’s method
[51] on the individual reduced space or the SM. As the number
of subgroups of simulated framework is known, therefore we
cut the tree from the hierarchical clustering at the true number
of subgroups. For SNF, intNMF, MoCluster, ConsensusClustering,
PINSPLUS, CIMLR and iClusterPlus, we give the true number of
subgroups as well.

Influence of the level of noise (Figure 4)
B1, B2, B3 and B4 benchmarks were used to evaluate the

influence of the level of noise of datasets. The most consistent
methods are SNF, MoCluster, intNMF PINSPLUS, ConsensusClus-
tering, LRAcluster, RGCCA and mixKernel with an average ARI
larger than 0.80 for the four benchmarks. For these benchmarks,
CIMLR and iClusterPlus have difficulties reaching the maximum
value of ARI. MCIA and SGCCA are the methods with the greater
variability.

Influence of the number of subgroups (Figure 4)
To evaluate the influence of the number of subgroups in

the whole dataset, B6, B7 and B8 benchmarks were compared.
These benchmarks contain respectively 2, 3 and 4 subgroups of
25 individuals.

The methods that are not sensitive to the variation of the
number of subgroups are SNF, RGCCA, PINSPLUS, Consensus-
Clustering, LRAcluster, MoCluster, intNMF and SGCCA (the ARIs
do not change a lot). Then, when the dataset is composed of only
two subgroups, mixKernel, iClusterPlus and MCIA have stability
issues (huge variability of ARI).
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Figure 3. Estimation of the Cbest by the integrative methods over 10 simulations. The red dashed line is the true C in the simulated datasets from benchmark 1.

Table 2. Characteristics of simulated benchmarks: type of dataset,
noise (standard deviation of Gaussian and Beta-like distributions
and proportion for binary distribution) and percentage of relevant
variables for each dataset and number of samples per subgroup.
All Gaussian datasets contain 1000 variables with mean = 2 and
standard deviation = 1 for features that discriminate the subgroups.
All binary datasets contain 500 variables and the parameter p to
discriminate subgroups is equal to 0.6. All Beta-like datasets con-
tain 5000 variables and the parameters to discriminate subgroups
are respectively equal to (-2 and 2) for means and 0.5 for the
standard deviation

Benchmark Type Data Set Noise
Relevant
variables

Number per
subgroup

B1 Gaussian 0.2 0.5% 10, 20, 5, 25
Binary 0.01 1%
Beta-like 0.3 2%

B2 Gaussian 0.5 0.5% 10, 20, 5, 25
Binary 0.01 1%
Beta-like 0.3 2%

B3 Gaussian 0.1 0.5% 10, 20, 5, 25
Binary 0.05 1%
Beta-like 0.3 2%

B4 Gaussian 0.2 0.5% 10, 20, 5, 25
Binary 0.02 1%
Beta-like 1.5 2%

B5 Gaussian 0.2 1% 10, 20, 5, 25
Binary 0.01 2%
Beta-like 0.3 4%

B6 Gaussian 0.2 0.5% 25, 25
Binary 0.01 1%
Beta-like 0.3 2%

B7 Gaussian 0.2 0.5% 25, 25, 25
Binary 0.01 1%
Beta-like 0.3 2%

B8 Gaussian 0.2 0.5% 25, 25, 25, 25
Binary 0.01 1%
Beta-like 0.3 2%

Influence of the composition of subgroups (Figure 4)
The influence of the relative number of individuals per sub-

group is evaluated using benchmarks B1 (10, 20, 5 and 25 per
subgroup) and B8 (25 per subgroup).

SNF, ConsensusClustering, LRAcluster and MoCluster have
high ARIs in both cases. The performance of MCIA seems to
be not degraded between the two cases. Then, iClusterPlus,
RGCCA, CIMLR, PINSPLUS and SGCCA perform slightly worse for
unbalanced groups. The smallest subgroup could be not well
recovered by these four methods.

Influence of the proportion of relevant variables (Figure 4)
Benchmarks B1 and B5 evaluated the influence of the propor-

tion of discriminant variables.
For all the methods, except MCIA and CIMLR, a higher propor-

tion of discriminant variables in the datasets increases the per-
formance to recover the subgroups. Indeed, MCIA and CIMLR do
not recover the true subgroups because the ARIs do not reach 1.

Influence of the combination of blocks
We evaluate the influence of the various possible combina-

tions of blocks using 10 simulated datasets from benchmark 1.
The performance is evaluated using the ARI.

Figure 5 shows that, for most methods, the combination that
provides the best ARI is the one with the three blocks. SGCCA
has greater variability with the three blocks, and the best com-
bination is when the block 2 (binary distribution) is removed.
Furthermore, the combination with block 1 and 2 fails to find the
true classification. MCIA, the ARI without the Gaussian block in
the analysis, is also really low (close to 0).

To summarize, MoCluster, LRAcluster, ConsensusClsutering,
SNF and intNMF seem to be the best methods for clustering
with the highest ARIs (close to 1). CIMLR and MCIA are the two
worse methods on these simulations (ARI around 0.75). mixK-
ernel performs well when the number of subgroups is greater
than 2. SGCCA and RGCCA succeed well when the subgroups of
individuals are balanced.

Variable importance evaluation

ROC curves have been used to evaluate the performance in terms
of variable importance estimation. The results are summarized
by computing the area under the curve (AUC) for each dataset
of each benchmark (Table 3). AUC have been computed for the
four methods that perform variable selection (SGCCA, CIMLR,
MoCluster and iCluster) and for three others that do not per-
form variable selection (RGCCA, MCIA and intNMF) (Table 1). See
Section A1.3 in the appendix to have a complete description of
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Figure 4. Performance evaluation of clustering. Boxplot of ARI results for each method and all benchmarks. Each boxplot contains 50 ARIs (number of datasets

simulated under the parameters of benchmarks 1 to 8). The ARI between two classifications is equal to 1 if the groups are the same, and can be negative if the

groups are completely incoherent. B1-B2-B3-B4: Influence of the level of noise. B6-B7-B8: Influence of the number of subgroups. B1-B8: Influence of the composition of

subgroups. B1-B5: Influence of the proportion of relevant variables.

this step. SNF, LRAcluster, PINSPlus, ConsensusClustering and
mixKernel only compute SM and the information about variable
importance is not available.

For the dataset 1 (Gaussian distribution), the seven methods
performed well (AUC≥ 0.98 for all benchmarks). MCIA does not
perform well with binary data (AUC = 0.28). Even if iClusterPlus
deals with binary data with a specific model, it seems that
it has difficulties to recover the signal in this dataset (AUC =
0.48). intNMF has difficulties with the data under a Beta-like
distribution (AUC = 0.28) but performs very well on the other
types of data with AUC ≥ 0.99 (probably because the simula-
tion of this dataset cannot be written as an MF problem see
Methods section).

To conclude this section on variable importance evaluation,
MoCluster outperforms the other with an AUC ≥ 0.99 in average.
Then RGCCA, CIMLR and SGCCA perform well (AUC ≥0.95 on
average on the three types of datasets).

Stability of variable selection

Only four methods perform a variable selection: MoCluster,
SGCCA, CIMLR and iClusterPlus (Methods section). For these
methods, we also investigated the stability of the variable
selection using a jackknife-like procedure (Section A1.4 in
appendix).

As the computation of the jackknife-like procedure is time
consuming, we only show the results for the benchmarks
1 to 4 and for only one simulation in Figure 6 using violin
plots. The initial number of selected variables is shown in
Table 4.

Across the four benchmarks, the distributions of the selection
frequency have the same form across Gaussian and Beta-
like datasets for SGCCA, CIMLR and MoCluster (Figure 6). A
non-negligible subset (around 50%) of variables is selected
with a frequency higher than 80%. MoCluster has a better
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Figure 5. Influence on the clustering of the combination of the datasets on benchmark 1. The performance is measured with the ARI for CIMLR, ConsensusCLustering,

iCLusterPlus, intNMF, LRACluster, MICA, mixKernel, MoCLsuter, PINSPLUS, RGCCA, SGCCA and SNF.

ability to deal with binary distribution with a majority (more
than 80%) of variables selected with a frequency higher than
90%.

Finally, we assessed if the jackknife-like procedure allows
decreasing the FPR for the same level of true positive rate (TPR).
The original set of selected variables is pruned by keeping all
the variables that have been selected in 80% of the runs in
the jackknife-like procedure (results are shown in Figure 7). The
pruning enables decreasing the FPR for all methods. Neverthe-
less the TPR of SGCCA falls to 0.60. For MoCluster, the TPR does
not change (around 0.90). Therefore, the detection of variables
is thus improved with the jackknife-like procedure. MoCluster
globally outperforms the other methods after pruning (with a
TPR ≥ 0.90 and an FPR ≤ 0.25).

The pruning does not globally improve the results of
iClusterPlus. Indeed, this method provides a relatively low FPR
(≤0.20) before the jackknife-like procedure with a relatively high
TPR (around 0.70). Moreover, the TPR decreases a lot after the

jackknife-like procedure. Therefore, this procedure may not be
adapted for iClusterPlus.

CIMLR has already a low FPR ¡0.05 with a TPR greater than 0.5
in most cases before pruning. CIMLR is more conservative than
the other ones. Therefore, pruning by the jackknife procedure
does not improve the results of this method.

Application to three real studies

Even if simulations can help to understand the weaknesses of
the methods, it is difficult to simulate the genomic mechanisms.
For this reason, the methods were also compared using three real
studies.

Three public studies with various features (types of omics
data, types and number of samples, type of subgroups), murine
liver (BXD) [48], Liver Cancer (Liver) [49] and obesity datasets
[11], were used. Characteristics of studies are shown in
Table 5.
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Table 3. Means of AUCs computed for iClusterPlus, intNMF, MCIA, MoCluster, RGCCA, SGCCA and CIMLR (the seven methods with possible
variable importance computations) by datasets and by benchmarks

Dataset Benchmark iClusterPlus intNMF MCIA MoCluster RGCCA SGCCA CIMLR

Dataset 1 Benchmark 1 1.00 1.00 1.00 1.00 0.98 0.99 0.99
(Gaussian) Benchmark 2 0.96 0.99 1.00 1.00 0.96 0.97 0.97

Benchmark 3 1.00 1.00 1.00 1.00 0.98 0.98 1.00
Benchmark 4 0.99 1.00 1.00 1.00 0.97 0.96 0.99
Benchmark 5 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Benchmark 6 0.97 1.00 1.00 1.00 0.99 1.00 1.00
Benchmark 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Benchmark 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.99 1.00 1.00 1.00 0.98 0.99 0.99
Dataset 2 Benchmark 1 0.45 0.99 0.35 1.00 0.91 0.95 0.93
(Binary) Benchmark 2 0.46 0.99 0.36 0.99 0.88 0.93 0.92

Benchmark 3 0.52 0.98 0.16 0.99 0.88 0.91 0.91
Benchmark 4 0.48 0.98 0.28 0.99 0.89 0.91 0.93
Benchmark 5 0.45 0.99 0.31 1.00 0.96 0.96 0.95
Benchmark 6 0.49 1.00 0.22 1.00 0.94 0.98 1.00
Benchmark 7 0.49 1.00 0.29 1.00 0.97 0.98 1.00
Benchmark 8 0.47 1.00 0.31 1.00 0.98 0.99 1.00

Average 0.48 0.99 0.28 1.00 0.93 0.95 0.95
Dataset 3 Benchmark 1 0.84 0.29 0.85 0.97 0.91 0.94 0.93
(Beta-like) Benchmark 2 0.83 0.29 0.86 0.96 0.90 0.94 0.92

Benchmark 3 0.85 0.29 0.85 0.98 0.89 0.93 0.94
Benchmark 4 0.69 0.32 0.76 0.87 0.79 0.82 0.87
Benchmark 5 0.87 0.29 0.86 0.98 0.95 0.97 0.94
Benchmark 6 0.85 0.25 0.81 0.98 0.99 0.98 1.00
Benchmark 7 0.95 0.25 0.92 1.00 1.00 0.99 1.00
Benchmark 8 0.98 0.26 0.96 1.00 1.00 0.99 1.00

Average 0.86 0.28 0.86 0.97 0.93 0.95 0.95

Table 4. Initial number of selected variables for methods SGCCA, iClusterPlus, CIMLR and MoCluster, which perform variable selection on
benchmarks 1 to 4 and for the three types of simulated datasets

Method Dataset Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4

MoCluster Gaussian 150 163 146 154
Binary 262 246 405 346
Beta-Like 1664 1655 1639 1705

SGCCA Gaussian 456 507 509 506
Binary 128 142 239 197
Beta-Like 3098 3355 3337 3211

iClusterPlus Gaussian 250 250 71 250
Binary 66 60 121 89
Beta-Like 1250 1250 1250 1250

CIMLR Gaussian 28 40 28 30
Binary 15 17 13 18
Beta-Like 295 403 304 240

Real datasets descriptions

BXD [48]. We analyzed a BXD cohort (composed of 64 samples)
across a battery of metabolic tests such as ad libitum running-
wheel access, maximal exercise capacity and glucose tolerance.
The mice were tested over a 29-week program where they were
exposed to different environmental conditions of diet: chow diet
(CD) (6% kcal of fat) or high-fat diet (HFD) (60% kcal of fat).
Measurements have been made in the livers of the entire popu-
lation at the transcriptome, the proteome and the metabolome
levels.

Obesity [11]. The second dataset concerns middle-aged Poly-
nesian men and women with morbid obesity (44 kg/m2 ±10)
suffering from type 2 diabetes. Measurements from biopsies of

the vastus lateralis have been obtained via microarrays for RNA,
DNA methylation and miRNA. Individuals are studied before
and after 16 weeks of resistance (n = 7) or aerobic training (n
= 6). Here, we first computed the match difference between

the data after and before the training. Then, we compared

genomic differences between aerobic (AER) and resistance (PRT)
training.
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Figure 6. Jackknife results for SGCCA, MoCluster, iClusterPlus and CIMLR. Violin plots representing the distribution of the frequency of selection for each variable. The

three types of datasets are shown: Gaussian, Binary and Beta-like. The frequency of selection for each variable on the n models was calculated. Each violin-plot shows the

density of the frequency of all the variables caught at least once for each method and each dataset. A variable caught by the n models produces a frequency equal to one.

Table 5. Overview of three real publicy available multi-Omics datasets. Name, phenotype, number of samples, sub-types of phenotype, OMICS
datasets, size of dataset, tissue and reference.

Dataset Phenotype
Number of
samples Subgroups Omics

Number of
variables Type of tissue

BXD[48] Mitochondrial
metabolism

64 High-fat and
Chow diet

Transcriptomic 35 554 Liver

Proteomic 21 547
Metabolomic 956

Obesity[11] Obesity and Type 2
diabete

13 Endurance Epigenomic 468 397 Skeletal muscle

Resistance Transcriptomic 43 961
miRNA 20 248

Liver[49] Liver Cancer 360 Various clinical
variables
(type,grade,
survival)

Epigenomic 18 163 Tumoral

Transcriptomic 19 922
CNV 24 776
Mutation 5530

Liver Cancer [49]. In addition, we selected a dataset from TCGA
with CNV, mutation, DNA methylation, RNA datasets from liver
tumors, and we tried to discriminate the stages (I to IV) of
disease.

Clustering evaluation

For all real studies, the first objective is to classify the samples
into subgroups by phenotypes (Table 6). We compute the F-
measure in addition to ARI to evaluate the clustering obtained

by the methods. Only the results for optimized parameters are
shown. The optimal number of latent variables, the sparsity
parameters and the number of datasets have been tuned man-
ually to reach the optimal ARI. For example, in BXD study, for
intNMF and mixKernel, the performance is optimal when only
two types of datasets are used (here the RNAseq dataset and the
metabolite dataset).

BXD. For the BXD study, there are two groups: the CD and the
HFD. F-scores vary between 0.57 (for MCIA) and 1 (for MoClus-
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Figure 7. Results of pruning of the variable selection set using jackknife-like procedure. (A) TPR and (B) FPR are computed without jackknife (red) and then after pruning

using the jackknife procedure (blue) for benchmarks 1 to 4 on the following methods: SGCCA, MoCluster and iClusterPlus. benchmarks 1 to 4 are different in terms of

noise.

ter, RGCCA, CIMLR and SNF). ARIs range from 0 (for MCIA and
mixKernel) up to 1 (for MoCluster, RGCCA, CIMLR and SNF).

Obesity. For the obesity study, individuals can be divided into two
subgroups: the AER and the PRT. The AER and the PRT groups
contain six and seven individuals, respectively. ARIs are not very
high and mainly negative (Table 6). F-score is between 0.63 and

0.77. The three best methods are MoCluster, LRAcluster and SNF
with F-score ≥ 0.70 and non-negative ARIs.

Liver cancer. The clustering obtained by the methods and the
pathological stage of liver cancer has been compared. Each stage
contains 133, 69, 55 and 9 patients, respectively. The clustering
obtained by the integration of all the datasets does not reflect
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Table 6. Performance evaluation of clustering using ARI and F-
measure on real data.

DatasetsMethods F-score ARI Number of datasets used

BXD iClusterPlus 0.97 0.88 3/3
mixKernel 0.59 0.00 2/3
MCIA 0.59 0.00 3/3
MoCluster 1.00 1.00 3/3
intNMF 0.98 0.94 2/3
RGCCA 1.00 1.00 3/3
SGCCA 0.95 0.82 3/3
PINSPLUS 0.79 0.63 3/3
CIMLR 1.00 1.00 3/3
ConsensusClustering 0.92 0.71 2/3
LRAcluster 0.72 0.18 3/3
SNF 1.00 1.00 3/3

Obesity iClusterPlus 0.65 -0.01 3/3
mixKernel 0.63 -0.02 3/3
MCIA 0.63 -0.02 3/3
MoCluster 0.70 0.08 3/3
intNMF 0.63 -0.02 3/3
RGCCA 0.63 -0.02 3/3
SGCCA 0.63 -0.02 3/3
PINSPLUS 0.54 -0.08 3/3
CIMLR 0.54 -0.08 3/3
ConsensusClustering 0.63 -0.02 3/3
LRAcluster 0.70 0.03 3/3
SNF 0.77 0.23 3/3

Liver iClusterPlus 0.35 0.01 4/4
cancer mixKernel 0.37 -0.01 3/4

MCIA 0.35 0.00 4/4
MoCluster 0.66 0.01 4/4
intNMF 0.40 -0.01 2/4
RGCCA 0.42 0.03 4/4
SGCCA 0.65 -0.00 4/4
PINSPLUS 0.35 0.01 4/4
CIMLR 0.35 0.00 4/4
ConsensusClustering 0.38 -0.00 4/4
LRAcluster 0.38 0.02 4/4
SNF 0.50 0.01 4/4

the classification of the clinical data. Indeed, F-scores range from
0.35 to 0.66, and ARIs range from -0.01 to 0.03.

In summary, there is no correlation between available clinical
variables and the subgroups discovered by the various methods.
Therefore, we compare the survival curves between groups. The
P-values have been computed for each method after removing
clusters composed of a single sample. Associations between
subgroups and outcome were calculated by Kaplan–Meier anal-
ysis using a log-rank test. Only three methods (MCIA, MoClus-
ter and CIMLR) provide slightly significantly different survival
curves between discovered groups (P-values lower than 5e-2)
(the results are in Table 7).

Analysis of variable selection

For each of the four methods that propose variable selection
(MoCluster, CIMLR, SGCCA and iClusterPlus) and for each dataset
of the BXD study, we visualized the abundance of the top 10
variables (with the larger weights) for each mouse (Figures F8,
F9 and F10). Two databases are used: https://www.genecards.org/
and https://pubchem.ncbi.nlm.nih.gov. Several variables have
clearly differential abundance (Figure F8).

Table 7. P-values for survival analysis and composition of subgroups
for each method on liver cancer study

Methods P-Value Number by Cluster

SGCCA 0.59 239,24,1,1,1
RGCCA 0.07 35,29,57,64,23,16,19,10,12,1
MCIA 0.01 157,109
SNF 0.57 127,139
mixKernel 0.64 105,72,89
MoCluster 0.02 223,38,1,1,1,1,1
iClusterPlus 0.32 58,64,69,75
intNMF 0.75 102,90,74
CIMLR 0.02 36,82,84,64
LRAcluster 0.19 160,106
PINSPLUS 0.34 55,59,57,95
ConsensusClustering 0.38 121,30,75,40

The diet of the mice influences the metabolome and the
methods reveal abundance differences in metabolites linked to
high-fat diet C29H50O2 ( vitamin E), C36H62O5 (cholesteryl) and
C35H66O5 ( lipid), C4H5NS ( mustard oil). For example, cholesteryl
ester is a dietary lipid [52], and vitamin E is a group of eight fat
soluble compounds [53]. However, the top 10 of relevant variables
are not the same for the four methods. For both metabolomic and
proteomic datasets only three and two variables from the top 10
variables are common between the four methods. For the tran-
scriptomic data, MoCluster and iClusterPlus have nine common
variables. SGCCA and CIMLR have six common variables.

The proteomic dataset does not reveal differences between
chow and high-fat diets. Only the protein 9130231C15Rik;
AI266984; Ces6 seems having differential abundance between
the two groups. This protein is involved in the lipid catabolic
process.

Finally, the analysis of the transcriptome reveals some pat-
terns in terms of differential expression linked to the two groups
of mice (Figure F10 in Appendix Section A1.6). We explore the
functional annotation of the selected genes with genecards.com
[54]. For examples, the Saa2 gene codes for a protein that is
involved in the HDL complex. Cyp2b9 oxidizes steroids, fatty
acids and xenobiotics. Finally, the Cidea gene is involved in
metabolism of lipids and lipoproteins; the lipid digestion, mobi-
lization and transport; and the differentiation of white and
brown adipocyte.

To conclude this part, the analyses with the four methods
that perform variable selection highlight various mechanisms
linked to the diet of the mice.

For the obesity and liver cancer studies, the integrative analy-
sis does not reveal any variable associated with phenotypes (type
of physical exercise and stage of liver cancer). Results are not
shown in this article but can be generated with the package.

Summary of performance

The performances of each method are summarized in Table 8.
The methods are not user-friendly to compare; therefore, we
propose an R package named CrIMMix on GitHub available at
https://github.com/CNRGH/crimmix, which allows running all
methods by a simple command line and with a uniform output.
We give an example of how to use this package in supplementary
materials S2 7. The package CrIMMix also includes the scripts to
perform the simulated data shown in this article as well as the
three real studies.

https://www.genecards.org/
https://pubchem.ncbi.nlm.nih.gov
https://github.com/CNRGH/crimmix
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Table 8. Summary of performance. Good performances are denoted by +++ and bad performances by -. NA means not available

Name Type Clustering
Variable Detection
(simulations) Time User-friendly Number of clusters
Gaussian Binary Beta-like

RGCCA (CCA) + + + + ++ + +
SGCCA (CCA) ++ +++ ++ ++ ++ + +++
MCIA (CCA-like) + +++ - ++ ++ +++ -
intNMF (MF) ++ +++ +++ - - +++ ++
iClusterPlus (MF) ++ +++ - ++ - - +++
MoCluster (MF) +++ +++ +++ +++ ++ ++ +++
mixKernel (SM) ++ NA NA NA ++ +++ ++
SNF (SM) +++ NA NA NA +++ +++ ++
CIMLR (SM) ++ +++ ++ ++ ++ +++ -
LRACluster (SM) +++ NA NA NA ++ +++ +++
ConsensusClustering (SM) +++ NA NA NA ++ +++ -
PINSPlus (SM) +++ NA NA NA ++ +++ +++

Discussion
This article is focused on the comparison of 13 unsupervised
integrative methods. Indeed, supervised methods only enable
the identification of candidate biomarkers [21] for a known
phenotype, whereas unsupervised methods aim to both dis-
cover new subgroups and potentially to detect relevant variables.
Recently, two reviews on the clustering performance evaluation
of unsupervised integrative methods were published [23, 26].
The first article [23] compared five methods including MCIA [30],
SNF [18], multiple factor analysis (MFA) [55], joint and individual
variation explained (JIVE) [56] and multiple canonical correlation
analysis [57]. In the second article [26], the authors compared
iCluster [38], MoCluster [39], JIVE [56], multiple dataset integra-
tion [58], integrative NMF from [59] and Bayesian consensus
clustering [60].

In our article, 13 methods including SNF, RGCCA, MCIA, int-
NMF, mixKernel, SGCCA, MoCluster, iClusterPlus, CIMLR, LRA-
cluster, PINSPLUS, ConsensusClustering and MOFA were com-
pared on their ability to perform clustering and recover relevant
variables.

MOFA does not give any results on our simulation frame-
works. The model does not converge and tuning the parameters
is complicated. Therefore, the performance has not been shown.

Furthermore, in our article, the simulation framework is
extended by simulating heterogeneous distributions of data
(Gaussian, Binary and Beta-like). Indeed, both reviews used
Gaussian frameworks. Authors of [23] simulate data using
Gaussian distribution based on means and standard deviations
from real gene expression of breast cancer data. Authors of [26]
proposed two models to simulate multi-omics data, and the
two models are under Gaussian distributions. The first model
is based on NMF i.e. simulated matrices are non-negative and
can be written as an MF problem. This simulated framework
gives the advantage to the methods that use this type of model
(iClusterPlus, MoCluster and intNMF). The second model is also
based on the NMF model but the authors use multi-dimensional
Gaussian distributions.

In our simulation framework, we did not simulate the data
under a particular model, in this way no method is advantaged.
In the simulation benchmarks, the heterogeneity of the datasets
enables us to conclude that methods have not the same perfor-
mance depending on the type of data. We notice that iCluster-
Plus and MCIA fail to recover the relevant variables on binary
data (Table 3). intNMF fails on the Beta-like distribution, probably

because the data cannot be expressed as an MF problem. Then,
RGCCA, SGCCA, CIMLR and MoCluster methods are consistent
across the three types of simulated data. MoCluster outperforms
the other methods in terms of clustering across the simulations
in our article and in [26]. In this work, the results for SNF and
MCIA are also coherent with the previous review [23] in which
SNF is the best method.

These two articles apply the different methods on real stud-
ies. Tiny et al. used the data from three studies: the BXD study
[48], a platelet reactivity study [44] and a breast cancer study
[61]. Chauvel et al. and Tiny et al. compared methods on the same
breast cancer study [61] and they found similar results. Here, we
applied all the methods on two original studies ( obesity and liver
cancer) and, as in [23], on the BXD study. The first conclusion was
that when the datasets contained enough signal, many methods
performed well (Table 6) and could identify the true clustering
and relevant variables (BXD study).

However, the application to real studies also highlights the
difficulties to integrate multi-omics. In the case of the obesity
study, it seems that the high number of variables of each dataset
and the small number of individuals (6 and 7) could be the reason
why all the methods fail to identify the clusters. Furthermore,
the types of omics data (epigenomic and transcriptomic data)
are probably not sufficient to reveal the effect of the kind of
physical exercise. Maybe lipidomic or metabolomic data and a
larger number of patients could be more relevant.

Although there are around 300 patients in the liver cancer
study, the absence of relevant results is probably due to the type
of genomic data that do not reflect the stage of the tumor in this
context. The results of clustering on liver cancer do not reach
high ARIs (≤0.70). Survival analysis has been performed on liver
cancer data and only the clusterings obtained by three methods
(MoCluster, MCIA and CIMLR) give slightly significantly distinct
survival curves between subgroups (Table 7). The integrative
methods for this study provide different results. As the methods
are different, they probably catch various kinds of signal from
the data. The divergence of the clusterings could be explained
by the heterogeneity of tumoral tissues (clonality or presence of
normal cells).

The classification of real data thus depends on the number of
patients, the type of samples (type of tissues or sorted cells), the
sample preparation, the type of omics data and the biological
question. Moreover, environmental parameters including envi-
ronment, health and lifestyle could also influence the results of
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multi-omics studies. To address a biological question, one needs
to carefully determine these parameters quoted above. From real
studies, we also show that using several datasets often increases
the clustering performance. However, it is not always the best
option when there is no signal or few individuals in the datasets.

A limitation of the simulated benchmarks that could also
lead to different performances compared to real data is the
independence of the simulated variables within and between the
blocks. The independence could influence the performance of
the methods that model the correlation or covariance between
the blocks (RGCCA, SGCCA, MCIA and MoCluster). However, we
observed that the relative performance of the methods is main-
tained between simulated and real data. The independence
of variables in the simulated benchmarks does not seem to
decrease the performance of the methods. In particular, with two
balanced groups and similar sample sizes, for both the simulated
benchmark 6 (heterogeneous data) and the BXD dataset (Gaus-
sian distributed data), the ARI is high for MoCluster, RGCCA and
SGCCA.

All the methods have several parameters to tune. The num-
ber of subgroups, the number of latent variables and for some
methods the sparsity parameters have to be fixed by the user
and their optimization is sometimes difficult. In particular, we
encountered difficulties to tune the parameters of iClusterPlus.
It seems that the sparsity parameters are not independent across
the datasets. Indeed, modifying the value of sparsity parameter
for one dataset also influences the number of selected variables
of the other datasets. Therefore, it was a challenge to tune the
parameters of iClusterPlus to get a similar number of selected
variables compared to other methods. The authors of iClus-
terPlus advise performing cross-validation to select both the
number of subgroups K and penalties but iClusterPlus is already
one of the slowest methods and cross-validation would thus be
very time-consuming (Figure 2).

The ability of the methods to choose the true number of
subgroups had already been studied [26]. Here, we conclude
that the best methods to detect the true number of clusters are
LRAcluster, SGCCA, MoCluster and PINSPLUS (Figure 3). Chauvel
et al. also concluded that MoCluster find properly the number
of clusters, and that intNMF suffers from under-estimation as in
this article. We fixed the number of latent variables at the true
number of subgroups. Indeed, one latent variable may match
one subgroup. In the case of an exploratory study, these two
parameters could be optimized by a cross-validation procedure.
For all the methods, clustering was performed and evaluated
given the true number of subgroups.

We noticed that for most methods the clustering perfor-
mance is higher when all omics blocks are used in the analysis,
even though their performance is not strongly influenced by
the combination of blocks when there is signal in all the blocks.
However, MCIA fails when the Gaussian block is missing from the
analysis of the simulated data (Figure 5), and SGCCA fails when
the Beta-like block is missing from the analysis and is better
when the binary block is not present.

In this article, we demonstrated that sparse methods could
be the best approach for clustering and detection of relevant
variables. For instance, the values of ARIs for SGCCA, which is
the sparse version of RGCCA, are close to the ones obtained for
RGCCA but SGCCA has the advantage to select relevant variables.
MoCluster, which is a sparse method, outperforms the other
methods in the eight simulated benchmarks and on the real
studies. However, iClusterPlus seems to be too conservative and
needs to have a greater proportion of relevant variables into
the data to reach the level of other methods (Figure 4). Besides,

CIMLR, SGCCA and MoCluster provide the best values of AUCs on
the simulations.

However, even if the TPR are high (≥0.9) for SGCCA and
MoCluster, the FPR are also relatively high (≥0.2). Thus, we rec-
ommend a jackknife-like procedure to decrease the FPR. iClus-
terPlus and CIMLR are enough stringent with a relatively good
balance between TPR and FPR (Figure 7).

In this work, we focused on the clustering performance and
the quality of variable selection but further analyses could also
be conducted. For instance on real datasets, performing path-
way analysis after the feature selection is also advised. Indeed,
combining various kinds of omics in a single integrative analysis
could reveal interesting enriched pathways.

Conclusion
To summarize, our study aims to present and evaluate thirteen
unsupervised integrative methods based on dimension reduc-
tion to integrate multi-omics datasets. There are classified in
three different types of statistical methods: MF, SM and canoni-
cal correlation analysis.

In the second part, we compare the performance of the
integrative methods at many levels. The first criterion is the
computing time, which is a non-negligible feature as the size
of datasets is growing up. Then, we compare the methods on
multiple fair simulation benchmarks to evaluate clustering and
variable detection performance. Finally, we apply them on real
data.

This study concludes that SNF is the best method to per-
form classification of individuals. MoCluster is one of the best
methods to perform classification as in [26] and can also reveal
candidate biomarkers associated with the subgroups.

We conclude that the results of multi-omics studies depend
on sample type, environmental parameters, multi-omics data
and integrative methods.

In perspective, future unsupervised integrative methods
need to be relatively fast and could be based on sparse latent
variable models to perform variable selection to discover
candidate biomarkers.

Furthermore, the tuning of parameters must to be more
automated. In the context of precision medicine, the integration
of multi-omics data should be performed using a complete
workflow to ensure optimal data analysis.

Key Points
• Some methods have difficulties with the heterogeneity

of datasets.
• To perform clustering, SNF outperforms the others.
• MoCluster well identifies subgroups and relevant vari-

ables.
• Methods with variable selection steps could reveal

interesting features.
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Appendix 1

A1.1 Simulated data

In this article, to simulate heterogeneous datasets we focus on
three types of distributions.

To simulate the data, we first fix the number of subgroups
(nclust), their sizes (n_byClust) and the number of variables
J. Then, we fix the proportion of relevant variables that drive
subgroups.

For the Gaussian distribution, we need to fix the means (m)
and the standard deviations (sd) for the relevant variables. We
draw randomly five different variables for each subgroup 1 and
2. The first five variables follow a N (m1, sd2

1) in the first subgroup,
while the five last variables follow a N (m2, sd2

2) in the second
subgroup.

We build a matrix with these 10 relevant variables and full
of zeros elsewhere. The final step is to set the background noise
σ . For the Gaussian distribution we add a matrix centered and
normally distributed N (0, σ 2) to the previous matrix.

For the binary distribution, we only define the proportion p
of ‘1’ values for the relevant variables.

To finish the noise is defined as the proportion of random ‘1’
values across the full matrix.

https://dx.doi.org/10.1038/nature11412
http://www.jstatsoft.org/v61/i06/
http://www.jstatsoft.org/v61/i06/
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The last type of dataset is a beta-like distribution. We begin by
simulating a normal mixture distribution with two modes on the
10 relevant variables. Other variables are uniformly distributed.
We add to this matrix a Gaussian noise and we transform the
data with the following formula: f(x) = 1

exp(−x)

A1.2 Evaluation of the number of clusters

SNF, ConsensusClustering, iClusterPlus, intNMF, CIMLR and
PINSPlus have their own functions to evaluate the number of
clusters.

For the other, we use the matrix that represents the individu-
als on the low dimensional space and we apply a hierarchical
clustering using euclidean distance and Ward method. Then,
we apply the function NbClust from the NbClust package that
compute 26 criteria to evaluate the number of clusters [62]. If all
the criteria do not lead to the same number of clusters we keep
the value selected by the majority of criteria.

A1.3 Variable importance evaluation

To evaluate the performance of each method to find the cor-
rect variables in each single dataset that split the patients into
subgroups, ROC curves [63] were used to illustrate the TPR or
sensitivity as a function of the FPR. The TPR is defined by TPR =

TP
TP+FN where TP is the number of true positives, and FN is the
number of false negatives. The FPR is defined by FPR = FP

FP+TN ,
where FP is the number of false positives, and TN is the number
of true negatives.

If the TPR is equal to 1, this means that all the correct
variables are detected. Simultaneously, if the FPR is equal to 0,
this means that there is no error in the detection.

Usually, a ROC curve is a plot with a discrimination threshold
between that varies. For each variable, a global coefficient is
computed by sum the absolute value on each latent variable.
Here, the variables are sorted by order of importance (from the
largest global coefficient to the smallest from the matrices H or
a) foř each method. We then make the threshold of the ROC curve

vary by adding one variable at a time into the set of detected
variables.

Then, ROC curves from TPR and FPR were summarized with
the AUC. A good performance corresponds to an AUC equal to 1
and a bad performance corresponds to an AUC equal to 0. AUC
measures allow evaluating the capacity of all the methods to
detect the correct variables linked to the subgroups.

A1.4 Evaluation of the stability of variable

selection

To explore the stability of variable selection, we proceed by
bootstrapping and more precisely by the jackknife-like method
[64]. It is a standard procedure that consists in running a method
multiple times on the same dataset by removing one observation
at each time.

At the end of the jackknife procedure, for one method, n
models have been run. Then, we can compare which variables
have been selected across these n models.

A1.5 Preprocessing of the data

For simulated data and mutation data in liver cancer, a column
full of zeros in the binary block was filtered out from the analysis.
According to the recommendations of the authors of the meth-
ods, we applied adapted various preprocessing. For MoCluster,
data were centered, SGCCA data were scaled. For intNMF, data
were transformed to be positive. ConsensusClustering centered
the data with the median. The other methods do not perform
any preprocessing of the data.

A1.6 Heatmap for BXD dataset

A1.7 Session Information
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