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Unlike photographic image sensors with infrared cutoff filter, low light image sensors gather light over visible and near infrared (VIS-NIR) spectrum to improve sensitivity. However, removing infrared cutoff filter makes the color rendering challenging. In addition, no color chart, with calibrated infrared content, is available to compute color correction matrix (CCM) of such sensors. In this paper we propose a method to build a synthetic color chart (SCC) to overcome this limitation. The choice of chart patches is based on a smart selection of spectra from open access and our own VIS-NIR hyperspectral images databases. For that purpose we introduce a fourth cir dimension to CIE-L*a*b* space to quantify the infrared content of each spectrum. Then we uniformly sample this L*a*b*cir space, leading to 1498 spectra constituting our synthetic color chart. This new chart is used to derive a 3x4 color correction matrix associated to the commercial RGB-White sensor (Teledyne-E2V EV76C664) using a classical linear least square minimization.. We show an improvement of signal to noise ratio (SNR) and color accuracy at low light level compared to standard CCM derived using Macbeth color chart.

INTRODUCTION

Color correction constitutes an important step in the color image reconstruction pipeline in visible color imaging. Color values of each pixel are spatially interpolated during the demosaicking step [START_REF] Rafinazari | Demosaicking algorithms for RGBW color filter arrays[END_REF]. Then the white balance (WB) and color correction matrix (CCM) [START_REF] Bianco | Color correction pipeline optimization for digital cameras[END_REF] are applied to each pixel to ensure a good color restitution of the acquired scene (see Figure 1). A large majority of color image sensors contains three color channels Red, Green and Blue (RGB) and an infrared filter in front to only acquire visible range wavelengths [START_REF] Teranaka | Single-Sensor RGB and NIR Image Acquisition: Toward Optimal Performance by Taking Account of CFA Pattern, Demosaicking, and Color Correction[END_REF]. CCM are usually computed over commercially available color charts such as MacBeth ColorChecker (MCC) through a linear mean square error minimization method. Such systems are very efficient in terms of color fidelity in high or mid light level. Nevertheless, using only the visible part of the spectrum limits the signal to noise ratio performance under low light conditions. To adress these applications, monochrome sensors without IR cutoff filters are customary used. So signal to noise ratio (SNR) increased, but at price of color information loss. In case of color image sensor, the absence of IR cutoff filter has detrimental impact on color rendering. Nethertheless we investigate the possibility to capture low light images with decent color rendering using the RGB-White image sensor like the Teledyne-E2V Onyx (EV76C664AMT-RTR) product. This sensor has a monochrome pixel array with sparse RGB pattern, delivering four channels RGBW (see Figure 9). With such sensors, color correction matrix and white balance are merged into a single 3x4 matrix converting the raw RGBW output into corrected RGB values to be displayed. In addition, as the sensor is sensitive to near infrared radiation, * jerome.vaillant@cea.fr
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Displayed image the standard color charts, like well-known Macbeth chart (ColorChecker® Classic from X-Rite [START_REF]Color Management Solutions and Products | X-Rite[END_REF]), are not suitable: their properties are defined and controlled only into visible spectrum. This motivates our effort to design a synthetic color chart (SCC) to better constrain the CCM evaluation.

In the following study, we focus on color rendering and we do not address the pixel interpolation part which also requires specific developments. First, we present hyperspectral images databases we consider for the synthetic color chart design.

In a second part, we detail the methodology used to choose representative spectra for SCC construction, by introducing a fourth dimension to CIE-L*a*b* space. Then CCM is computed using our chart and spectral sensitivity of Teledyne E2V Onyx sensor. Finally, we compare the impact of standard CCM versus custom CCM on color accuracy and SNR.

REFLECTANCE DATABASE CONSTITUTION

Standard color charts and limitation for VIS-NIR color restitution

For classical color imaging simulation, reflectance data represented on MCC chart may be used to compute a CCM or adjust white balance (WB) of the imaging device [START_REF] Farrell | Image Systems Simulation[END_REF]. This chart consists of 24 color patches that represent some physical common colors such as skin or foliage colors… sRGB and L*a*b* values of each patch are given by the manufacturer under respectively D65 and D50 CIE illuminants.

Figure 2. MacBeth ColorChecker chart, from X-Rite [START_REF]Color Management Solutions and Products | X-Rite[END_REF] For low light level applications, the infrared cutoff filter is removed from the camera to benefit from the silicon absorbance in this region. In that case, color signals are biased by NIR absorption. To compensate this bias, the NIR content of chart patches need to be known and calibrated. Unfortunately, MCC is not designed to deal with NIR and it is not adapted as reflectance reference for VIS-NIR color restitution. In order to compute a non-biased CCM, we defined a new set of colors with well-known reflectance spectra, based on hyperspectral images databases [START_REF] Skauli | A collection of hyperspectral images for imaging systems research[END_REF].

VIS-NIR reflectance spectra collection

The new reflectance data are collected from open access hyperspectral images. We took in consideration the Stanford Center for Image Systems Engineering database [START_REF] Parmar | A database of high dynamic range visible and near-infrared multispectral images[END_REF] mostly consisting in skins and landscapes (sky, forest..) reflectance data, the 2009 Multispectral Scene Data from ImageVal [START_REF]nm | Imageval[END_REF] consulting, and a set of diverse material reflectance spectra from US Geological Survey [START_REF]USGS.gov | Science for a changing world[END_REF] (see Figure 3). The hyperspectral images are spatially regularly subsampled to extract at first about 200,000 VIS-NIR reflectance spectra. To complete the existing databases, we developed our own VIS-NIR hyperspectral image acquisition bench (see Figure 4). The acquisitions are taken under halogen spots with a VIS-NIR monochromatic 10 bits camera and a set of narrow band-pass optical filters allowing to constitute a scene reflectance data cube of 38 spectral narrow bands from 400nm to 1050nm. The image noise is reduced by averaging several frames. For each monochromatic image, dark current and flat field correction are applied. Knowing all physical acquisition parameters such as optical setup, spectral sensitivity of the acquisition sensor and the illuminance spectrum, the reflectance spectra are extracted [START_REF] Farrell | Image Systems Simulation[END_REF]. 

SAMPLING THE DATABASE, TOWARDS A NEW "COLOR" CHART

After merging reflectance spectra databases, we want to reduce the number of spectra to constitute a suitable synthetic color chart. The selected 200,000 spectra have to be resampled to uniformly cover the chosen "color" space. Firstly we remind XYZ and L*a*b* spaces formalism, then we detail the extensions we proposed.

CIE formalism and MacBeth ColorChecker

The For that purpose, we add a new component Ir to CIE XYZ space which projects the NIR reflectance data under the chosen illuminant through an 𝑖𝑟 ̅ function. As mentioned before, XYZ are usually computed using CIE illuminants which are not defined outside the visible spectrum. In order to use illuminant with NIR content, we replace the CIE D illuminant by its black body equivalent, and 𝑖𝑟 ̅ (𝜆) is defined by shifting 𝑦 ̅(𝜆) by 400 nm toward the NIR domain (Eq. 3). The projection through CIE 𝑦 ̅ function gives the visible luminance Y of the considered spectrum. As well as for Y, Ir can be considered as a luminance but in NIR domain. This 𝑖𝑟 ̅ function is represented Figure 6.

𝐼𝑟 = 1 𝑁 ∫ 𝑖𝑟 ̅ (𝜆). 𝑅(𝜆). 𝐼(𝜆). 𝑑𝜆 𝑖𝑟 ̅ = 𝑦 ̅(𝜆 -𝜆 𝑠 ) 𝜆 𝑠 = 400 𝑛𝑚 (3) 
As for the XYZ to L*a*b* transformation, a new 𝑐 𝑖𝑟 component is calculated using Y and Ir (Eq 4). The 𝑓 function has been defined (Eq 2).

𝑐 𝑖𝑟 = 100. (𝑓 𝑦 -𝑓 𝐼 )

The normalization factor was chosen empirically using the reflectance data collected Section 2. These spectra are projected in the L*a*b*cir space under a black body illuminant with a color temperature of 5000K. The factor is adapted to spread the points over a range about [-40 , +70] on cir alike a* and b* ranges.

Figure 6. CIE standard observer 𝑥̅ , 𝑦 ̅, 𝑧̅ functions for 2° degree and new 𝑖𝑟 ̅ function. 

Resampling of the reflectance database and final synthetic chart

COLOR CORRECTION MATRIX FOR RGB-W LOW LIGHT LEVEL SENSOR

In this section the performance of the new synthetic color chart has to be tested and compared to the usual color correction method. For that purpose, the physical configuration of the studied sensor must be known to compute a new suitable CCM.

We present the sensor we considered, then the CCM computation and finally the results in terms of SNR and color accuracy.

Low light level sensor

The study is focused on the commercial low light sensor Teledyne-E2V Onyx EV76C664AMT. Four channels are used on this sensor: classical RGB and an additional "White" W channel which does not have any color filter. The main issue for low light level acquisition is the poor signal to noise ratio. So maximizing the collected signal is mandatory. Integration time has to be kept low to maintain high framerate in video acquisition. For such application, it is usually done by using the sensor without any infrared filtering to gather all the light on pixels. Obviously, this is detrimental for color fidelity: regarding quantum efficiencies of the channels (Figure 9), it is clear that without infrared filter, the color signals are overestimated due to the NIR transmission of the color filters.

Color correction matrix computation, database using

The camera device signal has its own algebraic space where each element (i.e. color) can be decomposed in a 4 components vector 𝑆 = [𝑆 𝑅 𝑆 𝐺 𝑆 𝐵 𝑆 𝑊 ] 𝑇 (S for Sensor, " 𝑇 " exponent for transpose). The acquired video sequence is then displayed on a screen which also has an algebraic space. Display spaces are normalized and we choose the sRGB space in this work.

The CCM is the linear transformation from the camera space to the displayable normalized space while ensuring the color a) b)

fidelity of the scene. The coefficients of the CCM are computed by linear minimum least square method comparing the results of camera output signals to the expected ones (sRGB) under a chosen illuminant.

For the target, we use our synthetic color chart to compute sRGB target coordinates of each patch: first from spectrum to XYZ under D50 illuminant using Eq. 2, the result is then converted into sRGB coordinates under D65 illuminant (Eq.5) applying Bradford adaptation (ABradford) [START_REF] Shevell | The Science of Color[END_REF] and the XYZ to RGB matrix (M) and performing gamma correction (𝛾 = 2.2).

[

𝑅 𝐺 𝐵 ] = (𝑀. 𝐴 𝐵𝑟𝑎𝑑𝑓𝑜𝑟𝑑 . [ 𝑋 𝑌 𝑍 ]) 1/𝛾 ( 5 
)
Because sRGB is non-linear due to the application of gamma correction (𝛾 = 2.2), we need to re-linearize targeted RGB coordinates to use the linear minimization formalism. It can be done directly computing RGB coordinates without gamma correction in Eq.5.

For the sensor output, raw RGBW signals are computed considering QE curves shown on Figure 9 over synthetic patches, data are normalized to 255. Then, these vectors are stored in two matrices, defined in Eq. 6: a 4x1498 matrix called 𝑇 for targets and a 5x1498 matrix called 𝑆 for raw Sensor data. The last row composed of ones is added to compute an intrinsic offset signal to subtract.

𝑇 = [ 𝑇 𝑅1 … 𝑇 𝑅1498 𝑇 𝐺1 … 𝑇 𝐺1498 𝑇 𝐵1 … 𝑇 𝐵1498 1 … 1 ] 𝑆 = [ 𝑆 𝑅1 … 𝑆 𝑅1498 𝑆 𝐺1 … 𝑆 𝐺1498 𝑆 𝐵1 … 𝑆 𝐵1498 𝑆 𝑊1 … 𝑆 𝑊1498 1 … 1 ] (6) 
The raw correction matrix, denoted 𝑀 ̂, is computed using the linear mean square error minimization, which has a unique analytical solution shown in Eq. 7.

𝑀 ̂= 𝑎𝑟𝑔𝑚𝑖𝑛 𝑀 (ℒ 2 (𝑇 -𝑀. 𝑆))

 𝑀 ̂𝑇 = (𝑆. 𝑆 𝑇 ) -1 . 𝑆𝑇 𝑇 (7) 
The 3x4 CCM and the offset vector are extracted from 𝑀 ̂ as shown in Eq. 8.

𝑀 ̂= [ [𝐶𝐶𝑀] [0 ⋯ 0] [𝑉] 1 ]

𝑉 𝑜𝑓𝑓𝑠𝑒𝑡 = -𝐶𝐶𝑀 𝑇 . (𝐶𝐶𝑀. 𝐶𝐶𝑀 𝑇 ) -1 . 𝑉

Finally, Eq. 9 explains how to apply the color correction matrix and the offset vector on any raw sensor data (𝑆 = [𝑆 𝑅 𝑆 𝐺 𝑆 𝐵 𝑆 𝑊 ] 𝑇 ) to get corrected RGB coordinates (𝐶 = [𝐶 𝑅 𝐶 𝐺 𝐶 𝐵 ] 𝑇 ). Note that gamma correction has to be applied on these corrected values to satisfy sRGB specification and properly display them.

[

𝐶 𝑅 𝐶 𝐺 𝐶 𝐵 ] = ( 𝐶𝐶𝑀.
[

𝑆 𝑅 𝑆 𝐺 𝑆 𝐵 𝑆 𝑊 - 𝑉 𝑜𝑓𝑓𝑠𝑒𝑡 𝑅 𝑉 𝑜𝑓𝑓𝑠𝑒𝑡 𝐺 𝑉 𝑜𝑓𝑓𝑠𝑒𝑡 𝐵 𝑉 𝑜𝑓𝑓𝑠𝑒𝑡 𝑊 ] ) 1/𝛾 (9) 

SNR and color accuracy results

The first step of the performance evaluation is to verify SNR improvement for the sensor coupled with our new color correction flow. Noise is usually separated in a chrominance and a luminance components, we consider only the latter. We start computing signal values of the different RGBW channels of the Onyx sensor without infrared filter under black body (6500K) illuminant, 20ms integration time, f/1 optics, for a grey surface (reflectance of 18%). The 3x4 CCM and the offset vectors are computed over the synthetic color chart for the same illuminant, then it is applied to the RGBW values to compute the corrected RGB values. Finally, the luminance signal Y is computed using Eq. 10. Noise variances are calculated, considering photon shot noise of the signal and readout noise of the sensor in order to evaluate the noise variance on the Y channel and compute SNRY: the signal to noise ratio on this channel [13][14].

For comparison, we consider a sensor dedicated to color photography under high to mid light level: we use RGB QE curves of Onyx product with an IR cutoff filter (𝜆 𝑐𝑢𝑡𝑜𝑓𝑓 = 650𝑛𝑚) placed in front of it. The raw RGB signal values are computed in the same way, under the same conditions. We apply a 3x3 CCM and white balance classically computed over the MacBeth ColorChecker. SNR is also computed on the Y channel. In each case, the SNR computation is done for a wide range of illumination values: from 1 mlux to 100lux. Table 1 shows a comparison between the two configurations in term SNR performance. Next, color fidelity should be evaluated too. Obviously, the color photography configuration will deliver far better color † and could be considered as upper bound for color fidelity. So we investigated the impact of color chart used to estimate the CCM. This is done quantitatively by computing the color errors over Synthetic Color Chart patches using CIE ΔE2000 metric [START_REF] Shevell | The Science of Color[END_REF]. Table 2 summarizes the results in terms of maximum, mean and minimum errors over the 1498 patches of the synthetic chart. Computing color mismatch over the full 200,000 spectral database confirms that performances are globally increased for a bunch of random spectra, showing that our method is more robust for color rendering when VIS and NIR are acquired with this color camera. In this 4D space we select a limited number of points which are uniformly distributed. These 1498 reflectance spectra constitute our new Synthetic Color Chart, allowing to compute color correction matrix taking into account not only the visible part of the spectrum but also the near-infrared part. Finally, a performance analysis is carried out on the Teledyne-E2V Onyx EV76C664AMT-RTR. We verify that SNR is increased using the low light configuration of the sensor, then we compare color restitution performance between a 3x4 CCM computed over the classical MCC or over our synthetic color chart. The results are illustrated and a CIE ΔE2000 computation over the synthetic chart showing that color restitution under low light conditions is better when CCM is computed using it than using MCC. This is a prior study and we plan to investigate other definition for 𝑖𝑟 ̅ and cir, but also the L*a*b*cir space sampling and CCM calculation. Another perspective is to design a physical color chart, perhaps containing less patches, instead of this synthetic color chart in order to practice real tests with commercial VIS-NIR color sensors.
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 1 Figure 1. Color restitution flow from raw image to displayed image

Figure 3 .

 3 Figure 3. Examples of hyperspectral images and reflectance spectra collected from open access sources: a) SCIEN database b) ImageVal consulting, c) US Geological Survey

Figure 4 .

 4 Figure 4. Examples of sRGB reconstitution of hyperspectral images acquired with our own acquisition bench. a) papers, b) textiles, c) vegetables skins

  International Commission on illumination (CIE) developed the L*a*b* color space to approximate the human vision system [10][11]. To calculate L*a*b* coordinates associated to a surface from a reflectance spectrum under known illumination conditions, several mathematical transformations must be done. First of all, reflectance spectra 𝑅(𝜆) are projected in CIE XYZ space under standard CIE illuminant (either D50 or D65) 𝐼(𝜆) through the CIE standard observer functions 𝑥̅ , 𝑦 ̅ and 𝑧̅ (see Figure 6). (𝜆). 𝑅(𝜆). 𝐼(𝜆). 𝑑𝜆 𝑁 = ∫ 𝑦 ̅(𝜆). 𝐼(𝜆). 𝑑𝜆 non-linear transformation is applied to the XYZ coordinates to compute L*a*b* coordinates [12]: 𝐿 = 116. 𝑓 𝑦 -16 𝑎 * = 500. (𝑓 𝑥 -𝑓 𝑦 ) 𝑏 * = 200. (𝑓 𝑧 -𝑓 𝑦 ) 𝐹𝑜𝑟 𝑈 = {𝑋, 𝑌, 𝑍} 𝑈 𝑊 𝑖𝑠 𝑡ℎ𝑒 𝑤ℎ𝑖𝑡𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑡 𝑎𝑛𝑑 *b* coordinates associated to the 24 patches of the MCC are provided by the manufacturer under CIE D50 illuminant. Figure 5 presents the a*b* projection of MCC patches. The points are distributed into a range of [-40,+60] on the a* axis and [-50,+80] on the b* axis.

Figure 5 .

 5 Figure 5. Distribution of the MacBeth ColorChecker chart patches in the L*a*b* space (left) and a* b* plane (right).

3. 2

 2 Near infrared representation, a new 4D L*a*b*cir space Although NIR part is not sensed by human eye and so not represented in L*a*b*, we need to project it in a uniform space. In this context, we decided to treat NIR part with the same kind of transformations than visible part adding a new component to the classical CIE L*a*b* space, we called 𝑐 𝑖𝑟 .

Figure 7 .

 7 Figure 7. Distribution in CIE like a*b*cir space (top left) and according to the 3 main planes of the new color 1498 elements color checker under black body (5000K) illuminant. MCC points colorized on top right plot.A limited number of representative spectra are selected among the 200,000 collected elements to constitute the synthetic color chart. First, we project all spectra into the newly defined L*a*b*cir space, and we take into account only a*b*cir components to subsample data: a* and b* are linked to the hue and saturation, and cir is linked to NIR signal. Then, the a*b*cir space is uniformly binned into 20x20x20 elements according to each axe. In every voxels, only the closest point

Figure 8 .

 8 Figure 8. sRGB representation of the synthetic color chart, hue sorted (a*b* plane)

Figure 9 .

 9 Figure 9. a) Teledyne E2V Onyx E2V76C664 quantum efficiency, b) color filters arrangement (from datasheet). The monochrome channel is called white channel in this paper.

Figure 10 :

 10 Figure 10: Comparison of color correction performance between classical visible case (RGB camera with IR cutoff filter) and low light sensor (RGBW channels without IR cutoff filter)

Table 1 :

 1 SNRY performances of sensor with classical or low light configuration

		Usual color photography	Low light
		configuration	configuration
	Illumination value for 𝑆𝑁𝑅 𝑌 = 1	0.050 lux	0.015 lux
	RGBW sensor implementing our color correction is able to deliver SNRY =1 for 3 times lower illumination than standard
	camera.		

Table 2 :

 2 Color mismatch (CIE ΔE2000 error between expected colors and restituted colors over the 1498 patches of the synthetic Visual and qualitative comparison is shown on Figure10. On the upper right corner sRGB image computed using standard observer functions is displayed for reference. The first row shows the case of photographic sensor (RGB channels with infrared filter), on left the raw image, on right after white balance and color correction using CCM evaluation on MCC. The second row presents images for RGBW sensor under consideration (no IR filter), from left to right: raw image, image corrected by CCM computed for RGB equivalent photographic sensors (same as in first row), image corrected by 3x4 CCM computed only on MCC patches and image corrected by 3x4 CCM computed on our SCC. Qualitatively, this last image shows acceptable hue and saturation on the scene.

	color chart						
		max(ΔE2000)	mean(ΔE2000)	min(ΔE2000)
	Applied color correction matrix	SCC	Full spectral database	SCC	Full spectral database	SCC	Full spectral database
	3x4 CCM computed						
	using MacBeth	33.18	49.24	10.15	22.69	2.24	1.12
	ColorChecker chart						
	3x4 CCM computed						
	using synthetic color	27.60	42.5	5.2	16.4	0.27	0.01
	chart						
	With Δ𝐸 2000 𝑚𝑎𝑥 = 6.75, Δ𝐸 2000 𝑚𝑒𝑎𝑛 = 2.19, Δ𝐸 2000 𝑚𝑖𝑛 = 0.48.				

†