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A NEW NUMERICAL ALGORITHM FOR TWO-PHASE FLOWS

DRIFT-FLUX MODEL WITH STAGGERED GRID IN POROUS MEDIA

Anouar MEKKAS1, Anne CHARMEAU2 and Sami KOURAICHI3

Abstract. FLICA4 is a 3D compressible code dedicated to reactor core analysis. It solves a
compressible drift-flux model for two-phase flows in a porous medium [2]. To define convective
fluxes, FLICA4 uses a specific finite volume numerical method based on an extension of the
Roe’s approximate Riemann colocated solver [3]. Nevertheless, analysis of this method shows
that at low Mach number, it is necessary to apply modifications to the 2D or 3D geometries on
a cartesian mesh otherwise this method does not converge to the right solution when the mach
number goes to zero [4]. For this reason, we apply a so-called “pressure correction“. Although
this correction is necessary to reach the required precision, it may produces some checkerboard
oscillations in space in the situations we are interested in, especially in the 1D case. Since these
checkerboard oscillations are sometimes critical and may lead to unstable solutions in some
cases, we investigate another numerical algorithm to solve this compressible drift-flux model in
the low Mach regim. The aim of this work is to propose a new compressible scheme accurate
and robust at low Mach number on staggered grid since checkerboard oscillations cannot exist
on this type of discretisation [8]. The accuracy and robustness of this new scheme are verified
in low Mach regime with test cases describing a simplified nuclear core ”Boiling channel”. The
behavior of this scheme is also tested in the compressible regime with or without shock waves.

Résumé. FLICA4 est un logiciel de simulation 3D dédié à l’analyse des écoulements dans les
coeurs de réacteurs nucléaires et qui résout un modèle compressible diphasique à 4 équations
à l’échelle poreuse [2]. Le schéma numérique du code FLICA4 est basé sur une technique de
volumes finis où les flux numériques convectifs sont calculés à l’aide d’un solveur colocalisé
appelé Roe [3]. L’analyse de cette méthode numérique montre qu’à bas nombre de Mach, il est
nécessaire d’introduire des modifications spécifiques aux géométries 2D ou 3D sur un maillage
cartésien sans quoi la solution ne converge pas vers la bonne solution lorsque le nombre de Mach
tend vers zéro [4]. C’est la raison pour laquelle une correction dite “correction de pression“ est
appliquée. Cette “correction de pression“ nécessaire à la précision du schéma numérique à bas
nombre de Mach pour des configurations 2D ou 3D sur un maillage cartésien introduit presque
systématiquement des oscillations en espace de type mode en échiquier dans les configurations
étudiées ici, surtout en 1D. Comme ces oscillations spatiales peuvent être trés fortes dans certains
cas et éventuellement conduire à une divergence de certains calculs. Nous étudions un nouvel
algorithme numérique pour résoudre le modèle compressible diphasique à 4 équations. Le but
de ce travail est de proposer un nouveau schéma numérique précis et robuste à bas nombre de
Mach sur grilles décalées car les oscillations spatiales de type mode en échiquier sont inexistantes
avec ce type de discrétisation [8]. Ce nouveau schéma numérique est vérifié en régime bas Mach
avec des cas-tests décrivant un coeur nucléaire simplifié ”canal bouillant”. Le comportement de
ce schéma est également testé en régime compressible avec ou sans ondes de choc.

Introduction

FLICA4 is a 3D compressible code dedicated to reactor core analysis. This code solves for a compress-
ible drift-flux model for two-phase flows in a porous medium [2]. To derive convective fluxes, FLICA4
uses a specific finite volume numerical method based on an extension of the Roe’s approximate Riemann
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colocated solver [3]. Nevertheless, an analysis of this type of method shows that at low Mach number,
it is necessary to apply modifications to the 2D or 3D geometries on a cartesian mesh otherwise this
method does not converge to the right solution when the mach number goes to zero [3]. For this reason,
we apply a so-called “pressure correction“. Although this correction is necessary to reach the required
precision, it may produces some checkerboard oscillations in space, especially in the 1D case.

Since these checkerboard oscillations are sometimes critical and may lead to unstable solutions in some
cases, we also investigate another numerical algorithm to solve this compressible drift-flux model in the
low Mach regim. The key point is to develope a compressible solver on staggered grid since checkerboard
oscillations cannot exist on this type of discretisation [8]. The aim of this work is to present such a
compressible scheme and to verify it in the low Mach regime with test cases describing a simplified
nuclear core. Then, the behavior of this scheme is tested in the compressible regime with or without
shock waves.

The compressible solver on staggered grid that we develop follows the finite volume approach for all
4 balance equations. The time discretization of the equations is based on a semi-implicit scheme. Since
the equations are not linear, the solution at each time step is obtained by a Newton-Raphson iterative
method. This method gives a linear system of equations for the increments of the principal variables. The
chosen solution algorithm [6] consists at first in eliminating the velocity increments as functions of the
pressure increments by rewriting the momentum equations. Substituting the velocity increments into the
non-linear system gives a system involving only the pressure increments. The successive elimination of
the scalar variables other than the pressure variable gives a linear system on the pressure. The resolution
of this linear system allows to determine the velocity and the other variables. Preliminary numerical
experiments are presented and compared with analytic solutions [7, 12].

§4.1 shows that the current numerical scheme computes solutions very close to the analytical solutions
in the scope of low Mach number flows (see figures 4, 5 and 6). The numerical method uses non-
conservative formulation of the four equations. Therefore, difficulties to get precise shock wave solutions
were expected. Figures 7 and 9 indeed show a lack of precision of the new numerical scheme to capture
shock waves although it is stable. Nevertheless, the scheme captures compressible regular solutions with
accuracy (see figure 8). As a consequence, our scheme is robust and is enough accurate to capture at the
same time subsonic compressible solutions and low Mach solutions: this property is the main requirement
for our applications.

1. Porous 4 equations model

FLICA4 is a four equation code. The equations are mixture mass balance, phasic mass balance,
mixture momentum balance and mixture energy balance. The 4 equations are averaged in space, time
and phase over control volumes. A drift-flux model is used to account for the slip between vapor and
liquid phases. The fluid is compressible and the two-phases are assumed to be at the same pressure. One
of the phases is assumed to at saturation temperature. The equations written in the non-conservative
are given by:

(M)



φ
∂ρ

∂t
+∇ · (φρ

−→
V ) = 0,

φ
∂(ρC)

∂t
+∇ · (φρC

−→
V ) +∇ · (φρC(1− C)

−→
V r) = ∇ · (φKcv∇C) + φΓv,

φρ

(
∂
−→
V

∂t
+
−→
V · ∇

−→
V

)
+∇ ·

(
φρC(1− C)

−→
Vr ⊗

−→
Vr

)
+ φ∇P = ∇ · ¯̄τ + φτf + φρ−→g ,

φ
∂(ρe)

∂t
+∇ ·

(
φρe
−→
V
)

+ P∇ ·
(
φ
−→
V
)

+∇ ·
(
φρC(1− C) (Hv −Hl)

−→
Vr

)
= φQ+∇ · q.

(1)

Above, the blue terms are given by the user, the red terms are computed with physical modeling and
the green terms are defined by the equation of state

ρ = F(P, h). (2)
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The nomenclature is given as follows : t is the time, φ is the porosity, ρ is the mixture density, h is the

mixture specific enthalpy,
−→
V is the mixture velocity,

−→
Vr is the relative velocity between the two phases,

C is the vapor mass concentration, P is the mixture pressure, e is the mixture internal energy, Hv is the
steam total enthalpy, Hl is the liquid total enthalpy, −→g is the gravity force, Q is the power density, ¯̄τ
is the stress tensor, τf is the friction forces and q is the heat flux. Contribution of the diffusive terms
∇ · (φKcv∇C), ∇ · ¯̄τ and ∇ · q are neglected.

2. Full time and space discretization

For space discretization, a staggered grid (see figure 1) is used where scalar variables (pressure, density,
enthalpy, etc) are computed at center of the control volumes. Velocity or momentum variables are
computedb on volume faces. It differs from a collocated grid, where all the variables are computed at the
same position.

Figure 1. Staggered grid in 2-dimensions

Using a staggered grid is a simple way to avoid odd-even decoupling between pressure and velocity.
Odd-even decoupling is a discretization error that can occur on collocated grids and which leads to
checkerboard patterns in the solutions [15].

2.1. Discretization of the mixture mass equation

The time discretization of the mixture mass equation is based on a semi-implicit scheme. More
precisely, the mass fluxes are approximated on the interface using a donor semi-implicit scheme where
the velocity is implicit while the scalar variables are explicit. The space discretization in the three
directions of the mass fluxes in the mixture mass equation is done by approximating the density on the
cell faces by using a donor formulation.

More precisely, the finite volumes discretization of the mixture mass equation involves its integration
in time between tn and tn+1 and in space on an elementary control volume MK

c (see figure 2):

∫
MK

c

∫ tn+1

tn

[
φ
∂ρ

∂t
+∇.(φρ

−→
V )

]
dΩdt = 0. (3)

By using the divergence theorem, equation (3) becomes:

∫
MK

c

∫ tn+1

tn

φ
∂ρ

∂t
dΩdt+

∫
∂MK

c

∫ tn+1

tn

φρ
−→
V .−→n dSdt = 0 (4)

or in discrete form:

ρn+1
MK

c
− ρnMK

c

∆t
+

1

(φV)MK
c

∑
σ∈εK

Fn+1
σ = 0 (5)
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Figure 2. Control volume MK
c in 2-dimensions

In (5), εK is the set of faces of MK
c , VMK

c
is the volume of MK

c and Fn+1
σ is the approximation of the

flux on the interface σ at time tn+1.

To establish the discrete mixture mass equation, all we need now is to approximate the flux Fn+1
σ on

the faces of a given cell MK
c . To ensure the stability of the numerical scheme, we use a donor

formulation of the convection term:

Fn+1
σ = φσSσρnσ

−→
V n+1
σ .−→n σ. (6)

In (6), Sσ is the crossing surface of σ, −→n σ is the outward unitary normal of the face between the MK
c

and ML
c cells and ρnσ represents the upwind mixture density on the interface σ between a given cell MK

c

and a neighboring cell ML
c :

ρnσ =

{
ρnMK

c
if

−→
V n+1
σ .−→n σ > 0,

ρnML
c

otherwise.

As a result, the discrete form of the mixture mass equation (5) can be written as:

F 1(ρn+1
MK

c
,
−→
V n+1
σ∈εK ) = 0. (7)

Taking into account the state equation (2), equation (7) becomes:

F 1(Pn+1
MK

c
, hn+1
MK

c
,
−→
V n+1
σ∈εK ) = 0. (8)

2.2. Discretization of the mixture internal energy balance equation

The spatial and temporal discretization of the mixture internal energy balance equation is done
by using the approach used for the mixture mass equation.

The finite volumes discretization of the mixture internal energy equation involves its integration in
time between tn and tn+1 and in space on an elementary control volume MK

c (see figure 2):∫
MK

c

∫ tn+1

tn

{
φ
∂ρe

∂t
+∇.(φρe

−→
V ) + P∇.(φ

−→
V ) +∇.

[
(φρC(1− C)(Hv −Hl)

−→
V r

]
− φQ

}
dΩdt = 0. (9)

The discrete form of (9) is:

(ρe)n+1
MK

c
− (ρe)nMK

c

∆t
+

1

(φV)MK
c

∑
σ∈εK

[Fn+1
σ + Pn+1

MK
c

G n+1
σ + H n+1

σ ]−QnMK
c

= 0 (10)

where Fn+1
σ , G n+1

σ and H n+1
σ are the approximations of the fluxes on the interface σ at time tn+1:

Fn+1
σ = φσSσ(ρe)nσ

−→
V n+1
σ .−→n σ,

G n+1
σ = φσSσ

−→
V n+1
σ .−→n σ,

H n+1
σ = φσSσ[ρrCr(1− Cr)(Hv −Hl)]

n
σ(
−→
V r)

n+1
σ .−→n σ.
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• (ρe)nσ and [ρrCr(1 − Cr)(Hv −Hl)]
n
σ are defined only at the cells center. On the faces, they are

approximated using the following donor formulation:

(ρe)nσ =

{
(ρe)nMK

c
if
−→
V n+1
σ .−→n σ > 0,

(ρe)nML
c

otherwise.

[ρrCr(1− Cr)(Hv −Hl)]
n
σ =

{
[ρC(1− C)(Hv −Hl)]

n
MK

c
if (

−→
V r)

n+1
σ .−→n σ > 0,

[ρC(1− C)(Hv −Hl)]
n
ML

c
otherwise.

• (
−→
V r)

n+1
σ is the relative velocity which is given by using the Ishii model [9, 10]:

(
−→
V r)

n+1
σ =

(C0 − 1)
−→
V n+1
σ +

−→
V v,lim

1− Cnσ + C0(Cnσ − αnσ)
(11)

C0 is a parameter that adjusts the mixture velocity and
−→
V v,lim is the vapor velocity limit. The

concentration Cnσ and the void fraction αnσ on the interface σ are approximated by also using a donor
formulation.

Hence, the discrete form of the mixture internal energy equation (10) can be written as:

F 2(ρn+1
MK

c
, en+1
MK

c
,
−→
V n+1
σ∈εK , (

−→
V r)

n+1
σ∈εK ) = 0. (12)

Taking into account the state equation (2) and the relation (11), equation (12) becomes:

F 2(Pn+1
MK

c
, hn+1
MK

c
,
−→
V n+1
σ∈εK ) = 0. (13)

2.3. Discretization of the vapor mass equation

The spatial and temporal discretization of the vapor mass balance equation is done by using the
approach used for the mixture mass equation.

We integrate the vapor mass equation between the time instants tn and tn+1 on the cell MK
c (see

figure 2): ∫
MK

c

∫ tn+1

tn

{
φ
∂ρC

∂t
+∇.(φρC

−→
V ) +∇.

[
φρC(1− C)

−→
Vr

]
− φΓv

}
dΩdt = 0. (14)

The discrete form of (14) is:

(ρC)n+1
MK

c
− (ρC)nMK

c

∆t
+

1

(φV)MK
c

∑
σ∈εK

[
Fn+1
σ + G n+1

σ

]
− (Γv)

n+1
MK

c
= 0 (15)

where Fn+1
σ and G n+1

σ are the approximations of the fluxes on the interface σ at time tn+1:{
Fn+1
σ = φσSσ(ρC)nσ

−→
V n+1
σ .−→n σ,

G n+1
σ = φσSσ [ρrCr(1− Cr)]nσ (

−→
Vr)

n+1
σ .−→n σ.

• (ρC)nσ and [ρrCr(1− Cr)]nσ are defined only at the cells center. On the faces, they are approxi-
mated using the following donor formulation:

(ρC)nσ =

{
(ρC)nMK

c
if
−→
V n+1
σ .−→n σ > 0,

(ρC)nML
c

otherwise,

[(ρrCr(1− Cr))D]nσ =

{
[ρC(1− C)]

n
MK

c
if (

−→
V r)

n+1
σ .−→n σ > 0,

[ρC(1− C)]
n
ML

c
otherwise.

• (Γv)
n+1
MK

c
is calculated using a correlation [2].
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As a result, the discrete form of the vapor mass equation (15) can be written as:

F 3(ρn+1
MK

c
, Cn+1

MK
c
, V n+1
σ∈εK , (

−→
V r)

n+1
σ∈εK ) = 0. (16)

Taking into account the state equation (2) and the relation (11), the equation (16) becomes:

F 3(Pn+1
MK

c
, hn+1
MK

c
, Cn+1

MK
c
,
−→
V n+1
σ∈εK ) = 0. (17)

2.4. Discretization of the mixture momentum conservation equation

We solve the mixture momentum equation of (1) in the non-conservative form:

φρ

(
∂
−→
V

∂t
+
−→
V · ∇

−→
V

)
+∇ ·

(
φρC(1− C)

−→
Vr ⊗

−→
Vr

)
+ φ∇P = φ−→τf + φρ−→g . (18)

The equation (18) can be divided by the porosity which then remains only in the∇ ·
(
φρC(1− C)

−→
Vr ⊗

−→
Vr

)
term. In this article, we assume that the porosity is constant, the above equation (18) becomes:

ρ
∂
−→
V

∂t
+ ρ
−→
V ∇
−→
V +∇ ·

(
ρC(1− C)

−→
Vr ⊗

−→
Vr

)
+∇P = −→τf + ρ−→g . (19)

Future work will be conducted to raise this hypothesis and discretize the term 1
φ∇ ·

(
φρC(1− C)

−→
Vr ⊗

−→
Vr

)
.

Using the formula ρ
−→
V · ∇

−→
V = ∇ ·

(
ρ
−→
V ⊗

−→
V
)
−
−→
V ∇ ·

(
ρ
−→
V
)

, the mixture momentum equation (19) can

be written as:

ρ
∂
−→
V

∂t
+∇ ·

(
ρ
−→
V ⊗

−→
V
)
−
−→
V ∇ ·

(
ρ
−→
V
)

+∇ ·
(
ρC(1− C)

−→
Vr ⊗

−→
Vr

)
+∇P = −→τf + ρ−→g (20)

In the sequel, we detail the spatial and temporal discretization of the equation (20) projected in the
direction ~ex (the discretization in the directions ~ey and ~ez, is obtained by analogy).

The projection of equation (20) in the direction −→ex gives:

ρ
∂V x

∂t
+∇ · (ρV x

−→
V )− V x∇.(ρ

−→
V ) +∇ ·

[
ρC(1− C)V xr

−→
V r

]
+
∂P

∂x
= τxf + ρgx. (21)

The finite volumes discretization involves the integration of equation (20) in time between tn and tn+1

and in space on an elementary control volume MK+
u (see figure 3):

∫
MK+

u

∫ tn+1

tn

{
ρ
∂V x

∂t
+∇.(ρV x

−→
V )− V x∇ · (ρ

−→
V ) +∇ ·

[
ρC(1− C)V xr

−→
V r

]
+
∂P

∂x
− τxf − ρgx

}
dΩdt = 0.

The discrete form is:

ρn
MK+

u

(V x)n+1

MK+
u
− (V x)n

MK+
u

∆t
+

1

VMK+
u

∑
σ∈εM

[Fn
σ − (V x)n

MK+
u

G n
σ + H n

σ ]

+

(
∂P

∂x

)n+1

MK+
u

− (τxf )n+1

MK+
u
− (ρgx)n

MK+
u

= 0 (22)
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Figure 3. control volume MK+
u in 2-dimensions

εM is the set of faces of MK+
u and VMK+

u
is the volume of MK+

u . Fn
σ , G n

σ and H n
σ are the

approximations of the fluxes at the interface σ at time tn:
Fn
σ = Sσρnσ(V x)nσ

−→
V n
σ.
−→n σ,

G n
σ = Sσρnσ

−→
V n
σ.
−→n σ,

H n
σ = Sσ [ρrCr(1− Cr)]nσ (V xr )nσ(

−→
V r)

n
σ.
−→n σ.

We now detail each terms in 2D for simplification reasons.

• Approximation of pressure gradient
(
∂P
∂x

)n+1

MK+
u

:

(
∂P

∂x

)n+1

MK+
u

=
Pn+1

M+Lx
c
− Pn+1

MK
c

∆x

• Approximation of
−→
V n
σ and (V x)nσ at the interfaces of MK+

u :
Interface σx

−→
V n
σx
+

=

−→
V n
MK+

u
+
−→
V n
M+Lx

u

2

−→
V n
σx
−

=

−→
V n
MK+

u
+
−→
V n
M−Lx

u

2

(V x)nσx
+

=

{
(V x)n

MK+
u

if
−→
V n
σx
+
.−→n σx

+
> 0

(V x)n
M+Lx

u
otherwise

(V x)nσx
−

=

{
(V x)n

MK+
u

if
−→
V n
σx
−
.−→n σx

−
> 0

(V x)n
MK−

u
otherwise

Interface σy

−→
V n
σy
+

=

−→
V n
MK

v
+
−→
V n
M+Lx

v

2

−→
V n
σy
−

=

−→
V n
M−Ly

v
+
−→
V n
M+−Lxy

v

2

(V x)nσy
+

=

{
(V x)n

MK+
u

if
−→
V n
σy
+
.~nσy

+
> 0

(V x)n
M+Ly

u
otherwise

(V x)nσy
−

=

{
(V x)n

MK+
u

if
−→
V n
σy
−
.~nσy

−
> 0

(V x)n
M−Ly

u
otherwise

• Approximation of relative velocity: (
−→
V r)

n
σ and (V xr )nσ at the interfaces of MK+

u :
We use the Ishii model [9, 10]:

(
−→
V r)

n
σ =

(C0 − 1)
−→
V n
σ +
−→
V v,lim

1− Cnσ + C0(Cnσ − αnσ)

(V xr )nσx
+

=

{
(V xr )n

MK+
u

if (
−→
V r)

n
σx
+
.~nσx

+
> 0,

(V xr )n
M+Lx

u
otherwise,

(V xr )nσx
−

=

{
(V xr )n

MK+
u

if (
−→
V r)

n
σx
−
.~nσx

−
> 0,

(V xr )n
MK−

u
otherwise,

(V xr )nσy
+

=

{
(V xr )n

MK+
u

if (
−→
V r)

n
σy
+
.~nσy

+
> 0,

(V xr )n
M+Ly

u
otherwise,

(V xr )nσy
−

=

{
(V xr )n

MK+
u

if (
−→
V r)

n
σy
−
.~nσy

−
> 0,

(V xr )n
M−Ly

u
otherwise.

• Approximation of the scalar variables at the interfaces of MK+
u :

ρnσx
−

= ρnMK
c
, ρnσx

+
= ρn

M+Lx
c

,
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ρnσy
+

=


ρn
MK

c
+ρn

M
+Lx
c

2 if
−→
V n
σy
+
.~nσy

+
> 0,

ρn
M

+Ly
c

+ρn
M

++Lxy
c

2 otherwise,

ρnσy
−

=


ρn
MK

c
+ρn

M
+Lx
c

2 if
−→
V n
σy
−
.~nσy

−
> 0,

ρn
M

−Ly
c

+ρn
M

+−Lxy
c

2 otherwise.

We use the same method to determine [ρrCr(1− Cr)]nσ:

[ρrCr(1− Cr)]nσx
−

= [ρC(1− C)]
n
MK

c
, [ρrCr(1− Cr)]nσx

+
= [ρC(1− C)]

n
M+Lx

c
,

[ρrCr(1− Cr)]nσy
+

=


[ρC(1−C)]n

MK
c

+[ρC(1−C)]n
M

+Lx
c

2 if ( ~Vr)
n
σy
+
.~nσy

+
> 0,

[ρC(1−C)]n
M

+Ly
c

+[ρC(1−C)]n
M

++Lxy
c

2 otherwise,

[ρrCr(1− Cr)]nσy
−

=


[ρC(1−C)]n

MK
c

+[ρC(1−C)]n
M

+Lx
c

2 if ( ~Vr)
n
σy
−
.~nσy

−
> 0,

[ρC(1−C)]n
M

−Ly
c

+[ρC(1−C)]n
M

+−Lxy
c

2 otherwise.

At the interfaces σz+ and σz−, we easily get the same result as at the interfaces σy+ and σy− if
we replace y by z.

• Approximation of friction forces
(
τxf

)n+1

MK+
u

:

(τxf )n+1

MK+
u

= (τxfw)n+1

MK+
u

+ (τxfs)
n+1

MK+
u

where τxfw is the wall friction and τxfs is the singular friction. We obtain:

(τxw)n+1

MK+
u

=
−fxw

2(Dx
h)MK+

u

ρn
MK+

u
(V x)n+1

MK+
u
|(V x)n+1

MK+
u
|,

(τxs )n+1

MK+
u

=
−Kx

2
ρn
MK+

u
(V x)n+1

MK+
u
|(V x)n+1

MK+
u
|

where Kx and fxw are the friction coefficients.

Finally, the discretization of the mixture momentum equation in the direction ~ex (22) can be
written as:

F 4(Pn+1
MK

c
, Pn+1

M+Lx
c

, (V x)n+1
MK

u
) = 0. (23)

By analogy, we obtain the discretization in the directions ~ey and ~ez:

F 5(Pn+1
MK

c
, Pn+1

M+Ly
c

, (V y)n+1
MK

v
) = 0, (24)

F 6(Pn+1
MK

c
, Pn+1

M+Lz
c

, (V z)n+1
MK

w
) = 0. (25)

3. Solution Algorithm

3.1. Construction of the linear system to solve

Let (S) denote the non-linear system we ought to solve at each physical time step:

(S)



F 1(P, h,
−→
V ) = 0,

F 2(P, h, C,
−→
V ) = 0,

F 3(P, h,
−→
V ) = 0,

F 4(P,
−→
V ) = 0,

F 5(P,
−→
V ) = 0,

F 6(P,
−→
V ) = 0.

(26)



ESAIM: PROCEEDINGS AND SURVEYS 9

System (S) is solved by using a Newton-Raphson iterative method which consists in solving a
linearisation of (S) at each iteration. More precisely, at each iteration k of the Newton-Raphson
algorithm, we solve the linear system:

J (Uk)∆Uk+1 = S(Un,Uk) (27)

where U = (P, h, C, V x, V y, V z)t is unknown vector and ∆Uk+1 = Uk+1 − Uk is increment of U ,

and where k is the number of the iteration, the matrix J is the Jacobian matrix of the system (S) and
the vector S is the right-hand-side vector containing the residuals of equations (26) evaluated at the
previous iteration. The solution Un+1 is Uk when k → +∞.

To solve the non-linear system (26), we compare two different methods:

• the “Full Jacobian“ method (see §3.2),
• the “Pressure-based Solver“ method (see §3.3).

These methods are used by the CATHARE code to solve the six equations model [6]. The Full Jacobian
method is used to deal with the 1D problems since the size of the matrix allows it. However, in the 2D
and 3D problems CATHARE code uses the pressure-based method.

3.2. The ”Full Jacobian” method

This method involves the inversion of the matrix in (26) when its size is reasonable. Actually in this
case this method is very useful since it is simple to implement and because it allows the possibility of
“impliciting“ all the variables in the discretization step which leads to a better resolution.

Despite the efficiency of the full Jacobian method to treat the “small sized“ problems, its use is
bounded by a limit on the jacobian matrix size. Beyond this limit, the pressure-based method becomes
more efficient.

3.3. The ”pressure-based solver” method

The “semi-implicit“ scheme we used to discretize the four equations (1) allows to simplify significantly
the terms of the matrix that occur in the momentum equations F 4, F 5 and F 6. This will enable the
expression of the velocity increments as functions of the pressure increments (see section 3.3.1) and then
to eliminate them. In section §3.3.2 we will see how to eliminate all the scalar variables (but the pressure
increments) and then to obtain a linear equation where only the pressure increments should occur.

3.3.1. Elimination of the velocity increments

The purpose of this step is to write the velocity increments as a function of the pressure increments.
To do so we consider only the momentum equations which corresponds to this “partial“ linear system:

∂F 4

∂P
∂F 4

∂h
∂F 4

∂C
∂F 4

∂V x
∂F 4

∂V y
∂F 4

∂V z

∂F 5

∂P
∂F 5

∂h
∂F 5

∂C
∂F 5

∂V x
∂F 5

∂V y
∂F 5

∂V z

∂F 6

∂P
∂F 6

∂h
∂F 6

∂C
∂F 6

∂V x
∂F 6

∂V y
∂F 6

∂V z




∆U1
∆U2
∆U3
∆U4
∆U5
∆U6

 =

S4

S5

S6

 (28)

According to (23),(24) and (25), the functions F 4, F 5 and F 6 do not depend on mixture enthalpy h and
mass vapor concentration C at time step tn+1. Thus, their derivatives with respect to these variables
are equals to zero. In the same way:

• the derivatives of F 4 with respect to V y and V z are equal to zero,
• the derivatives of F 5 with respect to V x and V z are equal to zero,
• the derivatives of F 6 with respect to V x and V y are equal to zero.

Thus, system (28) becomes:
∂F 4

∂P 0 0 ∂F 4

∂V x 0 0

∂F 5

∂P 0 0 0 ∂F 5

∂V y 0

∂F 6

∂P 0 0 0 0 ∂F 6

∂V z




∆U1
∆U2
∆U3
∆U4
∆U5
∆U6

 =

S4

S5

S6

 (29)
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Moreover, by developing equation (29) in the cells MK+
u , MK+

v and MK+
w , we obtain the following

equations system:



(∆V x)MK+
u

= 1
∂F4

M
K+
u

∂V x

M
K+
u

[S4
MK+

u
−

∂F 4

M
K+
u

∂PMK
c

(∆P )MK
c
−

∂F 4

M
K+
u

∂P
M

+Lx
c

(∆P )M+Lx
c

],

(∆V y)MK+
v

= 1
∂F5

M
K+
v

∂V
y

M
K+
v

[S5
MK+

v
−

∂F 5

M
K+
v

∂PMK
c

(∆P )MK
c
−

∂F 5

M
K+
v

∂P
M

+Ly
c

(∆P )M+Ly
c

],

(∆V z)MK+
w

= 1
∂F6

M
K+
w

∂V z

M
K+
w

[S6
MK+

w
−

∂F 6

M
K+
w

∂PMK
c

(∆P )MK
c
−

∂F 6

M
K+
w

∂P
M

+Lz
c

(∆P )M+Lz
c

].

(30)

By analogy, we determine the velocity increments (∆V x)MK−
u

, (∆V y)MK−
v

and (∆V z)MK−
w

as functions
of the pressure increments.

This step enabled the writing of the velocity increments ∆U4, ∆U5 and ∆U6 at each face of the mesh
as functions of the pressure increments. This will be useful in the next step (see §3.3.2) to establish a
linear pressure equation (such as only pressure increments are unknown).

3.3.2. Triangulation

In this step we aim to eliminate the scalar variables increments. To do so, we use the three scalar
variables equations (mixture mass, mass vapor concentration and mixture energy), which corresponds to
the following system:


∂F 1

∂P
∂F 1

∂h
∂F 1

∂C
∂F 1

∂V x
∂F 1

∂V y
∂F 1

∂V z

∂F 2

∂P
∂F 2

∂h
∂F 2

∂C
∂F 2

∂V x
∂F 2

∂V y
∂F 2

∂V z

∂F 3

∂P
∂F 3

∂h
∂F 3

∂C
∂F 3

∂V x
∂F 3

∂V y
∂F 3

∂V z




∆U1
∆U2
∆U3
∆U4
∆U5
∆U6

 =

S1

S2

S3

 (31)

As we did previously, some simplifications take place (thanks to (8) and (13)) since F 1 and F 2 do not
depend on C at tn+1. Thus, system (31) becomes:


∂F 1

∂P
∂F 1

∂h 0 ∂F 1

∂V x
∂F 1

∂V y
∂F 1

∂V z

∂F 2

∂P
∂F 2

∂h 0 ∂F 2

∂V x
∂F 2

∂V y
∂F 2

∂V z

∂F 3

∂P
∂F 3

∂h
∂F 3

∂C
∂F 3

∂V x
∂F 3

∂V y
∂F 3

∂V z




∆U1
∆U2
∆U3
∆U4
∆U5
∆U6

 =

S1

S2

S3

 (32)

At this stage applying the operation (L1)←− (L1)× ∂F 2

∂h − (L2)× ∂F 1

∂h on the system (32) results in:

J1,1 0 0 J1,4 J1,5 J1,6

∂F 2

∂P
∂F 2

∂h 0 ∂F 2

∂V x
∂F 2

∂V y
∂F 2

∂V z

∂F 3

∂P
∂F 3

∂h
∂F 3

∂C
∂F 3

∂V x
∂F 3

∂V y
∂F 3

∂V z




∆U1
∆U2
∆U3
∆U4
∆U5
∆U6

 =

D1

S2

S3

 (33)

where:

D1
MK

c
= S1

MK
c

∂F 2
MK

c

∂hMK
c

− S2
MK

c

∂F 1
MK

c

∂hMK
c
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J1,4

MK+
u

= (
∂F 2

MK
c

∂hMK
c

∂F 1
MK

c

∂V x
MK+

u

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK

c

∂V x
MK+

u

)

J1,5

MK+
v

= (
∂F 2

MK
c

∂hMK
c

∂F 1
MK

c

∂V y
MK+

v

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK

c

∂V y
MK+

v

)

J1,6

MK+
w

= (
∂F 2

MK
c

∂hMK
c

∂F 1
MK

c

∂V z
MK+

w

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK

c

∂V z
MK+

w

)

J1,1
MK

c
= (

∂F 2
MK

c

∂hMK
c

∂F 1
MK

c

∂PMK
c

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK

c

∂PMK
c

)

By analogy, we determine the J1,4

MK−
u

, J1,5

MK−
v

and J1,6

MK−
w

terms.

By developing, the first row of system (33) in a cell MK
c , we get the following equation:

(J1,1)MK
c

(∆P )MK
c

+ (J1,4)MK+
u

(∆V x)MK+
u

+ (J1,4)MK−
u

(∆V x)MK−
u

+ (J1,5)MK+
v

(∆V y)MK+
v

+ (J1,5)MK−
v

(∆V y)MK−
v

(34)

+ (J1,6)MK+
w

(∆V z)MK+
w

+ (J1,6)MK−
w

(∆V z)MK−
w

= D1
MK

c

It is at this stage that we use of the velocity increments calculated in the last step with (30). Putting
(30) in (34), we obtain:

A(∆P )MK
c

+ B(∆P )M+Lx
c

+ C(∆P )M−Lx
c

+ D(∆P )M+Ly
c

+ E(∆P )M−Ly
c

(35)

+ F(∆P )M+Lz
c

+ G(∆P )M−Lz
c

= S

where:

A = (J1,1)MK
c
− (J1,4)MK+

u

∂F 4

M
K+
u

∂PMK
c

∂F 4

M
K+
u

∂V x

M
K+
u

− (J1,4)MK−
u

∂F 4

M
K−
u

∂PMK
c

∂F 4

M
K−
u

∂V x

M
K−
u

− (J1,5)MK+
v

∂F 5

M
K+
v

∂PMK
c

∂F 5

M
K+
v

∂V x

M
K+
v

− (J1,5)MK−
v

∂F 5

M
K−
v

∂PMK
c

∂F 5

M
K−
v

∂V x

M
K−
v

− (J1,6)MK+
w

∂F 6

M
K+
w

∂PMK
c

∂F 6

M
K+
w

∂V x

M
K+
w

− (J1,6)MK−
w

∂F 6

M
K−
w

∂PMK
c

∂F 6

M
K−
w

∂V x

M
K−
w

,

B = −(J1,4)MK+
u

∂F 4

M
K+
u

∂P
M

+Lx
c

∂F 4

M
K+
u

∂V x

M
K+
u

, D = −(J1,5)MK+
v

∂F 5

M
K+
v

∂P
M

+Ly
c

∂F 5

M
K+
v

∂V y

M
K+
v

, F = −(J1,6)MK+
w

∂F 6

M
K+
w

∂P
M

+Lz
c

∂F 6

M
K+
w

∂V z

M
K+
w

C = −(J1,4)MK−
u

∂F 4

M
K−
u

∂P
M

−Lx
c

∂F 4

M
K−
u

∂V x

M
K−
u

, E = −(J1,5)MK−
v

∂F 5

M
K−
v

∂P
M

−Ly
c

∂F 5

M
K−
v

∂V y

M
K−
v

, G = −(J1,6)MK−
w

∂F 6

M
K−
w

∂P
M

−Lz
c

∂F 6

M
K−
w

∂V z

M
K−
w

,

S = D1
MK

c
−

 (J1,4)MK+
u
S4
MK+

u

∂F 4

M
K+
u

∂V x

M
K+
u

+
(J1,4)MK−

u
S4
MK−

u

∂F 4

M
K−
u

∂V x

M
K−
u

+
(J1,5)MK+

v
S5
MK+

v

∂F 5

M
K+
v

∂V y

M
K+
v

+
(J1,5)MK−

v
S5
MK−

v

∂F 5

M
K−
v

∂V y

M
K−
v

+
(J1,6)MK+

w
S6
MK+

w

∂F 6

M
K+
w

∂V z

M
K+
w

+
(J1,6)MK−

w
S6
MK−

w

∂F 6

M
K−
w

∂V z

M
K−
w

 .
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The resolution of the pressure equation (35) gives the pressure increments ∆U1. Then, velocity
increments ∆U4, ∆U5 and ∆U6 is computed by using (30).

3.3.3. Enthalpy and concentration Increments

To compute the enthalpy increments, all we need is to develop the second row of system (33):

∂F 2
MK

c

∂PMK
c

(∆P )MK
c

+
∂F 2

MK
c

∂hMK
c

(∆h)MK
c

+
∂F 2

MK
c

∂(V x)MK+
u

(∆V x)MK+
u

+
∂F 2

MK
c

∂(V x)MK−
u

(∆V x)MK−
u

+
∂F 2

MK
c

∂(V y)MK+
v

(∆V y)MK+
v

+
∂F 2

MK
c

∂(V y)MK−
v

(∆V y)MK−
v

(36)

+
∂F 2

MK
c

∂(V z)MK+
w

(∆V z)MK+
w

+
∂F 2

MK
c

∂(V z)MK−
w

(∆V z)MK−
w

= S2
MK

c
.

In equation (36), the pressure increments and the velocity increments are known (see §3.3.2). Then only
the enthalpy increments are unknown. They are computed as follows:

(∆h)MK
c

=
1

∂F 2
MK

c

∂hMK
c

[
S2
MK

c
−
∂F 2

MK
c

∂PMK
c

(∆P )MK
c
−

∂F 2
MK

c

∂(V x)MK+
u

(∆V x)MK+
u
−

∂F 2
MK

c

∂(V x)MK−
u

(∆V x)MK−
u

−
∂F 2

MK
c

∂(V y)MK+
v

(∆V y)MK+
v
−

∂F 2
MK

c

∂(V y)MK−
v

(∆V y)MK−
v

−
∂F 2

MK
c

∂(V z)MK+
w

(∆V z)MK+
w
−

∂F 2
MK

c

∂(V z)MK−
w

(∆V z)MK−
w

]
.

The same method applies for the concentration increments that can be computed using the third row of
system (33):

(∆C)MK
c

=
1

∂F 3
MK

c

∂CMK
c

[
S3
MK

c
−
∂F 3

MK
c

∂PMK
c

(∆P )MK
c
−
∂F 3

MK
c

∂hMK
c

(∆h)MK
c
−

∂F 3
MK

c

∂(V x)MK+
u

(∆V x)MK+
u
−

∂F 3
MK

c

∂(V x)MK−
u

(∆V x)MK−
u

−
∂F 3

MK
c

∂(V y)MK+
v

(∆V y)MK+
v
−

∂F 3
MK

c

∂(V y)MK−
v

(∆V y)MK−
v

(37)

−
∂F 3

MK
c

∂(V z)MK+
w

(∆V z)MK+
w
−

∂F 3
MK

c

∂(V z)MK−
w

(∆V z)MK−
w

]
.
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4. Numerical tests

4.1. Low Mach regime

In this section, we check the efficiency of the numerical method described in Sections 2and3 by carrying
out various 1D tests. For all these tests, we used the stiffiend gas law for the equation of state law [5].

4.1.1. Channel with varying porosity

Test description: Stationnary liquid flow in a 1D channel with varying porosity. The channel is
4.2 m long. The porosity in the middle of the channel (1.4 m¡x¡2.8 m) is set to 0.5 and to 1 elsewhere.
The pressure at the outlet of the channel is fixed at 155 bar and the liquid velocity at the inlet of the
channel is 1 m s−1. The friction wall is set to zero. The gravity is neglected. Here, the objective is to
test the ability of the spatial discretization to conserve momentum in case of a 1D varying porosity.

Results: Figure 4 presents the velocity and the pressure profiles along the z-axis.

Figure 4. Channel with varying porosity: Pressure-based solver (red), analytic solution (green)

4.1.2. Channel with singular charge loss

Test description: Stationnary liquid flow in a 1D channel with charge loss. The channel is 4.2 m
long. The singular charge loss and models friction effects due to the presence of an element (like a mixing
grid) at the middle of the core 2.1 m. The pressure at the outlet of the channel is fixed at 155 bar and
the liquid velocity at the inlet of the channel is 1 m s−1. The friction wall is set to zero. The gravity is
neglected. We take K = 100 as the charge loss coefficient.

Results: Figure 5 shows that the pressure decreases after the flow passed through the mixing grid.

Figure 5. Channel with singular charge loss: Pressure-based solver (red), analytic so-
lution (green)
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4.1.3. Boiling channel

Test description: The physical quantities that we use in these tests match the functioning of the
PWR (Pressurized Water Reactors). We consider a 4.2 m long channel heated by a uniform thermal
flux Q =1.E8 W m−3 on which we impose the following conditions: inlet concentration C = 0, inlet
enthalpies hl =1300 kJ kg−1 and hv =2600 kJ kg−1, inlet velocities ul = uv =1 m s−1 and outlet pressure
Ps =155 bar. The friction wall is set to zero. The gravity is taken into account.

Results: In the figure 6, we compare the results of homogeneous (
−→
Vr = 0) model (1) obtained with

our pressure solver to an analytical solution obtained with the low Mach mixture model proposed in [5].

Figure 6. Boiling channel: Pressure-based solver (red), analytic solution (green)

4.2. Compressible regime

To test our Pressure-based Solver in the compressible regim, we study test cases described in [12] and
presented in Table 1. All tests are performed with an ideal gases ρ = γ

γ−1
P
h , with a constant γ = 1.4.

All chosen data consist of two constant states separated by a discontinuity at x = x0. The position of
the discontinuity is stated in the legend. The spatial domain is 0 ≤ x ≤ 1 and the numerical solution is
computed with 100 and 5000 cells.
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Test ρL (kg.m−3) VL (m.s−1) PL (Pa) ρR (kg.m−3) VR (m.s−1) PR (Pa)
Test 1 1 0.75 1 0.125 0 0.1

Test 2 1 -2 0.4 1 2 0.4

Test 3 1 0. 1000 1. 0 0.01

Table 1. Data for three Riemann problem tests for testing the Pressure-based Riemann solver.

For test 1, the Sod’s Shock Tube problem [12] is modified slightly. The solution of the problem has a
right shock wave, a right travelling contact wave and a left sonic rarefaction wave. The purpose of this
test is to assess the entropy satisfaction property of the numerical methods. The results for this test are
shown in Figure 7 against the exact results. We can see that the Pressure-based Solver struggles slightly
with the internal energy, but otherwise performs very close to the exact Riemann solver with particularly
accurate result around the sonic point unlike Roe scheme [12].

Figure 7. Pressure-based Riemann solver applied to test 1 of Table 1: Pressure-based
solver (red and blue lines), Roe solver (sky blue line) and exact (dash) solutions compared
at time 0.2

Test 2 consists of two symmetric rarefaction waves and a trivial contact wave, with the star region
between the non-linear waves close to vacuum. This problem is a good assessment of the performance
of numerical methods for low-density flows. The results for this test are shown in Figure 8 against the
exact results and we can see that the accuracy of the numerical results is nearly from those of the exact
Riemann solver unlike Roe scheme which fails near low-density flows [13].

Figure 8. Pressure-based Riemann solver applied to test 2 of Table 1: Numerical (red
and blue lines) and exact (dash) solutions compared at time 0.12
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The robustness and accuracy of the Pressure-based solver is tested with Test 3. The solution of Test 3
consists of a strong shock wave, a contact surface and a left rarefaction wave. We can see from Figures 9
(100 cells) that the Pressure-based solver struggles slightly with the density, but otherwise performs very
close to the exact solution. We can also see that the results obtained with the Pressure-based and Roe
solvers are near. However, when the mesh is refined (1000 cells), we see that the Pressure-based solver
do not converge to the exact solution.

Figure 9. Pressure-based Riemann solver applied to test 3 of Table 1: Pressure-based
solver (red and blue lines), Roe solver (sky blue line) and exact (dash) solutions compared
at time 0.012
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