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The residence time of a branching Brownian process is the amount of time that the mother particle and all its

descendants spend inside a domain. Using the Feynman-Kac formalism, we derive the residence-time equation as

well as the equations for its moments for a branching diffusion process with an arbitrary number of descendants.

This general approach is illustrated with simple examples in free space and in confined geometries where explicit

formulas for the moments are obtained within the long time limit. In particular, we study in detail the influence

of the branching mechanism on those moments. The present approach can also be applied to investigate other

additive functionals of branching Brownian process.

DOI: 10.1103/PhysRevE.94.012131

I. INTRODUCTION

Branching diffusion processes are commonly used for

studying the dynamics of populations and chemical reactions

where the stochastic spatial displacement is coupled with

creation and annihilation processes [1]. Relevant examples

where such a mechanism plays a fundamental role included

the spread of epidemics [2], the dynamics of bacterial colonies

[3], mutation-propagation of genes [4], or the evolution of the

population of neutrons in a nuclear reactor containing fissile

material [5], just to name a few. Among the quantities of

interest to characterize stochastic processes, the residence time

(RT) [6], i.e., the amount of time that a particle spends inside

a subdomain, plays an important role, since many physical

phenomena strongly depend on how long diffusing particles

remain in a zone of interest. For instance, the total numbers

of photons emitted by a dye molecule diffusing within a laser

spot is proportional to its residence time [7]. In reactor physics,

measuring the residence time that neutrons spend inside a

detector gives access to the neutron flux and other quantities

of interest [8].

This subject is far from being limited to the physics world

and in the field of mathematics, the residence time, usually

called occupation times, has also been extensively studied

since the seminal work of Lévy and his arcsine law giving the

residence time of a Brownian particle on an infinite line [9]. In

particular, Kac developed a formalism (based on Feynman

path integrals) for deriving the residence time distribution

when the underlying stochastic process is a pure Brownian

motion [10–12]. Since then, The Feynman-Kac formalism

has been successfully applied to various kinds of Brownian

functionals (for instance, see Ref. [13] for a recent review) as

well as for other Markovian continuous-time processes [14]

and non-Markovian processes [15,16].

However, despite the considerable literature on the subject,

very little is known regarding the RT of branching diffusion

processes. Indeed, except the article of Cox and Griffeath on

the occupation times for critical binary branching Brownian

motions [17], most works on spatial branching random walks

*alain.mazzolo@cea.fr

concern either discrete quantities (the number of particles and

related quantities like the survival probability [18,19] and their

spatial distribution [20]) or the RT for exponentially distributed

random walks [21–23]. The purpose of this article is to fill this

gap. It is organized as follows: In Sec. II after specifying some

properties of branching diffusion processes we derive a general

approach for the RT equations and its moments in a subdomain

based on the Feynman-Kac formalism. Analytical solutions are

then carried out in Sec. III for several spherical geometries in

the long time limit. In Sec. IV an ergodic property is established

in confined geometries. Finally, conclusions and perspectives

are presented in Sec. V.

II. BRANCHING DIFFUSION PROCESS

Basically, a branching diffusion process (or branching

Brownian motion) combines two classical objects: a Galton-

Watson process (a pure reproductive process) and a Brownian

motion (a pure random motion process) where each particle

of the Galton-Watson process performs Brownian motion in-

dependently of any other [24,25]. More precisely, we consider

a particle initially located at some position x0 at time t = 0.

This particle obeys a regular d-dimensional Brownian motion

with a diffusion coefficient D independent of the location

(i.e., a homogeneous medium). At rate β it undergoes a

Galton-Watson reproduction event: the particle disappears and

is replaced by a random number i of identical and independent

descendants whose number follows a discrete probability law

pi . We assume that each descendant thus created behaves as

the parent particle and evolves independently of the other

individuals. For such a branching diffusion process, X(t),

evolving in a domain � we wish to calculate the time spent

by the initial particle and all its descendants in a subdomain

V ⊂ � up to an observation time t . This quantity known as

residence time is formally defined in term of a stochastic

integral,

τV (t) =

∫ t

0

1V (X(u))du, (1)

where 1V (x) is the indicator function of the domain V , which

equals 1 if x ∈ V and 0 otherwise. A schematic representation

is given in Fig. 1. In order to obtain the residence time equation,
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FIG. 1. A schematic representation of two branching diffusion

processes up to some time t , one starting outside the domain V (green)

and one starting inside the domain (red). By diffusion, the particles

can re-enter in V an arbitrary number of times and eventually escape

to infinity. Furthermore, due to the branching mechanism, they can be

absorbed or created anywhere. Only paths drawn with a continuous

line contribute to the residence time in V .

the moment generating function is introduced,

Qt (s,x0) = E

[

exp

{

− s

∫ t

0

1V (X(u))du

}
∣

∣

∣

∣

X(0) = x0

]

, (2)

or with the simplified notation

Qt (s,x0) = E[e−sτV (t)|x0]. (3)

In Eqs. (2) and (3) the expectation is performed over all

possible Brownian paths X(t) that start at x0 at time t = 0 and

propagate up to time t . By noticing p(τV (t),x0) the probability

density function (pdf) of the RT, Qt (s,x0), is expressed as

Qt (s,x0) =

∫ ∞

0

e−sτV (t)p(τV (t),x0)dτV , (4)

so that Qt (s,x0) is also the Laplace transform of the pdf τV (t).

To obtain an equation for Qt (s,x0) the standard procedure is

given by the Feynman-Kac approach. To this aim, we consider

a branching Brownian motion X(t) whose trajectory (by

trajectory we understand the trajectory of the mother particle

and those of all its descendants) starts at x0 (at time t = 0)

and is observed up to a time t + �t . The interval [0,t + �t] is

split into two parts: a first small interval [0,�t], where the

process evolves from the initial position x0, and a second

interval [�t,t + �t], in which the process reaches X(t +
�t) at the final observation time. The branching Brownian

process evolves according to the fundamental law: during any

infinitesimal time �t the probability of a reproductive event is

β�t and with complementary probability 1 − β�t the particle

keeps diffusing. If a diffusion occurs during the infinitesimal

time [0,�t], then the particle moves to the random position

x0 + �x, otherwise the particle undergoes a reproductive event

while remaining in x0 [37]. By decomposing the two mutually

exclusive events (diffusion and branching), and thanks to the

Markov property of the branching Brownian process [25],

Eq. (2) becomes

Qt+�t (s,x0) = (1 − β�t)e−s1V (x0)�t

×〈E[e−s
∫ t+�t

�t
1V (X(u))du|x0 + �x]〉�x

+β�te−s1V (x0)�t

× (p0 + p1E[e−s
∫ t+�t

�t
1V (X(u))du|x0]

+p2E[e−s
∫ t+�t

�t
1V (X(u))du|x0]2 + . . . ), (5)

where the notation 〈〉�x means that the average is performed

over all random realizations of �x. In the preceding equation,

terms due to the branching mechanism can be explained as

follows. If no-particle is re-emitted, an event occurring with

the probability p0, the only contribution to Qt+�t (s,x0) is the

nonrandom quantity e−s1V (x0)�t weighted by its probability

of occurrence β�t . If a single particle is re-emitted (with

probability p1), then during [�t,t + �t], the remaining

trajectory’s contribution to the moment generating function is

simply E[e−s
∫ t+�t

�t
1V (X(u))du|x0] = Qt (s,x0) weighted again by

its probability of occurrence β�t . If two particles emerge from

a reproduction event (with probability p2), then the remaining

contribution of two trajectories [says X1(t) and X2(t)] during

[�t,t + �t] to the moment generating function is given by

E[e−s
∫ t+�t

�t
1V (X1(u))du

×e−s
∫ t+�t

�t
1V (X2(u))du|x0]=Q2

t (s,x0), (6)

where in Eq. (6) we used the fact that both particles evolve

independently. This rule applies to higher-order contributions

as well, due to three and more particles born during the small

interval time �t , each event weighted by the probability pi .

Furthermore, by introducing the offspring generating function

of the branching mechanism,

G[z] = p0 = p1z + p2z
2 + · · · =

∑

i

piz
i, (7)

Eq. (5) rewrites,

Qt+�t (s,x0) = (1 − β�t)e−s1V (x0)�t

× 〈E[e−s
∫ t+�t

�t
1V (X(u))du|x0 + �x]〉�x

+ β�te−s1V (x0)�tG[Qt (s,x0)]. (8)

The last step consists of developing the preceding equation for

small �t . Since for a pure Brownian motion 〈�x〉�x = 0 and

〈(�x)2〉�x = 2D�t , this procedure yields to

∂Qt (s,x0)

∂t
= D�x0

Qt (s,x0) − βQt (s,x0)

− s1V (x0)Qt (s,x0) + βG[Qt (s,x0)], (9)

where �x0
is the d-dimensional Laplacian in the initial

variable x0.

When β = 0 (in the absence of branching), Eq. (9) reduces

to the usual backward Fokker-Planck equation for the moment

generating function of the standard Brownian motion, and

for certain simple geometrical configurations, Eq. (9) can be

solved by Laplace transform technique [13]. However, once

the branching mechanism is turned on with at least one of the
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pi �= 0,i � 2, Eq. (9) becomes nonlinear (through the G term)

and is extremely difficult to solve.

Equation (9) is close to the residence time equation obtained

for Pearson branching random walks with exponentially

distributed jump length that model the behavior of fission chain

in a water-moderated reactor [5]. Indeed, for such random

walks, a similar equation holds for the number of neutrons

generated in a subvolume V (the so-called Pál-Bell equation

[5]) and for the total traveled length in V [21].

III. MOMENT OF THE RESIDENCE TIME

To circumvent the difficulty related to the resolution of

Eq. (9), a somewhat simpler approach to the analysis of the

RT is provided by the moment equations. Two quantities then

play a particularly important role to characterize the RT: the

mean residence time (MRT) and the variance of the RT [7,26].

From the definition of Qt (s,x0), the kth moment of the RT

follows immediately [27],

E
[

τ k
V (t)

∣

∣x0

]

= (−1)k
∂kQt (s,x0)

∂sk

∣

∣

∣

∣

s=0

. (10)

Applying this formula to Eq. (9) and using Faà di Bruno’s

formula for the nth derivative of the composition f [g(x)],

dn

dxn
f [g(x)] =

n
∑

j=1

f (j )[g(x)]Bn,j [g′(x), . . . ,g(n−j+1)(x)],

(11)

where Bn,j [x1, . . . ,xn−j+1] are the Bell’s polynomials, gives a

set of recursive partial differential equations for the moments

of the RT (to simplify the notation, the index x0 is removed

from the definition of the moments),

∂

∂t
E

[

τ n
V (t)

]

= D�x0
E

[

τ n
V (t)

]

+ n1V (x0)E
[

τ n−1
V (t)

]

+ β(ν1 − 1)E
[

τ n
V (t)

]

+ β

n
∑

j=2

νjBn,j

{

E[τV (t)], . . . ,E
[

τ
n−j+1

V (t)
]}

.

(12)

In Eq. (12), ν1 = d
dz

G[z]|
z=1

=
∑

i ipi is the mean number of

secondary particles per reproduction event, and the quantities

νj are the falling factorial moments of the number of

descendants per reproduction event,

νj =
djG[z]

dzj

∣

∣

∣

∣

z=1

=
∑

i

i(i − 1) . . . (i − j + 1)pi . (13)

This set of equations, Eqs. (12), for the moments of the RT

is linear since Bell’s polynomials are at most of order k − 1.

Therefore, all the nonlinearity arising from these polynomials

can be considered as a source term and Eqs. (12) can be solved

recursively. We will adopt this approach to obtain the MRT

and the variance of the RT for simple geometries in the next

paragraphs [38]. Recalling that the first few Bell’s polynomials

read

B1,1[x1] = x1 B2,1[x1,x2] = x2 B2,2[x1,x2] = x2
1 , (14)

the equations for the first two moments are

∂

∂t
E[τV (t)] = D�x0

E[τV (t)] + 1V (x0)

+ β(ν1 − 1)E[τV (t)]

∂

∂t
E

[

τ 2
V (t)

]

= D�x0
E

[

τ 2
V (t)

]

+ 21V (x0)E[τV (t)]

+ β(ν1 − 1)E
[

τ 2
V (t)

]

+ βν2(E[τV (t)])2.

(15)

The previous equations therefore generalize to branching

diffusion processes, the equations for the MRT and for the

second moment of the RT of a standard Brownian motion.

Remark that in the absence of branching mechanism (β = 0),

Eqs. (15) reduce, as expected, to those of the first two moments

of the RT for a standard Brownian motion [26].

A. Asymptotic behavior: the long time limit

In an infinite medium, the behavior of the branching

diffusion process at long times strongly depends on the

spatial dimension. More precisely, as t → ∞ the moments

of the RT diverge when the random walk is recurrent (which

appends for d � 2 in the case of pure Brownian motion).

Besides, for ν1 � 1 a pure Galton-Watson process goes to

extinction with probability 1. In this paragraph, we will assume

that d > 2 and ν1 � 1. In such cases, the limit τn(x0) =
limt→∞ E[τ n

V (t)] exists and ∂E[τ n
V (t)]/∂t → 0 as t → ∞.

Under such conditions, Eq. (12) becomes

D�x0
τn(x0) = − n1V (x0)τn−1(x0) + β(1 − ν1)τn(x0)

− β

n
∑

j=2

νjBn,j [τ1(x0), . . . ,τn−j+1(x0)],

(16)

which for the first two moments simplifies to

�x0
τ1(x0) = − 1V (x0)/D + k2τ1(x0),

�x0
τ2(x0) = − 21V (x0)τ1(x0)/D + k2τ2(x0)

− β2[τ1(x0)2, (17)

where we have set k2 ≡ β(1 − ν1)/D and β2 ≡ βν2/D.

We now illustrate our method by solving these equations

within a ball Bd of radius R (centered at the origin) for an

infinite observation time. In this case, solutions are amenable to

explicit expressions. To this end, we follow the route described

in Ref. [26] for a pure Brownian motion.

For spherical domains, only the radial part of the Laplacian,

�r =
d − 1

r

d

dr
+

d2

dr2
, (18)

where r = |x0| is the norm of the vector x0, contributes to the

solution. For the MRT, we thus have to solve the following
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equations:

�rτ1(r) = −1/D + k2τ1(r) for r < R
(19)

�rτ1(r) = k2τ1(r) for r > R,

with the appropriate boundary conditions.

(i) Continuity of the solution τ1(r) at r = R.

(ii) Continuity of the derivative dτ1(r)/dr at r = R. This

property comes from the structure of Eqs. (19): if dτ1(r)/dr

were not continuous at r = R (i.e., a jump occurs at this

distance), then the Laplacian would have a discontinuity

of higher order. However, the right-hand side of Eqs. (19)

contains only continuous functions. Consequently, dτ1(r)/dr

must be continuous at r = R.

(iii) Vanishing MRT when the particle starts infinitely

far away: τ1(r) → 0 as r → ∞. This property comes from

the original Brownian particle and remains valid for its

descendants since they are also born infinitely far away.

(iv) The derivative dτ1(r)/dr → 0 at r = 0. This last con-

dition comes from the following point: consider an arbitrary

direction �u(r) = �r/r . From the spherical shape of the domain,

τ1(r) is an even function along this direction and therefore

its derivative is an odd function. Furthermore, dτ1(r)/dr is

continuous (from the second condition). These two properties

imply that limr→0 dτ1(r)/dr = 0.

Contrary to the first three conditions the last one depends on

the shape of the domain and is valid for spherical symmetric

geometries only.

The previous arguments can be extended to all τn(r) since

the right-hand side of Eqs. (16) is a combination of continuous

functions.

In three dimensions, the solution of Eqs. (19) with the four

boundary conditions previously enumerated is given by

τ1<(r) =
1

Dk2

[

1 − (1 + kR)e−kR sinh(kr)

kr

]

,

τ1>(r) =
1

Dk2
[kR cosh(kR) − sinh(kR)]

e−kr

kr
, (20)

where the subscript < denotes the solution for r � R and >

the solution for r � R. In another context, similar equations

to those of Eqs. (20) were reported in Refs. [28,29]. Putting

these solutions in Eqs. (17) allows us to obtain formally the

expressions for second moment of the RT. These analytical

solutions, quite cumbersome, are reported in Appendix A.

Figure 2 shows the behavior of the RT and that of the variance

for different set of parameters. In three-dimensional free space,

for subcritical system, one can observe that the branching

mechanism has a limited influence on the variance of the RT.

In the following, rather than working with the long exact

analytical expression, we look at the limit when β is small so

that the branching mechanism can be treated as a perturbation.

Under this approximation, the above expressions become

τ1<(r) ≃
3R2 − r2

6D
−

R3

3D
k + o(k2),

τ1>(r) ≃
R3

3Dr
−

R3

3D
k + o(k2). (21)

Note that the first terms in the right-hand side of Eqs. (21)

correspond to the MRT for Brownian particles without

0 1 2 3 4 5
r

0

0.2

0.4

0.6

0.8

τ
1
(r
),

σ
(r
)

FIG. 2. Three dimensions: Mean residence time and variance

inside a sphere of radius unity for different parameters ν2 with

D = 1/2 and β = 1/2. Each case has the same mean number of

descendants ν1 = 0.75. Black line, τ1(r); blue line, σ (r) with ν2 = 0;

red line, σ (r) with ν2 = 0.25. Whatever the starting point x0, the

branching mechanism has the effect of increasing the variance (as

expected), but its effect remains, however, relatively moderate.

branching [26]. Putting these expressions in Eq. (17) leads

to

τ2<(r) ≃
(5R2 − r2)2

60D2
−

(27R2 − 5r2)R3

45D2
k + o(k2),

τ2>(r) ≃
4R5

15D2r
−

2(5R + 6r)R5

45D2r
k + o(k2). (22)

Again, the first terms in the right-hand side of Eqs. (22)

correspond to the second moment of the RT for Brownian

particles without branching [26].

The development in small β shows that the second moment

of the RT and therefore the variance do not depend of ν2.

Thus, at first approximation, the fine structure of the branching

mechanism can be ignored and the branching diffusion process

behaves as a diffusion-absorption process [30].

B. Residence time of reflected branching diffusions

In the preceding paragraph we studied the RT of branching

diffusion in a infinite medium. However, the motion of

diffusing particles (neutrons, species) is often restricted by a

geometrical confinement. This geometrical constraint causes

significant changes of the transport [31] and affects the

clustering of particles as it was recently reported [32]. To

illustrate our method we consider a one-dimensional branching

diffusion process evolving in a segment � = [−R2,R2], with

reflecting boundary conditions at ±R2. We also consider

two “concentric” regions RI = [−R1,R1] and RII = [−R2, −
R1] ∪ [R1,R2] with R1 < R2 as shown on Fig. 3. Besides the

geometrical constraints, we assume that the mean number of

descendants ν1 < 1 so that the system is again subcritical. For

such a system, the extinction is certain [24] and all the moments

of the RT remain finite, even in the long time limit. Therefore,

the approach developed in the preceding paragraphs can be

safely applied to obtain recursively the moments of the RT. As

previously, our discussion is limited to the first two moments

of the RT. These moments are studied in both regions I and II.

For this one-dimensional system, in the long time limit, within
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FIG. 3. An example of realization of the one-dimensional branch-

ing diffusion process in the segment [−R2; R2] with reflecting

boundary conditions on the borders. Only paths between [−R1; R1]

contribute to the RT of Region I.

region I, Eqs. (17) become

d2τ1(x)

dx2
= −

1

D
×1[−R1,R1](x) + k2τ1(x),

d2τ2(x)

dx2
= −

2

D
×1[−R1,R1](x)τ1(x)

+ k2τ2(x) − β2[τ1(x)]2. (23)

Boundary conditions (i), (ii), and (iv) are unchanged. The

boundary condition (iii) at infinity is now replaced by a

Neumann reflective boundary condition dτ1(±R2)/dx = 0.

The same conditions hold for τ2(x). With such boundary

conditions, the unique solution of the differential system

Eq. (23) is given by

τ1RI
(x ∈ RI ) =

1

Dk2

{

1 −
sinh [k(R2 − R1)]

sinh(kR2)
cosh(kx)

}

(24)

τ1RI
(x ∈ RII ) =

1

Dk2

sinh(kR1)

sinh(kR2)
cosh[k(R2 − x)].

In the above equations, x ∈ RI indicates that the starting

position belong to the region I. The variance σRI
(x) =

τ2RI
(x) − τ1RI

(x)2 in the region RI , again rather lengthy, is left

in Appendix B. Figure 4 is a plot of the analytical solutions for

different set of parameters. Because of the confined geometry

and one-dimensionality of the system, the variance exhibits a

strong dependence on the branching mechanism. Indeed, the

variance increases considerably, even with a small number of

reproductive event.

Note that τ = τRI
(x) + τRII

(x), the total time spent by

the particle inside the reflecting domain, is independent of

the position of the particle. Moreover, it satisfies d2τ/dx2 =
−1/D + k2τ whose obvious solution τ = 1/Dk2 = 1/β(1 −
ν1) corresponds to the (trivial) mean lifetime (before absorp-

tion) of a particle in an infinite medium killed with a constant

absorption rate β(1 − ν1) per unit time. Expression of the MRT

in region II, τRII
(x) = 1/Dk2 − τRI

(x) follows immediately.

0 0.5 1 1.5 2
x

0

0.5

1

1.5

2

τ
1
(x
),

σ
(x
)

FIG. 4. Residence time of reflected branching diffusions: mean

and variance in the region I for different set of parameters ν2 with D =
1/2 and β = 5. Each case has the same mean number of descendants

ν1 = 0.75. Black line: τ1(x); Blue line: σ (x) with ν2 = 0; Red line:

σ (x) with ν2 = 0.25. Due to the branching mechanism, when ν2 �= 0,

the variance of the process increases drastically.

IV. AN ERGODIC PROPERTY

So far, we considered that the process began at a fixed

position x0. From now on, we assume that the position of

the initial particle is uniformly distributed in the volume

�, corresponding to the equilibrium distribution. The total

time spent τRI
in RI by the uniform normalized distribution

dx/(2R2) is given by

τRI
=

∫ R1

−R1

dx

2R2

τ1RI
(x ∈ RI ) +

∫ R2

R1

dx

2R2

τ1RI
(x ∈ RII )

+

∫ −R1

−R2

dx

2R2

τ1RI
(x ∈ RII ) =

R1

Dk2R2

= τ
2R1

2R2

.

(25)

The total time spent in RI is thus proportional to the MRT

in the whole domain multiplied by the ratio of the volume

of observation over the total volume, reflecting an ergodic-

like property. This rather intuitive property (as long as the

branching random walk is unbiased) is indeed very general

since it does not depend of the shape of the different volumes

and holds in any dimension. A simple proof is given by

considering a domain � ∈ R
n with reflective condition on

its boundary and a subdomain V ⊂ �. For such geometries,

the MRT in the subdomain V satisfies

�τV (r) = −1/D + k2τV (r) for r ∈ V,

�τV ′ (r) = k2τV ′ (r) for r ∈ V ′ = � \ V,

(26)

with boundary conditions between the two regions V and V ′,

τV (r)|
r∈∂V = τV ′ (r)|

r∈∂V ,
(27)

∇τV (r)|
r∈∂V = ∇τV ′ (r)|

r∈∂V ,

and with reflective boundary conditions on ∂�,

n(r) · ∇τ (r)|
r∈∂� = 0, (28)
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FIG. 5. Residence time of a particle inside a subvolume V ⊂
�. The whole domain � has reflecting boundary conditions on its

surface.

n(r) being the unit normal vector (pointing outward) to

the surface ∂� as shown on Fig. 5. For an initial uniform

distributed density normalized to unity dr/�, the total time

spent τV in V is given by

τV = ∈ τV

dr

�
τV (r) +

∫

V ′

dr

�
τV ′(r)

.

Replacing Eqs. (26) in the preceding expression and applying

the Gauss divergence theorem yields

τV =
V

�Dk2
+

1

�k2

[∫

∂V

∇τV (r) · ndS

+

∫

∂V ′

∇τV ′(r) · ndS

]

. (29)

The last integral splits into two parts,

∫

∂V ′

∇τV ′(r) · ndS = −

∫

∂V

∇τV ′(r) · ndS

+

∫

∂�

∇τV ′(r) · ndS. (30)

The minus sign arises since the normal vector at the frontier

between V ′ and V has an orientation opposite to that between

V and V ′. By condition Eq. (28) the last integral equals zero

and thanks to Eq. (27) the remaining integral cancels the first

one in Eq. (29).The MRT becomes

τV =
V

Dk2�
= τ

V

�
. (31)

As announced, the total time spent in a subvolume is

proportional to the time spent in the whole domain multiplied

by the ratio of the subdomain volume over the volume of

the domain, reflecting an ergodic-like property. Some similar

ergodic properties were also recently observed regarding the

total time spent and the number of collisions in a subdomain

for Pearson random walks in confined geometries [33,34].

V. CONCLUSION

Based on the Feynman-Kac formalism we derived the

residence time equation for a branching diffusion process with

an arbitrary number of descendants. Solving this nonlinear

equation established within Laplace space, and then reversing

it to obtain the density of probability of the residence time

is currently out of reach. Rather than searching the entire

distribution, we derived the equations for the moments, and

focused on the first two, namely, the mean residence time

and its variance. These equations are linear and can be

solved recursively, as in the pure Brownian case [26]. We

gave examples of analytical solutions for simple spherical

geometries showing the crucial role played by the branching

mechanism, in particular for reflected branching Brownian

motion in the subcritical regime. Furthermore, for subcritical

branching diffusion processes evolving in confined geometries

when the initial particles distribution is at equilibrium, we

showed that the system has an ergodic-like property once the

observation time is long enough to reach the extinction.

When the branching mechanism is reduced to a mere

absorption, the general approach presented allows us to study

diffusion-absorption processes when particles disappear at a

constant rate. A relevant phenomena for analyzing certain

diffusion reactions in solution, such as energy transfer and

fluorescence quenching [35].

The present approach may be also useful to investigate other

additive functionals of branching Brownian motion and the

residence time of branching particles diffusing in a potential.

APPENDIX A: VARIANCE OF THE RESIDENCE TIME IN THREE-DIMENSIONAL GEOMETRIES

In this Appendix we give the analytical expression of the variance of the RT inside a sphere of radius R in an infinite medium.

Hypothesis are those of Sec. III: the system is subcritical and the observation time goes to infinity (again the subscript < denotes

the solution for r � R and > that for r � R). Inserting Eqs. (20) in Eqs. (17) leads to the second moment of the RT from

which variances σ<(r) = τ2<(r) − τ1<(r)2 and σ>(r) = τ2>(r) − τ1>(r)2 follow immediately. Analytical results are obtained by

mathematica 9.0,

σ<(r) = −
e−6kR−4kr

4D2k6
{2(kR + 1)2e4k(R+r) − (kR + 1)2e2k(2R+r) − (kR + 1)2(e4kR+6kr ) + kr(kR + 1)e3k(R+r)

+ 4k2r2e6kR+4kr − kr(kR + 1)e3kR+5kr + kr(kR + 1)e5k(R+r)[2k(r − R) − 1] + kr(kR + 1)e5kR+3kr [2k(R + r) + 1]}

+
β2

8D2k7r
[(1 − kR)[2kR + e2kR(kR − 1) + 2]2 sinh(kr) Ei(−3kR)

+ e−k(3R+r)(8krek(3R+r) + 2(kR + 1){e2k(R+r)(−2kR + 2kr − 3) + e2kR[2k(R + r) + 3] − e2kr + 1}
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+ ekR(kR + 1)2{−e2kr [2 Ei(−kR) − Ei(kR) − 2 Ei(−kr) + Ei(−3kr) + Ei(kr)] + 2 Ei(−kR)

− Ei(kR) + Ei(−kr) − 2 Ei(kr) + Ei(3kr)})],

σ>(r) =
e−2kr

4D2k6r2
{kr[4e2kR(kR + 1)2 + kR + e4kR(3kR − 5) + 1]ek(r−3R) − 4[kR cosh(kR) − sinh(kR)]2}

+ β2

e−2kr

8D2k7r
((kR − 1)[2kR + e2kR(kR − 1) + 2]ekr Ei(−3kR) − (kR + 1)2[3 Ei(kR) − Ei(3kR)]ek(r−2R)

− 4ekr [e2kr Ei(−3kr) − Ei(−kr)][sinh(kR) − kR cosh(kR)]2 + 4ek(r−R)[(kR + 1)(2kR + 1)

− 2 sinh(2kR) + (kR − 1) cosh(2kR)] + ekr Ei(−kR){−2k2R2 − [kR(3kR + 2) + 3] sinh(2kR)

+ [kR(kR + 6) + 1] cosh(2kR) + 2}), (A1)

where Ei is the exponential integral function [36]. In the absence of reproductive event, i.e., when β2 = 0, the preceding equations

become much simpler and correspond to the important case of diffusion-absorption processes [30].

APPENDIX B: VARIANCE OF THE RT IN ONE-DIMENSIONAL CONFINED GEOMETRIES

With the technique briefly outlined in Appendix A, the variance in region I, σRI
(x) = τ2RI

(x) − τ1RI
(x)2, is obtained after

straightforward but lengthy calculations. The variance σRII
(x) = τ2RII

(x) − τ1RII
(x)2 in the region RII , not reported here, can be

obtained in the same way.

σRI
(x ∈ RI ) =

1

2D2k4
[2 + csch(kR2)(cosh(kx) sinh(k(R1 − R2){1 + 2kR1 coth(kR2) + csch(kR2) sinh[k(2R1 − R2)]}

− 2 cosh(kx)2 csch(kR2) sinh[k(R2 − R1)]2 − 2kx sinh[k(R1 − R2)] sinh(kx))]

+
βν2

6D3k6
[6 − csch(kR2) sinh[k(R1 − R2)]([−3 + cosh(2kx)] csch(kR2) sinh[k(R1 − R2)]

+ cosh(kx){−7 − 6kR1 coth(kR2) + csch(kR2) sinh[k(2R1 − R2)]} + 6kx sinh(kx))],

σRI
(x ∈ RII ) =

1

8D2k4
csch(kR2)2(−4 cosh[k(R1 − x)] + cosh[k(3R1 − x)] + 3 cosh[k(R1 + 2R2 − x)]

+ 3 cosh[k(R1 + x)] − 4 cosh[k(R1 − 2R2 + x)] + cosh[k(3R1 − 2R2 + x)]

− 8 cosh[k(R2 − x)]2 sinh(kR1)2 + 4kR1{sinh[k(R1 − x)] + sinh[k(R1 − 2R2 + x)]})

+
βν2

24D3k6
csch(kR2)2[6 cosh(2kR1) − 4 cosh[k(R1 − x)] − cosh[k(3R1 − x)] + 2 cosh[2k(R2 − x)]

− cosh[2k(R1 + R2 − x)] + 5 cosh[k(R1 + 2R2 − x)] − cosh[2k(R1 − R2 + x)] − 4 cosh[k(R1 − 2R2 + x)]

− cosh[k(3R1 − 2R2 + x)] + 5 cosh[k(R1 + x)] − 6(1 − 2kR1{sinh[k(R1 − x)] − sinh[k(R1 − 2R2 + x)]})].

(B1)

The variance involves only elementary functions. As in the three-dimensional case, in the absence of reproductive event, the

above equations simplify considerably and allow us to study diffusion-absorption processes [30].
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