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Abstract

A hidden Markov model method proposed earlier for passive acoustic leak
detection in sodium fast reactor systems has been improved to eliminate ad-hoc
setting of model parameters and allow smaller amounts of training data. The
method is based on training the hidden Markov model on known background
noise only and optimizing its free model parameters by a parametric study of
detection performance for synthetic noises superposed onto the same background
noise. Using recordings of background noise as well as from argon injection tests
performed at full power in the Phenix sodium fast reactor plant, it is estimated
that the resulting method will detect leak-like deviations from the background
noise with a detection delay of 3 seconds, a false alarm rate close to 10−8 and
at signal-to-noise ratio conditions at least corresponding to an additive signal
at -10 dB. The method is one-channel, i.e. using input from one single acoustic
sensor only.

Keywords: Sodium fast reactors, Acoustic leak detection, Fault detection
algorithms, Hidden Markov models

1. Introduction

Sodium fast reactors (SFRs) are fast reactor designs using liquid sodium as
coolant. As, almost without exception, all nuclear power plants use steam tur-
bines to drive the generator set, existing SFRs use or have used sodium heated
steam generators to transfer energy from the secondary to the tertiary circuit
[1]. Sodium heated steam generators however present an inherent risk in the
case of a leak between its two circuits. As sodium and water have a quite
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violent chemical reaction, releasing additional heat and corrosive reaction prod-
ucts, such a leak can damage other steam generator tubes nearby and create a
self-accelerating damage process [2]. The task of detecting leaks has therefore
always been important for SFR steam generator monitoring equipment, gen-
erally achieved through the use of chemical hydrogen detection systems with
relatively slow response [3]. Acoustic leak detection systems have been an inter-
esting alternative for a long time due to their much shorter response times and
relative simplicity but have never reached further than the experimental stage.
Some overviews of work on the topic can be found in [2] and [4].

Within the ASTRID project [5], the Commisariat a l’Énergie Atomique et
aux Énergies alternatives (CEA) is currently studying the option of using a
Brayton cycle energy conversion system for SFRs with nitrogen as tertiary fluid.
The steam generators would in this design be replaced by compact sodium-
nitrogen heat exchangers. Even if the risk of violent chemical reaction is thereby
excluded, hydrodynamic effects affecting both safety and performance of the
heat exchanger, as well as the risk of a gas leak over to the primary system still
motivate using a leak detection system as part of the continuous monitoring
equipment.

The noises of small leaks will be due to aeroacoustic jet noise, fluid-structure
interaction, sodium-water reaction (for the steam generator case) and the acous-
tic effects of bubble populations (absorption, scattering, diffusion and resonance)
[6], [7]. The relative importance of these effects will depend on the leak rate,
leak geometry, ambient conditions as well as the acoustic wave propagation path
from the leak position to the acoustic sensor. Furthermore, neither measure-
ment nor experimental simulation of realistic leak signals in a nuclear power
plant are assumed to be possible. These facts taken together motivates aiming
for a method that learns to recognize normal operation background noise and
detects any deviation from this known noise.

In this work we develop such a method, based on a hidden Markov model
concept proposed in [8]. The performance is assessed by applying it to recordings
from argon injection tests performed in the Phenix steam generator at full power.
Section 2 contains a description of these tests and the recording data. Section 3
describes the improved hidden Markov model detector method and how detector
performance is measured. The results, presented in section 4, starts with a short
discussion of what is actually detected in the Phenix recordings. Then, a study
of detector parametrizations is made, and the results of this study in detection of
synthetic testing signals superposed on the background noise are used to choose
a detector parametrization. A final demonstration is then made on the argon
injection data as well as on pure background noise. Detection delay, false alarm
rate and detectable additive SNR for the proposed method are all estimated.

Discussion of the method and our results as well as conclusions and some
ideas for future work are given in section 5 and 6.

2



Table 1: Studied recordings

Recording Recording Injection PAr [bar] fs [Hz]
no. length [s] length [s]

1 600.0 0.0 - 25600
2 300.0 20.0 7 51200
3 300.0 20.0 6 51200
4 300.0 20.0 5 51200
5 116.6 60.0 8 51200
6 300.0 60.0 8 51200

2. Experimental data

2.1. Argon injection tests at the Phenix SFR

In 2008 and 2009, a series of tests were carried out in the Phenix SFR plant
with the aim of studying feasability of a passive acoustic leak detection system
for the steam generators. During these tests, leaks were simulated by performing
argon injections in a sodium inlet line to the steam generator. Five acoustic
sensors of type ENDEVCO 7704 A were placed on sodium lines connected to
the steam generator according to figure 1.

During a first acoustic measurement campaign in late 2008, 600 s of normal
full-power background noise was recorded with a sampling rate of 25600 sam-
ples/s. Later, in May 2009, the actual recordings of argon injection tests were
made, for some reason at a doubled sampling rate. Several injections of various
durations and driving pressures were performed. In each test, the injection was
started about 35 s after the recording start, injection durations ranged from 5
to 60 s and the recording length was 300 s in most cases. Six of the resulting
recordings (including the pure background noise) have been made available by
the CEA for use in this article. Characteristics of the analyzed recordings are
shown in table 1 and the raw signals are shown in figure 2. Figure 3 shows
the corresponding time-frequency evolution up to the lower Nyquist frequency
of 12.8 kHz. For the signal on sensor 1, located closest to the injection point,
figure 4 shows power spectral density estimates of the signal for background
noise as well as for the 5 argon injection tests. The two 8 bar injections can
be distinguished towards the end of the sensor 1 signal in figure 2. The other
three injections are barely noticeable. Some impulsive behaviour is visible on
the signals of sensors 2-4 and at the end of the sensor 5 signal. From figures 3
and 4 it is clear that the injections lead both to acoustic emission and absorp-
tion. The injection effects seen in figure 3 also seem to be somewhat delayed for
each sensor, indicating that bubbles from the injection are detected as they are
transported by the circulating sodium. This effect was also noted in an internal
CEA document [9] and will be verified in some more detail in sections 4.1 and
4.4.
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Figure 1: Schematic view of the Phenix steam generator indicating approximate positions of
the five acoustic sensors and argon injection system used in the 2008-2009 tests.

4



Figure 2: Raw acoustic signals (acceleration) of all studied recordings with recording breaks
indicated by vertical lines and responses of sensors 1 to 5 displayed from top to bottom.
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Figure 3: Time-frequency evolution of all studied recordings on sensors 1 to 5, displayed
from top to bottom. (The common sampling rate and thereby the Nyquist frequency of all
recordings is limited by recording 1.)
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Figure 4: Power spectral density estimates of the recorded signal at sensor 1.

3. Detection method

3.1. Improved HMM detector

Hidden Markov models (HMMs) with Gaussian mixture models (GMMs)
as emission probabilitites have been widely used in various speech recognition
applications [10]. The actual data modeled for human speech is often so-called
mel frequency cepstrum coefficients, extracted from the measured audio signal in
a way that imitates the functioning of the human ear [11]. For our application,
i.e. fault detection in industrial acoustic noise signals, a new feature calculation
scheme based on the Welch PSD estimate [12] was presented in [8] along with
some basic HMM theory. A brief review of this scheme explicitly stating the
improvements that are new to this work will now be given.

We denote the PSD estimate of the time discrete signal x(tn) with X(fj),
where tn are the signal sampling times and fj are the frequency bands. The av-
erage PSD of a normal operation signal is denoted X0. We monitor the residual
XR from this model over sliding time windows of constant length tw, enumer-
ated by m and we propose a componentwise normalization of the residual, i.e.

XR(fj ,m) =
X(fj ,m)−X0(fj)

X0(fj)
(1)

Contrary to the normalization used in [8], this residual will not be indifferent
to pure multiplicative changes in the signal, but it can be assumed that such
changes can be identified by a parallell algorithm if needed.

In each time window, a vector of PSD component indices ordered by current
residual size is also created, i.e.

Jk(m) =
{
jk|XR(fjk ,m) > XR(fjk+1

,m)
}

(2)
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where the integer k enumerates its components. Based on XR(fj ,m) and Jk(m)
we now introduce a modified feature calculation scheme compared to the one of
[8], given by

F(m) = Fk(m) = Jk(m) + β log
∑
j

|XR(fj ,m)| , k = 1, ..., kmax (3)

The second term on the right represents the log of the total power deviation over
all studied frequencies while the first term, for each k, points out the frequency
band at which the PSD estimate is currently deviating the most, secondmost,
thirdmost et c from its average value on the training data. The first term takes
on discrete values from 1 to jmax. The second term, which takes on real number
values, is rescaled to cover approximately the same domain by calculating the
factor β according to

β =
jmax

2σXR
(4)

where
σ2
XR = E

[
(dXR(m)− µdXR

)2
]

(5)

and
dXR(m) = log

∑
j

|XR(fj ,m)| (6)

i.e. σXR represents the estimated standard deviation of the second term of
equation 3 over the training data.

The relative importance factor of the first and second term of the feature, β,
was in our previous work set by an ad-hoc trial and error procedure [8]. Since
we are aiming for a method to be licensed for safety related systems in nuclear
power plants, basing the method on well-defined and predictable procedures is of
utmost importance. The introduction of equation 4 in this respect represents an
important improvement of the scheme. Furthermore, the new normalization of
equation 1 has been introduced in order to allow considerably smaller amounts
of data in the training sequence while maintaining detector performance. In [8],
training periods of about one minute were needed for a signal sampled at 200
kS/s. Using the scheme presented here, training periods of 20 s are sufficient,
even on the signals with a sampling frequency of 25600 S/s, i.e. reduction by a
factor of 24 of the amount of training data needed.

We now remind the reader that the model parameters of an HMM are set by
applying a so-called training algorithm to an observed feature sequence F(m).
The training is done by local likelihood maximization using the Baum-Welch
algorithm [10]. When presented with a new feature sequence, it is then possible
to calculate a conditional probability that the observed sequence is generated
by the trained model by a recursive algorithm. In practice, the logarithm of this
conditional probability is used in order to avoid computation problems due to
small numbers [11]. I.e. after training a model λbg on acoustic normal operation
background noise, the following expression is used as a discriminant for fault
detection

dHMM (m) = log(P (F(m)|λbg)) (7)

8



In [8], the model quality was studied as a function of the HMM model pa-
rameters only by reapplying the trained models to testing data on the same
signal type. Here we will instead study the actual detection performance as a
function of both the free model, and the free feature scheme parameters. The
full set of studied parameters then becomes:

• The sliding window length tw

• The size of the feature vector, kmax

• The number of Gaussians in the GMM, G

• The number of states in the HMM, S

3.2. Detector performance measures

A standard way of assessing the performance of a discriminant for detection
is to calculate a receiver operating characteristic, or ROC, curve [14]. A common
scalar measure of the detection performance is the area under the ROC curve.
For detectors that have maximal area under the ROC curve, this measure can
not be used to distinguish their performance. We therefore also use a min-max
margin measure, similar to the one used in [13]. For discriminants d that are
designed to decrease at the onset of detection, this measure is defined by

mmd =
min d1

max d0
(8)

where d1 and d0 are the discriminant outputs in a known detection region and
a known normal background region, respectively.

4. Results

For recordings 2-6, the training period used for each sensor channel extended
from 5 to 20 seconds into the signal, for reasons that will be clear later. For
recording 1, a training period from 120 to 220 seconds was used. The average
background PSD estimate X0 and the feature sequence F(m) used for training
of HMMs was thus calculated on these periods.

4.1. Physical interpretation

It is instructive to study the nature of the acoustic signals by some basic
change measure before going on to testing of the more sensitive HMM method.
By listening to the actual recording from sensor 1 it was found that a tone-like
sound appears a few seconds before the response in the higher frequencies. The
proposed interpretation of this fact is that the injection itself creates a fairly
weak low-frequency whistle and then the argon bubbles, a little later, create a
high-frequency ”trickle” noise as well as acoustic absorption as they reach the
acoustic sensor position.
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Figure 5: Upper panel: Low (solid line) and high (dashed line) frequency discriminants applied
to sensor 1, recordings 2-6. Lower panel: Zoom on recordings 5 and 6.

As a simple demonstration, the discriminant defined by equation 6 was cal-
culated for low (0 - 2 kHz) and high (21 - 26.5 kHz) frequencies on recordings
2-6 from sensor 1. The resulting log power deviations are shown in figure 5. We
found that the response of the low-frequency discriminant appears 5-7 seconds
before the high-frequency discriminant.

Next, the high-frequency deviation discriminants of recording 2 are shown
for all sensors in figure 6. Here, it can be seen that the response is somewhat
delayed for each sensor, and extended for sensors 2-5, corresponding to a hy-
pothesis of argon bubbles traveling trough the steam generator and spreading
out. The delays are larger from sensor 1 to 2 as well as from sensor 4 to 5. This
corresponds well to the positioning of the sensors and the piping configuration
(c.f. figure 1) where the bubbles pass through the longer S-shaped tubes only
between sensors 1 and 2 and sensors 4 and 5. From sensor 2, at the reheater
sodium outlet, to sensor 4 at the evaporator inlet, the bubbles travel through
shorter piping, bypassing the superheater S-tubes.

The secondary sodium inventory of the Phenix plant was about 140000 kg
per loop and the secondary sodium flowrate was about 800 kg/s. From these
values, a sodium circulation period time for the secondary circuit of about 175 s
is found. It is however reasonable to assume that some of the secondary sodium
remained stationary in a storage tank and did not circulate, thus leading to a
shorter period time. The fluctuations seen in the response of the first sensor
about 150 s after injection start in figure 6 can therefore probably be attributed
to argon bubbles returning after completing one lap in the secondary circuit.
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Figure 6: High frequency energy deviation discriminant applied to sensors 1-5, recording 2.
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Table 2: Studied parameters

Parameter Range Unit

tw 800, 1024, 1280, 1600, 2560, 3200 [samples]
S 1,2,3,4 [-]
kmax 1,2,3,4 [-]
G 1,2,3,4 [-]

4.2. Parameter study on synthetic test signals

The parameters studied are listed in table 2. The values for the sliding
window length are defined by numbers yielding an integer number of windows
on one second of data (at the lower sampling rate of 25.6 kHz). The cases having
S = 1 represent pure GMMs, i.e. they lack time evolution modeling and are
technically not hidden Markov models.

If the best detector would have to be found by a parametric study on injection
noise data similar to recordings 2-6, the method would not be independent of
such data. Instead, an approach where synthetic testing signals are superposed
onto the normal background noise will be used here, i.e.

x(t1, ..., t2) = xbg(t1, ..., t2) + Cxtest (9)

where C is a constant factor and the testing sigal duration t2 − t1 was chosen
to be 100 seconds. The first testing signal was a white Gaussian noise and the
second one was a stationary signal with stochastic phase, created from a PSD
of the background noise, using the same method as in [13]. The latter case is in
some respect limiting, as it corresponds to detection of a stationary noise which
has maximal resemblance to the background. For signals superposed in this
way, an advantage is that the resulting signal-to-noise ratio can be controlled
by the factor C and straightforwardly calculated from the definition

SNR = 10 log10

Ptest

Pbg
(10)

where Ptest and Pbg are the signal powers of Cxtest and xbg respectively. A
measure of the signal power is obtained by summing the PSD components up
to the Nyquist frequency.

Putting ourselves in the position of having to parametrize the detector with-
out acces to injection test data we now demonstrate how this can be done using
only the synthetic testing signals and a simplistic parameter study. During this
study, the background-like noise was added at SNR = −2 dB and the white
Gaussian noise at SNR = −28 dB. The min-max distance is shown as function
of time window length in figure 7. A local maximum is present at 2560 samples.
Now restricting ourselves to parametrizations with tw = 2560 and S > 1, the
min-max distance is shown as function of kmax in figure 8. The performance
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Figure 7: Min-max distance of synthetic testing signals versus tw.

Figure 8: Min-max distance of synthetic testing signals versus of kmax for tw = 2560.

can be seen to be split into two groups, corresponding to the two testing sig-
nals. For kmax values larger than 1 there is no clear trend, but the performance
seems to deteriorate at kmax = 4, so we choose kmax = 2 to promote smaller
models. Finally, the performance as function of G and S is shown in figure 9.
Larger models are seen to give slightly higher min-max distance. In a future
application, more testing signals could be studied and a more sophisticated ap-
proach based on the response surface could be used to pick the parametrization
with optimal performance. As the amount of training data was in some cases
slightly too small for the larger values of G and the spread in performance seem
to increase at S = 4, we here chose tw = 2560, kmax = 2 G = 3 and S = 3 as
the final parametrization. Since tw = 2560 yields 10 sliding windows per second
at 25600 samples per second, we will denote this model by HMM10233.
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Figure 9: Min-max distance of synthetic testing signals versus G and S for tw = 2560 and
kmax = 2.
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Figure 10: Min-max distance as function of additive SNR for WGN (triangles), 8 bar argon
injection (diamonds) and background-like noise (squares).

4.3. Detectable SNR studies

In another study, the detectable SNR for the HMM10233 was studied, defin-
ing ”detectable” as cases having a min-max distance larger than 1, i.e max-
imal area under the ROC. When analyzing the synthetic testing signals, the
detectable signal power was found by gradually decreasing the superposition
factor C of equation 9 and thereby also the SNR as calculated by equation 10.
For the 8 bar argon injection signals, a changed SNR was first estimated on the
raw signal according to

SNR∆ = 10 log10

P∆

P0
(11)

where
P∆ =

∑
|X1 −X0| and P0 =

∑
X0 (12)

where X0 and X1 are the average PSD estimates in the background and the
injection region of the signal respectively. By this method it was found that
SNR∆ ≈ −1.1 dB for the 8 bar injections. The detection performance at lower
SNRs was then investigated by superposing additional stationary background
noise onto the injection signal, as was done also in a study on injection test
recordings from the PFR [13]. The resulting min-max distances as function of
SNR are shown in figure 10. It is evident that the detectability is extremely de-
pendent on the relative PSD shapes of background and the noise to be detected,
a fact that was noted and demonstrated also in [15]. Also, the background noise
adding procedure used above gradually masks non-stationary fluctuations and
creates a more stationary background which is deteriorating HMM detector per-
formance for the 8 bar injection signals. We still found that these signals were
detected also for a background noise that was increased by an additional 9 dB
stationary noise. Taking into account the SNR∆ this would correspond to an
additive SNR of about -10 dB.
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4.4. Detector demonstration

The HMM10233 detector was first tested on the pure background noise sig-
nals from recording 1. The responses (log conditional probabilities) on all sen-
sors are shown in figure 11. To set a detection threshold, the following procedure
was applied: As the output represents probabilities, it was fitted to a beta dis-
tribution. To be able to do so for these extremely small values, expressed on
logarithmic scale, the following scaling relation was used, denoting the HMM
log conditional probability output by dHMM (m)

D(m) = K ∗ edHMM (m) (13)

where K was a large constant. Then, the scaled output D(m) was fitted to a
beta distribution and a threshold corresponding to a false alarm rate of 10−8

was found by inspection of the cumulative distribution function. The obtained
threshold was then inverse scaled back to the output region of dHMM (m). The
same was done on all five sensor channels. The typical output level of dHMM (m)
was around -150 for all channels when applied to a raw signal with Nyquist fre-
quency of 12.8 kHz. The constant K was set to 1054 and the resulting thresholds
ranged from -307 to -316, indicating robustness of the approach.

Due to impulsive events in the background noise, in total 5 false alarms on the
5 ∗ 500 = 2500 discriminant samples outside the training region were observed,
corresponding to a false alarm rate of about 0.002. As none of these false
alarms lasted longer than 1 second; it would probably be possible to decrease
the false alarm rate on the Phenix steam generator background noise to a value
much closer to the value of 10−8 obtained from the -316 threshold on the beta
distribution fit.

The HMM10233 was then applied to the signal from sensor 1 for frequencies
up to 12.8 kHz, using a threshold of -316, as found to be the minimum in
the background noise study. The resulting discriminant is shown in figure 12.
Noise changes which were judged to be due to argon bubbles circulating in the
secondary circuit are detected abundantly after the first injection.

The HMM10233 was finally applied to the full injection test recordings (2-6)
for all sensors and using full frequency data up to a Nyquist frequency of 25.6
kHz, resulting in the responses shown in figure 13.

5. Discussion

It is of importance to note that neither the ratio of driving argon pressure
to the ambient pressure in the sodium line, nor the injector size were in these
tests representative for a small leak. It has been demonstrated that apart from
a low frequency whistle, the proposed acoustic anomaly detector here basically
works as a bubble detector. A realistic small leak (around 1 g/s) would occur
through a smaller orifice and with a higher pressure ratio since the secondary
side of a steam generator is pressurized at 34-165 bar [1]. The aeroacoustic noise
from such a leak will therefore be higher, both in terms of frequency and power,
than the injections performed here [16], while the volume of bubbles produced
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Figure 11: HMM discriminants on recording 1 (having a Nyquist frequency of 12.8 kHz). The
HMM training region is indicated by a rectangle. The threshold was set by fitting a scaled
version of dHMM outside the training region to a beta distribution and requiring a theoretical
false alarm rate of 10−8
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Figure 12: HMM discriminant on recordings 2-6 for sensor 1, using a downsampled raw signal
with Nyquist frequency 12.8 kHz in order to be comparable to the background noise study.

will be smaller. Since the high detectability in terms of SNR of the gaussian
white noise signal studied here is thanks to significant content in the higher
frequency region where plant noise is relatively low, one could assume that real
leaks would be detected with performance closer to this testing signal.

For the sodium-nitrogen heat exchanger developed by the CEA, the allowed
detection delay can be extended to around one minute [5], thus making it likely
that the proposed method will be sufficient for this application. In this case,
using argon as a proxy for real nitrogen leaks is probably justifiable as both gases
do not react chemically with sodium. For any unbuilt reactor system however,
methods for reliable estimation of the acoustic SNR conditions of a small leak
are however lacking. Also, if the detection system is required to function during
operating point changes and transients, further development is also necessary.
As the HMM concept is originally developed for classification of several different
noise sequences (such as different words in speech recognition), it should be well
suited also for this task but the resulting anomaly detection performance is not
evident.

The procedure of parametrizing the detector used here (one parameter at a
time) is rudimentary. The aim is to show that it can be done, using only back-
ground noise and relatively basic testing signals, and still arrive at a detector
that performs well on real injection data. As stated in section 4.2 the procedure
could be improved by using more testing signals and a responce surface method
to find an optimal model. The parameter study is however time-consuming (on
the order of several hours on the laptop computer used in this work) but in a real
plant, it is reasonable to assume it needs to be performed only at first start-up.
Re-training of the detector might have to be performed more often but should
only take one or two minutes based on the computation times observed here.
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Figure 13: HMM discriminants on recordings 2-6 using the full raw signals with Nyquist
frequency of 25.6 kHz.
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6. Conclusions

A hidden Markov model method proposed earlier for passive acoustic leak
detection in sodium fast reactor systems has been improved to eliminate ad-hoc
setting of parameters and allow smaller amounts of training data. The improved
method is verified to work well in a full power noise environment recorded during
argon injection tests in the Phenix plant. The method is based on training a
model on known background noise, i.e. without any assumptions on possible
leak noise, and the free parameters of the model are set by a parametric study
of detection performance for synthetic noises superposed on pure background
noise.

The false alarm rate is governed not only by the detection method used,
but also by the noise of the plant. For the 5x10 minutes of pure background
noise studied here, the only sources of false alarms were impulsive events lasting
about one second. By assuming an allowed detection delay of e.g. 3 seconds, it
was thereby estimated that a false alarm rate close to the theoretical value of
10−8, can be achieved on a single sensor channel. Regarding the minimum signal
to noise ratio for detection, it has been shown that the 8 bar injection signals
can be detected at conditions corresponding to an additive SNR of at least -10
dB. These results seem reasonable compared to the conclusions of [13], and [8]
which were not based on realistic background noise and where the former work
suffered from a lack of data preventing a credible false alarm rate estimation.

Possible ways of improving passive acoustic detector performance further
would be to specifically monitor high-frequency regions where background noise
can be expected to be relatively low (if leak noise can be expected in this re-
gion). Multi-sensor methods using adaptive filtering and/or spatial focalisation
techniques such as beamforming also represent possibilities for further improve-
ment.

In order to increase the maturity of this research field further, it is also of
interest to study methods for estimating SNR conditions of leaks in a given
system and to develop detection methods that will work also during operating
point changes. Finally, even if the method proposed here is independent on
knowledge on possible leak noise, such knowledge will remain of large interest
to motivate monitoring of particular frequency regions and thereby increase
performance further if needed.

7. Acknowledgments

This study was performed within the framework of an ongoing collaboration
project between KTH and CEA on the instrumentation and safety of sodium
cooled reactors, supported by the Swedish Research Council, grant number
B0774801.

20



8. References

[1] International Atomic Energy Agency, Liquid metal reactors: Experience in
design and operation, IAEA-TECDOC-1569, International Atomic Energy
Agency, 2007

[2] International Atomic Energy Agency, Acoustic signal processing for the
detection of sodium boiling or sodium-water reaction in LMFRs, IAEA-
TECDOC-946, International Atomic Energy Agency, 1997

[3] J.P. Jeannot, T. Gnanasekaran, C. Latge, R. Sridharan, L. Martin, R.
Ganesan, J.M. Augem, JL. Courouau and G. Gobillot, In-sodium hydro-
gen detection in the Phenix fast reactor steam generator: A comparison
between two detection methods, ANIMMA International Conference, Mar-
seille, France, 7-10 June 2009

[4] N. Matta, Y. Vandenboomgaerde and J. Arlat, Supervision and Safety of
Complex Systems, ISTE Ltd and John Wiley & sons Inc., ISBN: 978-1-
84821-413-2 , 2012

[5] J.L. Perrin, Projet ASTRID. Cahier des Charges Fonctionnel du Réacteur
ASTRID, CEA/DEN/CAD/DER/CPA AST2 AST NT CPA 024 - Indice
4, 2014

[6] V.S. Yughay, R.F. Masagutov and F.A. Kozlov, Acoustic effects from water
leaking into sodium, Atomnaya Energiya, Vol. 54, No. 3, pp. 170-173, 1983

[7] S. Hur, D.H. Kim, S.H. Seong and S.O. Kim, Measurement strategy of
the water leakage into a low pressure sodium boundary for a liquid metal
reactor, Key Engineering Materials, Vol. 270-273, pp. 518-524, 2004

[8] A.R. Marklund, S. Kishore, V. Prakash, K.K. Rajan and F. Michel, Passive
Acoustic Leak Detection for Sodium Cooled Fast Reactors Using Hidden
Markov Models, IEEE Transactions on Nuclear Science, Published online
February 19th, 2016
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