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Functional Weibull-based models of steel
fracture toughness for structural risk
analysis: estimation and selection

Nadia Pérota, Nicolas Bousquetb

Summary: A key input component of numerous reliability studies of industrial components or structures,
steel fracture toughness is usually considered as a random process because of its natural variability. Moreover,
toughness presents a high sensitivity to temperature which also plays a fundamental role, as an environmental
forcing, in such studies. Therefore a particular attention has to be paid to the assessment of its stochastic
functional modelling, by means of a statistical analysis of indirect measures that suffer from heterogeneity
and censoring. While a Weibull shape arising from statistical physics is recognized as the most relevant
approach to represent local variability, the selection of best functional parameters (function of temperature)
requires an accurate estimation and testing methodology. Its development is motivated by several limitations
of the common statistical practices in the field of fracture toughness, which are related to data treatment
and model selection. Illustrated by the exploration of a database feed by several European manufacturers or
exploiters, this article establishes the main steps of such a methodology, implemented in a dedicated software
tool.

Keywords: Weibull, Master Curve, Censoring, Genetic algorithm, Thickness correction, Model selection,
fracture toughness, reliability

1. INTRODUCTION

Structural risk analysis (SRA) plays a key role in the management of passive and costly1

industrial components, especially those belonging to power production vessels or other2

pressurized systems for which safety must be guaranteed in critical situations. Such situations3

typically occur when a corrective action is performed that results in high-level stresses for4

the structure. For instance, Pressurized Water Reactor vessels must be cooled down by5

safety injections while still under pressure ; the injection of cold water causes a thermal6

shock transient which can weaken the integrity of the component [13]. SRA methodologies7

are mostly based on the simulation of degradation processes that have not been observed in8

reality or can not be reproduced in laboratory [25]. Roughly speaking, simulation models put9

loads L (including controllable actions) into competition with capacities R, and situations10

for which L ≥ R are defined as failures [14].11
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Amongst capacities the case of material fracture toughness is of major interest, since12

this property traduces the capability of the material to resist to pre-initiated crack13

propagation [19]. According to the weakest link (WL) physical theory [18], pre-initiated14

cracks correspond to heterogeneities within the crystal lattice of the material, and often15

arises from manufacturing defects. Such heterogeneities appear randomly, which is traduced16

by a natural variability of the fracture toughness (see Figure 1 for an illustration) and17

its modelling as a random variable in the dedicated literature [32]. Consequently, L−R18

is randomized and a crucial reliability indicator is the probability P (L > R) of a failure19

event. Numerous SRA methods deal with the computation of this probability, based on20

numerical exploration of the simulation model [34]. Steel being one of the most used21

materials in industry, the high sensitivity of its fracture toughness to temperature variations22

is representative of the statistical modelling difficulties encountered by reliability engineers23

[11]. Predicting how the toughness increases with temperature, from a brittle to a ductile24

nature, and summarizing this transition by a representative temperature [6], are two key25

issues of detailed SRA studies [38].26

27

[Figure 1 about here.]28

According to the WL theory, the brittle fracture toughness KIC is explained at low29

temperature T by a functional Weibull model, popularized by [42] for a wide range of30

ferritic steels, and established as a US norm [2] under the so-called Master Curve (MC)31

denomination:32

P (KIC(T ) < x) = 1− exp

{
−
(

x−Kmin

K0(T )−Kmin

)α}
(1)

with shape parameter α = 4, location parameter (or brittle stage) Kmin = 20 MPa.m1/2 and33

with functional form34

K0(T )−Kmin = b1 + b2 exp(−b3 · T ). (2)

The estimation of the parameter vector θ = (b1, b2, b3) ∈ R+
∗ is conducted (usually using35

maximum likelihood techniques [46]) from fracture toughness observations produced from36

destructive tests on small-size specimen [7], that requires a so-called thickness correction to37

homogenize the corresponding observations. However, in the common assessment practices38

[23, 29, 37], several limitations of the MC model and methodological lacks interfere with39

an accurate use of statistical modelling, especially about the prediction of the brittle stage40

Kmin, which must be not overestimated as it resumes the minimal resistance to cold shocks.41

1. The MC model and the value α = 4 are relevant based on an assumption on the42

plasticity of cracks priming [43] and chemical homogeneity, which are not fully ensured43

in the case of welded components, and within all temperature ranges corresponding44

to experimental conditions. Consequently, the MC model threatens to be too rigid to45

explain the variability of observations, especially when the latter comes from various46

experiments conducted on specimen of close material grades by different laboratories.47

Despite several adaptations of methodologies of toughness quantification based on the48
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MC model (see for instance [47]), this lack of flexibility was still noticed by [22], from a49

modelling work guided by the EURO database originally used by [44], that aggregates50

steels from various European manufacturers. Alternatively, a recent competitor of the51

MC methodology, the Unified Curve method [27], offers a possible variation of the curve52

shape when the degree of embrittlement increases, but was criticized by [45] for its lack53

of universality. Adopting a universal encompassing approach, [22] provided a first answer54

to the issue of versatility by adding α to the vector θ of free parameters and proposing a55

statistical assessment based on maximum likelihood estimation (MLE). However, these56

authors missed the fact that adding this supplementary degree of freedom forbids to57

agglomerate heterogeneous observations directly using the specimen thickness correction58

proposed in the MC methodology, a key ingredient of the latter.59

2. Experimental data, consisting in a transformation of priming measures on precracked60

test samples, present several degrees of validity fixed by norms [4, 20]. Especially, some61

of them correspond to limit (quasi-valid) cases when the level of energy used for the62

destructive test is too low or too high . Being currently rejected in the assessment63

methodologies of the MC model, these observations still yield relevant statistical64

censoring information, and should be used in the assessment of any toughness model.65

Therefore the aim of this article is to provide a general methodology of statistical fracture66

toughness models based on functional Weibull forms, feed by heterogeneous databases, that:67

a) encompasses the MC methods using richer statistical models; b) solves the coherency68

problem raised by thickness correction when using such models; c) allow to incorporate the69

majority of experimental data and: d) provide adapted tools to model selection previous to70

the computation of functions of interest, as a brittle rupture reference temperature.71

72

More precisely, the article is written as follows. Section 2 is dedicated to a brief presentation73

of the experimental context, a short reminder of the MC methodology and the proposed74

statistical methodology itself. It includes a data modelling step and the choice of appropriate75

functional forms {α(T ), Kmin(T ), K0(T )} generalizing (1). The appropriate prior selection76

and statistical assessment of a class of toughness models, through the development of a77

specific genetic algorithm, is considered in Section 3. Section 4 describes the most adapted78

statistical methods for comparing the assessed models. The methodology is then applied79

to simulated and observed datasets, by means of the WOLF3 software [31]. Finally, main80

results, remaining issues and future research avenues are summarized and discussed in a81

dedicated section.82

2. STATISTICAL MODELLING OF FRACTURE TOUGHNESS DATA

The realization of a fracture toughness random variable KIC = Ki,T at a given temperature
T can be produced by destructive experiments based on a mechanical stress imposed on
a pre-cracked specimen [47, 46]. The major feature of a specimen i is its thickness Bi,T ,
which typically evolves between 25 mm and 100 mm. Toughness is determined for a reference
thickness B0 (25 mm according to the ASTM norm [5]) and is assumed to follow, according to
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the WL theory, the three-parameter Weibull distribution (1). The heterogeneity of specimen
thicknesses can be discarded using the scale invariance property of the (reduced) two-
parameter Weibull distribution, by the following transformation of the original samples:

K ′i,T = Kmin + (Ki,T −Kmin)×
(
Bi,T

B0

) 1
α

, (3)

provided (α,Kmin) are known. The first step of the MC methodology [35], assuming α = 4
and Kmin = 20 MPa.m1/2 is to produce this transformed sample. The estimation of {b1, b2, b3}
follows. However, assuming an encompassing statistical framework for the MC model requires
that {α,Kmin} should be estimated in parallel to {b1, b2, b3}. While several authors (as [22])
prefer to make this correction before estimation, a more appropriate and fair estimation of
θ = {α,Kmin, b1, b2, b3} should be based on maximizing the statistical likelihood defined, for
one original data ki,T , by

fKIC (ki,T ) =

(
α

(K0 −Kmin)(T )

)
×

 ki,T −Kmin(T )
(K0 −Kmin)(T )

×
(
Bi,T

B0

) 1
α
(α− 1)

× exp

−
 ki,T −Kmin(T )

(K0 −Kmin)(T )
×
(
Bi,T

B0

) 1
α
α
.

(4)

The measurements generally considered as correct [20] are those referred to as KIC ,83

obtained by the procedure specified in ASTM E399-90, and the indirect KJC elasto-plastic84

energy measurements which attempt to mitigate non-compliance with the linear constraints85

required by the mechanical theory (applied for obtaining KIC to be valid).86

87

In addition, empirical data can be obtained for different sample sizes and test temperatures88

which correspond to limit values (upper or lower bounds) for a missing toughness observation89

according to the classification by [20]. Such data can typically correspond to experiments90

conducted in the ductile range, without complete cracking, or, alternatively, by experiments91

“leading to large-scale yielding, exceeding the specimen’s measuring capacity limit” [46].92

Such data yield censoring information that is statistically relevant [3]. Most data referred to93

as KCM , KCPM and KMAX in international nomenclatures [46, 51, 33] originate from quasi-94

valid experiments and may be considered as minimum limits (right-censored) for a missing95

toughness value. The likelihood contribution of a kcm,i,T (or kjc−lim,i,T , etc.) value is then96

P (KIC > kcm,i,T ) = exp

−
kcm,i,T −Kmin(T ))

(K0 −Kmin)(T )
×
(
Bi,T

B0

) 1
α
α
. (5)

Conversely, other data referred as KJC−lim correspond to going beyond the range of relevance97
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of toughness measurements and constitute upper limits (left-censored) for the expected98

toughness value. The statistical likelihood term of such a value obtained with a test specimen99

of thickness Bi,T at a test temperature of T is then100

P (KIC < kjc−lim,i,T ) = 1− exp

−
kjc−lim,i,T −Kmin(T ))

(K0 −Kmin)(T )
×
(
Bi,T

B0

) 1
α
α
. (6)

Incorporating both the thickness correction and the addition of censored values in the101

toughness statistical assessment is, by itself, an innovation in the field of fracture mechanics.102

Furthermore, more versatility can be given to the statistical model by considering several103

possible functional forms for the unknown parameter vector θ in function of T : apart from104

being constant, each component θk can be described as an increasing function of T (respecting105

the typical banana shape of toughness distribution, as in Figure 1). With (ak, bk, ck) ∈ R+
∗ ,106

the selected functions are:107

1. linear: θk = ak + bk × T ;108

2. quadratic: θk = ak + bkT + ckT
2;109

3. exponential: θk = ak exp(bkT );110

4. shifted exponential: θk = ak + bk × exp(ckT ).111

Next section is dedicated to the prior selection of these functional models, for each dimension112

θk, then the overall fitting of the prior selected models using the likelihood maximum113

principle. Once the estimations conducted, a phase of posterior model selection is required114

to select the best candidate. This will be considered in Section 4.115

3. PRIOR MODELS CLASS SELECTION AND STATISTICAL
ASSESSMENT

The functional forms described above generate a wide range of possible encompassing116

statistical models that should be restrained before conducting parallel assessments. Only the117

most appropriate forms a priori must compete to explain the observations then be selected118

by statistical methods. Therefore a first step of the methodology, fully implemented within119

the WOLF3 software [31, 30], is to select these appropriate forms, using local estimation120

principles. Then an overall fitting is conducted. It should be noticed that, while the censored121

observations carry information to this second task, they are not used for the first one, since122

they cannot help to discriminate between forms unlike toughness data considered as correct.123

3.1. Selection of appropriate functional models by local estimation124

When toughness values are highly dispersed in relation to temperature, Weibull parameters125

must be estimated over a reduced temperature range and estimation must be conducted in126

relation to the reference temperature for this range. This reference temperature is either the127

mean temperature or the median temperature. In order to process the entire temperature128
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range of the database, two types of toughness data sub-sampling are carried out, based129

on a subdivision of the temperature range such that each sub-sample of data corresponds130

to the associated data in a sub-range of temperature: sequential sub-sampling and sliding131

sub-sampling. Weibull parameters are then estimated for each sub-sample. With the local132

estimates obtained, a functional temperature model can then be selected for each component133

of θ.134

135

Sequential sup-sampling involves subdividing the temperature range IT of the database136

into N separate consecutive sub-ranges(Ii)i=1,...,n with the same thermal amplitude ∆T .137

Alternatively, sliding sub-sampling involves subdividing the temperature range IT of the138

database into N consecutive sub-ranges ∆T . We then have to build an initial temperature139

range I1 starting with the lowest temperature T1 of the temperature range up to temperature140

T1 + ∆T and the next sub-range I2 is obtained by sliding the sub-range I1 by a shift of dT .141

Accordingly, I2 = [T1 + dT, T1 + dT + ∆T ]. This operation is repeated until the sub-range142

In reaches the maximum temperature of IT .143

144

Local estimations follow. For a fixed T , Weibull parameters α,Kmin and K0 −Kmin are145

estimated for each of the ND sub-ranges obtained by sequential or sliding sub-sampling. The146

following methods are considered, that take into account the thickness for each toughness147

value.148

1. The moment method: for all α (shape parameter) varying in the interval [a; b] with a149

step h, the estimation of K0 −Kmin and Kmin is conducted by the method of moments150

[12]. Only the triplets (α, (K0 −Kmin)∗, K∗min) having a physical sense are retained;151

2. The maximum likelihood method consists in searching the values of the parameters152

that maximize the likelihood function, for the three-parameter Weibull distribution:153

following Smith and Lawless’ advice [39, 24] for all Kmin (position parameter) varying154

in the interval [a; b] with a step h, the estimation of the parameters α and K0 −Kmin155

is conducted by the maximum likelihood method. The triplet (α̃, (K0 −Kmin)∗, K∗min)156

which maximizes the complete likelihood is selected;157

3. A hybrid method for the Weibull distribution which combines the previous ones: the158

Kmin parameter is estimated by the moment method and then others are estimated by159

the maximum likelihood method.160

The moment and maximum likelihood methods produce several triplet solutions which are161

hierarchized using Cramer-Von Mises, Kolmogorov-Smirnov and Anderson-Darling criteria162

[40]. In each test, the triplet minimizing the associated statistical value is selected. Finally,163

ND local estimates (α∗, (K0 −Kmin)∗, K∗min)i=1,...,ND are obtained, where ND is the number164

of sub-samples. These samples allows for a graphical evaluation of the relevance of functional165

forms described in previous section, as well as fitting using usual least-square techniques.166
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3.2. Maximum likelihood overall estimation167

This second step consists in calculating the best functional estimates (α∗(T ), (K0 −168

Kmin)∗(T ), K∗min(T )) by maximizing the overall likelihood defined as169

LKmin,α,(K0−Kmin)(k) = L1(Kmin, α, (K0 −Kmin))(k1C)

× L2(Kmin, α, (K0 −Kmin))(kr)

× L3(Kmin, α, (K0 −Kmin))(kl),

where k = {k1C,kr,kl} denotes all data produced by experiments, k1C being the regular170

toughness data while kr (resp. kl) are the right-censored (resp. left-censored) observations.171

Assuming the independence of measurements, the corresponding likelihoods L1, L2 and172

L3 are products of terms described in Section 2. Replacing α, (K0 −Kmin) and Kmin in173

LKmin,α,(K0−Kmin)(k) by functionals α(T ), (K0 −Kmin)(T ) and Kmin(T ) parametrized by174

(ai, bj, cl)i∈I,j∈J,l∈L, the optimisation problem becomes to estimate175

(ai, bj, cl)
∗
i,j,l = arg max logLKmin(T ),α(T ),(K0−Kmin)(T )(k) (7)

under the constraints

α(T ) > 2 ∀T,
(K0 −Kmin)(T ) > 0 ∀T,

0 < Kmin(T ) < min
(i,T )∈k1C

k(i,T ).

Genetic algorithms [28] are general-purpose search algorithm based upon the principles176

of evolution in nature (permanent adaptation). They can be applied to a wide variety of177

optimisation problems [16] and appeared of good relevance to solve (7). For nonregular178

models, compact sets for the variation ranges of coefficients to be estimated usually appear179

necessary to obtain non-degenerate and consistent MLE [39], in addition of other constraints180

(for instance, the true value of α should be upper than 2 when considering a nonfunctional181

three-parameter Weibull distribution [50]). More generally, it is a prerequisite for starting182

genetic algorithms. In the WOLF3 software, such ranges can be directly informed by the183

user or provided by a bootstrap algorithm, described hereafter. In numerical experiments184

these ranges were found to contain the true value for each coefficient, but obviously this185

cannot be guaranteed in all situations.186

187

188

Non-parametric bootstrap calibration of variation ranges.189

1. Sample with replacement NBoot datasets {d1, . . . , dNBoot}, each of size190

N, amongst the N (uncensored) original toughness observations;191

2. For replicate di, produce ki < N local estimations of {α,Kmin, K0 −192

Kmin} and fit the parametric model chosen for each parameter;193

3. Estimate empirically the quartiles {qk,1, qk,2, qk,3} from the NBoot−sized194

sample of estimates for each coefficient θk;195
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4. Calibrate the range for θk as

[qk,2 − 3 · (qk,3 − qk,1) qk,2 + 3 · (qk,3 − qk,1)] .

The genetic algorithm proposed in this article is based on the definition of a population196

of Np individuals. Each individual represents a point in the space of states which means a197

candidate solution. It is characterized by a set of genes (the values of the variables to be198

estimated) and a fitness function (the value of the criterion to be optimized). The algorithm199

then generates populations at each iteration, on which selection and mutation processes are200

applied, the purpose of which is to ensure that the space of states is efficiently explored.201

The evolution of all individuals over several generations leads to the optimum states for the202

relevant optimisation problem.203

204

The entire process is carried out for a constant population size and each iteration is referred205

to as a generation by analogy with genetics. A population initially built by random sampling206

evolves from a k generation to a k + 1 generation by applying the following operations to207

the individuals:208

• Evaluation: in calculating the fitness of the individuals to the problem solution,209

L(Kmin, α, (K0 −Kmin))(k) is calculated for genes corresponding to the coefficient210

values of functional α(T ), (K0 −Kmin)(T ) and Kmin(T ). However, if the constraints211

of Problem (7) cannot be satisfied due to the genes of an individual, its fitness is fixed212

at −∞.213

• Selection: designates the individuals best adapted to survive and transmit their genes214

in relation to their fitness.215

• Crossing: allows genes from two individuals to be mixed to give two offspring216

individuals intended to replace them.217

• Mutation: modifies a gene for certain randomly sampled individuals.218

The algorithm can be stopped when the population ceases to evolve or for a fixed number219

of generations. The individual showing the greatest fitness in the final population then220

corresponds to a solution to the problem.221

4. FINAL MODEL SELECTION

It must be noticed that the class of models defined in Section 2 encompasses the MC222

model and other nested models, which implies that statistical testing between assessed223

models can be conducted using powerful tools as likelihood ratio tests [17]. See Appendix224

B for an example considering several relaxations of the MC model. Structural differences225

between linear and exponential functions require that other tools of model selection be226

used, as Aikake (AIC) and Bayesian (BIC) Information Criteria [1, 36] adapted to censored227

situations [41, 26? ]. In practice, AIC should be preferred since it was conceived to be228

efficient in a finite list of approximate models, optimizing the trade-off between bias and229
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variance [8], while BIC (known to select models with smaller dimension than AIC, possibly230

underfitted) is consistent in the sense it selects (asymptotically) the true model in a class231

if it is assumed to be unique and belong to this class [9]. In addition, a conditional χ2 test232

was specifically developed to help selecting the most relevant model among all tested ones,233

from the uncensored observations. A summary of this procedure is presented below, while234

the details can be found in [30].235

236

Considers a set {K(q)
IC , T

(q)}q=1,··· ,n of toughness measures and indexation temperatures237

and assume that all data pairs are mutually independent. The fitness of a traditional χ2
238

test [48] to this set of pair of variables requires a subdivision of the space of the variable239

KIC |T = x into L classes Sl (cf. Figures 2 and 3). Then the L−sized observation vector240

Nobs is compared to the L−sized theoretical vector Nexp, both defined as:241

242

Nobs =



n∑
q=1

1
K

(q)
IC∈S1

...
n∑
q=1

1
K

(q)
IC∈SL


and Nexp =



K∑
k=1

nkq1,k

...
K∑
k=1

nkqL,k


where, ∀l ∈ {1, ..., L} and ∀k ∈ {1, ..., K},243

ql,k = P (KIC ∈ Sl|T = xk) ,

and nk is the number of times when T = xk.244

[Figure 2 about here.]245

[Figure 3 about here.]246

Finally,247

Z = Nobs −Nexp ∼ NL(0,Γ)
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with

Γ = n



K∑
k=1

nkq1,k[1− q1,k] −
K∑
k=1

nkq1,kq2,k · · · −
K∑
k=1

nkq1,kqL,k

−
K∑
k=1

nkq2,kq1,k

K∑
k=1

nkq2,k[1− q2,k] · · · −
K∑
k=1

nkq2,kqL,k

...
...

. . .
...

−
K∑
k=1

nkqL,kq1,k −
K∑
k=1

nkqL,kq2,k · · ·
K∑
k=1

nkqL,k[1− qL,k]


where K is the number of distinct values of T .248

UΣ−1U ′ ∼ χ2
Q

Noting Z∗ the vector containing only the first L− 1 components of Z and Γ∗ its covariance249

matrix (i.e. the matrix Γ without the last column and the last line), it comes, under the null250

hypothesis H0 that the tested model is true:251

Z∗(Γ∗)−1Z∗
′ ∼ χ2

L−1

and H0 will be rejected at threshold ε if the test statistic Z∗(Γ∗)−1Z∗
′

exceeds the percentile252

χ2
L−1(1− ε).253

5. NUMERICAL EXPERIMENTS

The following numerical experiments are conducted from a so-called EURO database of 849254

real steel (16 MDN5) toughness measurements (Figure 1), aggregating data from different255

European manufacturers or exploiters (SIEMENS, EDF, CEA, FRAMATOME, AEA).256

Various versions of this database, according to whether or not it includes toughness data257

considered as quasi-valid, non-valid but informative or poorly informative, were used in [20]258

and [22].259

260

Sequential sub-sampling based on a 20◦C width, involving a minimum of 20 data per261

sample, was conducted on the regular data (Figure 4). By local estimation using the method262

of moments on each sub-sample, N = 7 triplets (K
(i)
min, α

(i), K
(i)
0 −K

(i)
min)i=1,...,N are assessed.263

In Figure 4, the local estimates are fitted by a linear function for Kmin(T ), a constant value264

for α(T ) and a shifted exponential function for (K0 −Kmin)(T ).265

266

[Figure 4 about here.]267
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An overall ML estimation was conducted, gradually increasing the data size. The results268

are set out in Table 1. Divergences standardised between empirical and theoretical quantiles269

are also traced (QQ-plots, cf. Figures 7 and 8) and summarised in the same table, focusing270

separately on the high and low sections of the transition curve. Taking into account271

censoring information, the estimated model provides mean deviation between empirical272

and theoretical quantiles which is almost 6% better for all quantiles together, almost 9%273

better for high quantiles (75%-99%) add almost 2% better for low quantiles (0.1%-25%) in274

relation to the dispersion found when censoring is not taken into account. Hence, including275

the censoring information increases the information on the toughness model parameters276

coherently with the structure of the model. The relevance of the estimations summarized in277

Table 1 is verified by performing simulated tests in next two subsections.278

279

[Table 1 about here.]280

[Figure 5 about here.]281

5.1. Initial experiments282

30 sets of 849 values each were simulated from the following estimates, which are very283

similar to those obtained from the EURO database: Kmin = 20, α = 3 and K0(T )−Kmin =284

0.004 + 424 · exp(0.01472 · T ). The test temperatures are the same as those in the original285

dataset and every dataset complies with the proportion of censored data in the latter (4.4%286

right-censored, 59% left-censored). Additional details about the features of the simulation287

process are given in Appendix A.288

Table 2 summarizes the estimation results. All simulated values of the parameters289

are located within the standard confidence ranges built from the estimators. Note in290

particular that the standard deviation of the estimator on the ordinate at the origin of291

K0(T )−Kmin(T ) puts into perspective the difference observed between the simulated value292

and the average estimate obtained from the 30 samples. The estimation procedure presented293

in this article and implemented in the WOLF3 software [31, 30] thus provides relevant results294

and, in particular, gives a good estimate of the brittle phase (the ordinate at the origin of295

Kmin(T )).296

[Table 2 about here.]297

5.2. Subsequent experiments298

Secondly, testing is required to establish whether a more complex model encompassing the299

traditional MC is accurately estimated if the simulated data actually come from a MC: the300

additional parameters must be estimated at 0 or near to 0 and the more flexible models must301

adopt a similar behavior. Accordingly, by Ockham’s rule of least complexity and on the basis302

of statistics from traditional testing procedures (e.g., AIC), the simplest model most used in303

practice should be selected.304
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The simulation parameters are therefore chosen as follows: Kmin = 20, α = 4 and K0(T )−305

Kmin = 50 + 200 · exp (0.002 · T ), and the test temperatures and censoring values are selected306

as previously. Again, 30 independent datasets are simulated, of which an example is shown307

in Figure 10 (in Appendix). The estimation results are shown in Table 3. The assumption308

α = 4, essentially characteristic of the Master Curve, is applied by these models. The low309

level of linearity noted for Kmin has little effect on the shape of the curve and, for its part, the310

parameter that determines the exponential shape is well-estimated. Additional complexity311

(passing from a linear model to a shifted exponential model for Kmin is logically manifested312

in increased estimated standard deviation values. However, through limited development,313

the low value of the exponential coefficient of Kmin allows an equivalent linear model to be314

obtained and the brittle phase to be quantified between 20 and 25 MPa.
√
m. As expected,315

this brings us back to the main features of the Master Curve.316

[Table 3 about here.]317

5.3. Testing the Master Curve in the EURO database318

Finally, the statistical relevance of the classic MC model over the motivating EURO dataset319

is compared to the other possible models defined by the encompassing framework. Results320

of fitting are summarized on Tables 4 (including the MC model) and 5. The AIC criterion321

is defined classically [1] as the penalization of twice the maximized negative loglikelihood:322

AIC = −2 logLθ̂(k + 2d

in the uncensored case, with d the dimension of the model, L its likelihood and θ̂ the MLE323

of the unknown parameter vector θ, and324

AIC = −2 logLθ̂(k + d+ tr
(
Iall,θ̂I

−1
incomp,θ̂

)
(8)

in the censored case, following [? ], where (Iall,θ, Iincomp,θ) are the Fisher information matrices325

for the complete data and incomplete data, respectively defined by (for a single observation326

k)327

Ix,θ = −
∫

Lx
θ(k)

∂2 logLx
θ(k)

∂θ∂θT
dk,

where x ∈ {incomp, all} and where Lincomp

θ is either the density, the survival of the cumulative328

distribution function in k, while Lall

θ is only the density of k. For these functional models329

these information quantities can be empirically computed from the observations. It was330

most often observed that, for the considered dataset, the extreme-right penalty in (8) was331

very close to d. This formulation means that a model with a low AIC value is considered to332

explain better the observations than a model with a high AIC value.333

334

The results first confirm the necessity of relaxing the rigidity of the MC model, by335

considering more parameters are unknown a priori and conducting statistical estimation.336
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A negligible p−value of the χ2 test (namely, a negligible probability of observing the test337

statistic under the assumption of the model in consideration), associated to a high AIC value,338

highlight that the MC model is comparable, in terms of explicative power, to basic models339

based on linear functionals only. The sensible gap in terms of AIC due to the insertion of340

a shifted exponential model with unknown parameters, for Kmin or K0 −Kmin (provided341

other parameters are unknown too), indicates that a good strategy for selecting a relevant342

model should at least take account of this criterion. Using a LRT test described in appendix343

B, it is possible to refine the diagnostic about the MC model: considering the relaxed MC344

model with unknown (but constant) Kmin and α (with operational constraints Kmin ≥ 10345

and α > 2), the observed statistic is R4,1 ' 0.04923 which is of the same order than the346

5%-order percentile of the mixture of Dirac and χ2 distributions (' 0.05375).347

If the quadratic evolution of K0 −Kmin seems to be the most relevant from the AIC348

viewpoint at the light of the results provided on both tables, a quick look on the349

corresponding figures (Figures S-15 and S-21 in Supplementary Online Material (SOM)) is350

enough to discard such a model from a physical point of view (no obversation is plausible at351

low temperature close to 100 MPa.
√
m). Rather, a good trade-off between statistical fitting352

and physical plausibility is provided by Models (14) and (17). The estimation of parameters353

(see Figures S-27, S-28 and S-33 in SOM) shows that the quadratic and exponential354

coefficients of Kmin take most often very small values, and that these models can be easily355

derived (by Taylor expansion around 0) in the simpler form of Model (12), which is our356

final choice for this dataset. Note that the standard MC model and Model (12) strongly357

differ by their derived value of the reference temperature (gap ∼ 10◦C). Another important358

consequence is that the brittle stage Kmin is increasing with the temperature. Such a result359

appears to be useful for risk engineers who would be able to define sensitivity analyses and360

margin assessments with respect to the conservative MC model.361

362

Finally, it must be noticed that accounting for censored values can have a more sensible363

effect on the estimation of unknown parameters and (as expected) on the reference364

temperature, traduced by a possible difference of several degrees, than on the model selection365

itself.366

[Table 4 about here.]367

[Table 5 about here.]368

6. DISCUSSION

This article presents a statistical methodology of estimation and selection of a class of steel369

fracture toughness models encompassing the celebrated Master Curve. Its implementation370

within a dedicated software was thought to simplify its use by reliability engineers. The371

common practice of this engineering field, as crude homogenization of experimental data372

and putting aside nonregular observations, as well as the practical necessity of using more373

flexible models than the Master Curve, motivated this work. An immediate benefit of374
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improving the statistical modelling of steel fracture toughness is improving the knowledge of375

the brittle stage and the brittle-ductile transition temperature range. While the brittle stage376

appears as a penalizing factor in structural reliability studies, the reference temperature377

can be used to hierarchize steels and compare steel structures.378

379

Another interest of this refined modelling is guiding the design of new destructive380

experiments (while the use of censored observations yields supplementary information that,381

conversely, should diminish the necessity of such experiments). Indeed, designing these382

experiments is realizing a trade-off between costs and statistical information gain, through383

the use of cost functions and information measures integrated over the expected distribution384

of toughness [15]. In a Bayesian perspective, a prior model recognized as “the best on385

the market” can be used to derive accurate distributions for the coefficients and delimit386

the most informative ranges of temperature to explore, under fixed budget, to improve387

significantly the robustness of the statistical modelling [10]. This will be the subject of a388

future work.389

390

This methodology remains clearly opened to improvements. First, the selection of391

functionals based on local estimations may suffer from a lack of estimated parameter values392

if the temperature ranges are chosen too wide. Using nonregular ranges to gain estimations393

may distort the estimated shapes and bias the selection of these functionals. Nonparametric394

tests could besides be adapted to provide objective help to this selection. Second, the overall395

optimisation task could probably be improved by taking account of the missing data structure396

due to the presence of censoring, using multiple imputation methods or data augmentation397

methods. Finally, the use of sensitivity analysis techniques [21] could be helpful for comparing398

the robustness of several assessed models, in complement to classic criteria, and improving399

the confidence that may be placed in the modelling of this very influential input of structural400

reliability studies.401
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APPENDIX

A. SIMULATION OF EXPERIMENTAL DATASETS

A particular attention was paid to check that each of the 30 sets simulated in § 5.1 reproduce511

accurately the main features of the real EURO database. These data were simulated in512

compliance with a criterion of observed “distance” between regular and censored data in the513

original dataset. Let us consider a censored value k1(T1) in the original dataset. For a small514

relative difference ∆T2 = T2/T1 − 1 between test temperatures, a small relative difference in515

the toughness value ∆K(T ) = K(T )/k1(T1)− 1 and the small relative difference in the size of516

the test piece ∆BT = B(T )/b1(T1)− 1, we define as a valid data the nearest value k2(T2) to517

the direction of the experimental conditions by means of the following least weighted squares518

criterion:519

k2(T2) = arg min
k(T )

{
ω1∆

2
T + ω2∆

2
k(T ) + ω3∆

2
BT

}
(9)

where {ω1, ω2, ω3} are positive weights summing to 1. A Wilcoxon homogeneity statistical520

test [49] based on the closeness of the samples simulated in this way and the original sample521

showed that the first two terms of the above criterion play a major part in selecting a ”good”522

value k2(T2). The following choices were applied:523

{ω1, ω2, ω3} = {0.6, 0.3, 0.1}.

The second test, founded on the two first criteria only, specifies a unique solution to the524

problem (9). The toughness dispersion525

Γk1(T1) = k1(T1)− k2(T2)

is used to simulate a censored value k̃2(T2) from a simulated valid value k̃2(T1):526

k̃2(T2) = k̃2(T1) + Γk1(T1).

This bootstrapping procedure on the dispersion of toughness values generates datasets that527

are extremely similar to the original, as shown on Figures 9 and 10. Kolmogorov-Smirnov and528

Cramer-von Mises tests between truly observed and simulated data were finally conducted529

conditionally to several temperature values, which did not exhibit surprising behaviors.530

[Figure 6 about here.]531

[Figure 7 about here.]532

B. TESTING THE RELEVANCE OF THE MASTER CURVE

Using the notations defined in (1) and (2), consider the three following toughness models533

differing by their degree of freedom (θi defining the vectors of unknown parameters to534
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estimate) and possible inequality constraints:535

original Master Curve 1 (MC1): α = 4, Kmin = 20, θ1 = (b1, b2, b3) ∈ R+
∗ ;

relaxed MC 2 (MC2): α = 4, θ2 = (Kmin, b1, b2, b3) ∈ R+
∗ and Kmin > 20;

relaxed MC 3 (MC3): Kmin = 20, θ3 = (α, b1, b2, b3) ∈ R+
∗ and α > 2;

relaxed MC 4 (MC4): θ4 = (α,Kmin, b1, b2, b3) ∈ R+
∗ and Kmin > 20 and α > 2.

Assume to dispose of the various MLE (θ̂i)i∈{1:4} computed from the same dataset.536

Likelihood ratio tests (LRT) are one of the most powerful statistical tools [17] for conducting537

the following tests, that evaluate the statistical relevance of the original Master Curve :538

(T1) H0: MC1 versus H1: MC2;539

(T2) H0: MC1 versus H1: MC3;540

(T3) H0: MC1 versus H1: MC4.541

Such situations are instances of the general situation when the null hypothesis H0 is defined542

by fixing r degrees of freedom of the encompassing model used in the alternative hypothesis543

(H1): r = 1 in (T1) and (T2) and r = 2 in (T3). Denoting Li(θ̂i) the likelihood of model544

MCi estimated in its MLE θ̂i, the asymptotic distribution of the LRT statistic545

Ri,j = 2 log
Li(θ̂i)

Lj(θ̂j)

is known under H0. This distribution is dependent on r and the number of inequality546

constraints limiting the domain of definition of the test statistic. Since (T1) is equivalent547

to test if Kmin = 20 rather than Kmin > 20, then, assuming the MC hypothesis H0 is true,548

the asymptotic distribution of R1,2 is a mixture of Dirac δ0 in 0 and chi-square distribution549

χ2
r with r = 1 degree of freedom. More generally, based on Chapter 21 in [17], with n the550

number of regular observations:551

R1,2, R1,3
n→∞∼ 1

2
δ0 +

1

2
χ2
1,

R1,4
n→∞∼ α14

2π
δ0 +

1

2
χ2
1 +

(
1

2
− α14

2π

)
χ2
2

where α14 = cos ρ14 and ρ14 is the asymptotic linear correlation coefficient between α and552

Kmin, which can be consistently estimated using the correlation submatrix computed for θ̂4.553

Note that an alternative to (T1) is simply to test if Kmin = 20 rather than Kmin > 0. In554

such a case, since L2(θ̂2) remains defined even if Kmin ≥ 0, the Dirac term disappears and555

an usual χ2
1 distribution is the asymptotic limit.556

Additionally, testing H0: MC2 versus H1: MC4 or testing H0: MC3 versus H1: MC3 can be557

similarly conducted, as well as numerous other tests for more complicated functional forms558

given to α, Kmin and K0 −Kmin. However, it must be noticed that such tools cannot provide559
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a total-ordered testing strategy. Besides, numerous models are not embedded. Consequently,560

the LRT-based approach must be completed with other statistical testing procedures.561
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Figure 1.European fracture toughness database.

20



FIGURES

Figure 2. Subdividing the space of the variable KIC |T .
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FIGURES

Figure 3. Subdivision of the space of a random variable Y = KIC dependent on a variable X = T .
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FIGURES

Figure 4. Sequential sub-sampling of the regular data from the EURO database.
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FIGURES

Figure 5. WOLF3 fitting on the European toughness database

(valid data only).
Figure 6. WOLF3 fitting on the European toughness database

(all data).

Figure 7. QQ plot of the WOLF3 fitting on the European

toughness database (valid data only).

Figure 8. QQ plot of the WOLF3 fitting on the European

toughness database (all data).
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Figure 9. Example of a simulation of a toughness dataset from the EURO database (first experiment).
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Figure 10. Example of a Master Curve simulation of a toughness dataset from the EURO database (second experiment).
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TABLES

TABLES

Estimation based on Estimation combining
regular data only all types of data

α 2.78 2.90
Kmin(T ) 19.78 + 0.013 · T 19.85 + 0.048 · T
K0(T )−Kmin(T ) 0.0002 + 484.20 · exp(0.0186 · T ) 0.0012 + 463.23 · exp(0.0175 · T )

Graphic representation Fig. 5 Fig. 6

QQ dispersion [0.1% - 99%] 2.30 2.16
QQ dispersion [75% - 99%] 5.81 5.30
QQ dispersion [0.1% - 20%] 2.62 2.57

QQ plot Fig. 7 Fig. 8

Table 1. Results of estimation by the method of maximum likelihood on the EURO fracture
toughness database.

27



TABLES

estimated mean standard deviation simulated value
α 3.141 0.12 3
Kmin (original ordinate) 19.623 2.41 20
Kmin (slope) 0.00730 0.0087 0
K0 −Kmin (original ordinate) 6.558 8.55 2
K0 −Kmin (slope) 423.065 15.38 424
K0 −Kmin (exponential coefficient) 0.001498 0.0012 0.001472

Table 2. Results of the estimates averaged over the 30 datasets simulated from estimates
based on the EURO database.
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TABLES

Choice of functionals

linear shifted exponential
α Kmin(T) = a1 + a2 · T K0(T)−Kmin(T) = b1 + b2 exp(b3 · T )

4.18 (0.19) a1 = 20.55 (3.12) b1 = 52.90 (8.4)

a2 = 0.015 (0.024) b2 = 196.21 (11.6)

b3 = 0.0203 (0.003)

shifted exponential shifted exponential
α Kmin(T) = a1 + a2 exp(a3 · T ) K0(T)−Kmin(T) = b1 + b2 exp(b3 · T )

4.22 (0.28) a1 = 14.20 (6.37) b1 = 53.26 (9.67)

a2 = 11.68 (11.84) b2 = 186.56 (13.58)

a3 = 0.0540 (0.04) b3 = 0.0188 (0.0024)

Table 3. Average estimation results (standard deviation within parentheses) for the Master
Curve model for simulated datasets.
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TABLES

Model Kmin α K0 −Kmin transition AIC χ2 test Figure
indic. temp. T0 p− value (SOM)

MC fixed (20) fixed (4) shifted exponential -97.393◦C 3545.93 1.10−6 MC-1

1 linear linear linear -99.99◦C 3567 1.10−6 S-1
2 linear linear quadratic -86.47◦C 3414 0.0043 S-3
3 linear linear shifted exponential -91.43◦C 3413 0.222 S-5
4 quadratic linear linear -99.99◦C 3462 1.10−6 S-7
5 quadratic linear quadratic -93.05◦C 3410 0.0914 S-9
6 quadratic linear shifted exponential -89.74◦C 3414 0.4638 S-11
7 shifted exponential linear linear -99.99◦C 3544 1.10−6 S-13
8 shifted exponential linear quadratic -88.69◦C 3388 0.0305 S-15
9 shifted exponential linear shifted exponential -90.65◦C 3414 0.4859 S-17
10 linear constant linear -99.99◦C 3613 1.10−6 S-19
11 linear constant quadratic -90.58◦C 3420 0.232 S-21
12 linear constant shifted exponential -89◦C 3415 0.5751 S-23
13 quadratic constant linear -99.99◦C 3603 1.10−6 S-25
14 quadratic constant shifted exponential -91.04◦C 3412 0.5975 S-27
15 shifted exponential constant linear -99.99◦C 3595 1.10−6 S-29
16 shifted exponential constant quadratic -88.70◦C 3428 0.1438 S-31
17 shifted exponential constant shifted exponential -89.91◦C 3412 0.4328 S-33

Table 4. Model comparisons for the EURO database (valid toughness data only). Figures
MC-1 and S-i refer to figures presented within the Supplementary Online Material (SOM)

that accompanies this article. MC is for the usual Master Curve.
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TABLES

Model Kmin α K0 −Kmin transition AIC χ2 test Figure
indic. temp. T0 p− value (SOM)

1 linear linear linear -99.99◦C 3601 1.10−6 S-2
2 linear linear quadratic -86.26◦C 3461 0.0044 S-4
3 linear linear shifted exponential -89.17◦C 3460 0.687 S-6
4 quadratic linear linear -99.99◦C 3579 1.10−6 S-8
5 quadratic linear quadratic -86.14◦C 3447 0.0615 S-10
6 quadratic linear shifted exponential -92.65◦C 3461 0.4351 S-12
7 shifted exponential linear linear -99.99◦C 3579 1.10−6 S-14
8 shifted exponential linear quadratic -89.26◦C 3467 0.0164 S-16
9 shifted exponential linear shifted exponential -91.03◦C 3466 0.3945 S-18
10 linear constant linear -99.99◦C 3651 1.10−6 S-20
11 linear constant quadratic -93.61◦C 3460 0.0565 S-22
12 linear constant shifted exponential -90.4◦C 3466 0.85 S-24
13 quadratic constant linear -99.99◦C 3711 1.10−6 S-26
14 quadratic constant shifted exponential -91.52◦C 3461 0.7191 S-28
15 shifted exponential constant linear -99.99◦C 3685 1.10−6 S-30
16 shifted exponential constant quadratic -86.57◦C 3523 0.0708 S-32
17 shifted exponential constant shifted exponential -91.63◦C 3461 0.8113 S-34

Table 5. Model comparisons for the EURO database (all toughness data). Figures S-X refer
to figures presented within the Supplementary Online Material (SOM) that accompanies this
article. The χ2 tests are conducted only by confronting assessed models with the uncensored

empirical distribution.
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