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Finite-size effects and percolation properties of Poisson geometries
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Random tessellations of the space represent a class of prototype models of heterogeneous media,
which are central in several applications in physics, engineering and life sciences. In this work, we
investigate the statistical properties of d-dimensional isotropic Poisson geometries by resorting to
Monte Carlo simulation, with special emphasis on the case d = 3. We first analyse the behaviour of
the key features of these stochastic geometries as a function of the dimension d and the linear size
L of the domain. Then, we consider the case of Poisson binary mixtures, where the polyhedra are
assigned two ‘labels’ with complementary probabilities. For this latter class of random geometries,
we numerically characterize the percolation threshold, the strength of the percolating cluster and
the average cluster size.

PACS numbers: 05.40.-a, 02.50.-r, 05.10.Ln

I. INTRODUCTION

Heterogeneous and disordered media emerge in sev-
eral applications in physics, engineering and life sciences.
Examples are widespread and concern for instance light
propagation through engineered optical materials [1–3]
or turbid media [4–6], tracer diffusion in biological tis-
sues [7], neutron diffusion in pebble-bed reactors [8] or
randomly mixed immiscible materials [9], inertial confine-
ment fusion [10, 11], and radiation trapping in hot atomic
vapours [12], only to name a few. Stochastic geometries
provide convenient models for representing such config-
urations, and have been therefore widely studied [13–
18], especially in relation to heterogeneous materials [14],
stochastic or deterministic transport processes [19], im-
age analysis [20], and stereology [21].

A particularly relevant class of random media is pro-
vided by the so-called Poisson geometries [13], which
form a prototype process of isotropic stochastic tessel-
lations: a portion of a d-dimensional space is partitioned
by randomly generated (d− 1)-dimensional hyper-planes
drawn from an underlying Poisson process. The resulting
random geometry (i.e., the collection of random polyhe-
dra determined by the hyper-planes) satisfies the impor-
tant property that an arbitrary line thrown within the ge-
ometry will be cut by the hyper-planes into exponentially
distributed segments [13]. In some sense, the exponen-
tial correlation induced by Poisson geometries represents
perhaps the simplest model of ‘disordered’ random fields,
whose single free parameter (i.e., the average correlation
length) can be deduced from measured data [22]. Follow-
ing the pioneering works by Goudsmit [23], Miles [24, 25]
and Richards [26] for d = 2, the statistical features of the
Poisson tessellations of the plane have been extensively
analysed, and rigorous results have been proven for the
limit case of domains having an infinite size: for a review,
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see, e.g., [13, 17, 18]. An explicit construction amenable
to Monte Carlo simulations for two-dimensional homoge-
neous and isotropic Poisson geometries of finite size has
been established in [27].

Theoretical results for infinite Poisson geometries have
been later generalized to d = 3, which is key for real-
world applications but has comparatively received less
attention, and higher dimensions by several authors [13,
28–32]. The two-dimensional construction for isotropic
Poisson geometries has been analogously extended to
three-dimensional (and in principle d-dimensional) do-
mains [20, 22].

In this work, we will numerically investigate the sta-
tistical properties of d-dimensional isotropic Poisson ge-
ometries by resorting to Monte Carlo simulation, with
special emphasis on the case d = 3. Our aim is two-
fold: first, we will focus on finite-size effects and on the
convergence towards the limit behaviour of infinite do-
mains. In order to assess the impact of dimensionality
on the convergence patterns, comparisons to analogous
numerical or exact findings obtained for d = 1 and d = 2
(where available) will be provided. In so doing, we will
also present and discuss the simulation results for some
physical observables for which exact asymptotic results
are not known, yet.

Then, we will consider the case of ‘coloured’ Pois-
son geometries, where each polyhedron is assigned a la-
bel with a given probability. Such models emerge, for
instance, in connection to particle transport problems,
where the label defines the physical properties of each
polyhedron [19, 22]. The case of random binary mixtures,
where only two labels are allowed, will be examined in
detail. In this context, we will numerically determine
the statistical features of the coloured polyhedra, which
are obtained by regrouping into clusters the neighbouring
volumes by their common label. Attention will be paid
in particular to the percolation properties of such binary
mixtures for d = 3: the percolation threshold at which a
cluster will span the entire geometry, the average cluster
size and the probability that a polyhedron belongs to the
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the spanning cluster will be carefully examined and con-
trasted to the case of percolation on lattices [33]. The
effect of dimensionality will be again assessed by com-
parison with the case d = 2, for which analogous results
were numerically determined in [34].

This paper is structured as follows: in Sec. II we will re-
call the explicit construction for d-dimensional isotropic
Poisson geometries, with focus on d = 3. In Sec. III
we will discuss the statistical properties of Poisson ge-
ometries, and assess the convergence to the limit case of
infinite domains. In Sec. IV we will extend our analysis
to the case of coloured geometries and related percolation
properties. Conclusions will be finally drawn in Sec. V.

II. CONSTRUCTION OF POISSON
GEOMETRIES

For the sake of completeness, in this Section we will re-
call the strategy for the construction of Poisson geome-
tries, spatially restricted to a d-dimensional box. The
case d = 1 simply stems from the Poisson point pro-
cess on the line [13], and will not be detailed here. The
explicit construction of homogeneous and isotropic Pois-
son geometries for the case d = 2 restricted to a square
has been originally proposed by [27], based on a Poisson
point field in an auxiliary parameter space in polar coor-
dinates. It has been recently shown that this construction
can be actually extended to d = 3 and even higher dimen-
sions [22] by suitably generalizing the auxiliary parame-
ter space approach of [27] and using the results of [20]. In
particular, such d-dimensional construction satisfies the
homogeneity and isotropy properties [22].

The method proposed by [22] is based on a spatial
decomposition (tessellation) of the d-hypersphere of ra-
dius R centered at the origin by generating a random
number q of (d − 1)-hyperplanes with random orienta-
tion and position. Any given d-dimensional subspace in-
cluded in the d-hypersphere will therefore undergo the
same tessellation procedure, restricted to the region de-
fined by the boundaries of the subspace. The number q
of (d − 1)-hyperplanes is sampled from a Poisson distri-
bution with parameter RΛd, with Λd = λAd(1)/Vd−1(1).
Here Ad(1) = 2πd/2/Γ(d/2) denotes the surface of the
d-dimensional unit sphere (Γ(a) being the Gamma func-
tion [35]), Vd(1) = πd/2/Γ(1 + d/2) denotes the volume
of the d-dimensional unit sphere, and λ is the arbitrary
density of the tessellation, carrying the units of an inverse
length. This normalization of the density λ corresponds
to the convention used in [13], and is such that λt yields
the mean number of (d − 1)-hyperplanes intersected by
an arbitrary segment of length t.

Let us now focus on the case d = 3. Suppose, for the
sake of simplicity, that we want to obtain an isotropic tes-
sellation of a box of side L, centered in the origin O. This
means that the Poisson tessellation is restricted to the re-
gion [−L/2, L/2]3. We denote R the radius of the sphere
circumscribed to the cube. The algorithm proceeds then
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FIG. 1: (Color online) Cutting a cube with a random plane.
A cube of side L is centered in O. The circumscribed sphere
centered in O has a radius R =

√
3L/2. The point M is

defined by M = rn, where r is uniformly sampled in the
interval [0, R] and n is a random unit vector of components

n = (n1, n2, n3)T , with n1 = 1−2ξ1, n2 =
p

1− n2
1 cos (2πξ2)

and n3 =
p

1− n2
1 sin (2πξ2). The auxiliary variables ξ1 and

ξ2 are sampled from two independent uniform distributions
in the interval [0, 1]. The random plane K of equation n1x+
n2y+n3z = r is orthogonal to the vector n and intersects the
point M.

as follows. The first step consists in sampling a random
number of planes q from a Poisson distribution of param-
eter 4λR, where the factor 4 stems fromA3(1)/V2(1) = 4.
The second step consists in sampling the random planes
that will cut the cube. This is achieved by choosing a ra-
dius r uniformly in the interval [0, R] and then sampling
two other random numbers, denoted ξ1 and ξ2, from two
independent uniform distributions in the interval [0, 1].
Based on these three random parameters, a unit vector
n = (n1, n2, n3)T is generated (see Fig. 1), with compo-
nents

n1 = 1− 2ξ1

n2 =
√

1− n2
1 cos (2πξ2)

n3 =
√

1− n2
1 sin (2πξ2).

Let now M be the point such that OM = rn. The
random plane K will be finally defined by the equation
n1x+ n2y + n3z = r, passing trough M and having nor-
mal vector n. By construction, this plane does intersect
the circumscribed sphere of radius R but not necessarily
the cube: the probability that the plane intersects both
the sphere and the cube can be deduced from a classi-
cal result of integral geometry. For two convex sets J0

and J1 in R3, with J1 ⊂ J0, the probability that a ran-
domly chosen plane meets both J0 and J1 is given by the
ratio M1(J1)/M1(J0), M1(J) being the mean orthogo-
nal 1-projection of J onto an isotropic random line [13].
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The quantityM1(J) takes also the name of mean caliper
diameter of the set J [31].

The average caliper diameter of a cube of side L is
3L/2, whereas for the sphere the average caliper diameter
coincides with its diameter 2R = L

√
3, which yields a

probability
√

3/2 ' 0.866 for the random planes to fall
within the cube [51].

The tessellation is built by successively generating the
q random planes. Initially, the stochastic geometry is
composed of a single polyhedron, i.e., the cube. If the
first sampled plane intersects the region [−L/2, L/2]3,
new polyhedra are generated within the cube and the tes-
sellation is updated. This procedure is then iterated until
q random planes have been generated. By construction,
the polyhedra defined by the intersection of such ran-
dom planes are convex. For illustration purposes, some
examples of isotropic Poisson tessellation of a cube of
side L = 20 obtained by Monte Carlo simulation are pre-
sented in Fig. 2, for different values of the density λ. The
number of random polyhedra of the tessellation increases
with increasing λ.

III. MONTE CARLO ANALYSIS

The physical observables of interest associated to the
stochastic geometries, such as for instance the volume of
a polyhedron, its surface, the number of edges, and so
on, are clearly random variables, whose statistical distri-
bution we would like to characterize. In the following,
we will focus on the case of Poisson geometries restricted
to a d-dimensional box of linear size L.

With a few remarkable exceptions, the exact distri-
butions for the physical observables are unfortunately
unknown [13]. A number of exact results have been
nonetheless established for the (typically low-order) mo-
ments of the observables and for their correlations, at
least in the limit case of domains having an infinite exten-
sion [13, 15, 16]. Monte Carlo simulation offers a unique
tool for the numerical exploration of the statistical fea-
tures of Poisson geometries. In particular, by resorting
to the algorithm described above we can i) investigate
the convergence of the moments and distributions of arbi-
trary physical observables to their known limit behaviour
(if any), and ii) numerically explore the scaling of the mo-
ments and the distributions for which exact asymptotic
results are not yet available. We will thus address these
issues with the help of a Monte Carlo code developed to
this aim.

A. Number of polyhedra

To begin with, we will first analyse the growth of the
number Np of polyhedra in d-dimensional Poisson ge-
ometries as a function of the linear size L of the domain,
for a given value of the density λ. In the following, we
will always assume that λ = 1, unless otherwise specified

FIG. 2: (Color online) Examples of Monte Carlo realiza-
tions of isotropic Poisson geometries restricted to a three-
dimensional box of linear size L. For all realizations, we have
chosen L = 20. The geometry at the top (a) has λ = 0.2, that
at the middle (b) has λ = 1 and that at the bottom (c) has
λ = 3. For fixed L, the average number of random polyhedra
composing the geometry increases with increasing λ.

(with both λ and L expressed in arbitrary units). The
quantity Np provides a measure of the complexity of the
resulting geometries. The simulation findings for the av-
erage number 〈Np|L〉 of d-polyhedra (at finite L) and the
dispersion factor, i.e., the ratio σ[Np|L]/〈Np|L〉, σ denot-
ing the standard deviation, are illustrated in Fig. 3. For
large L, we find an asymptotic scaling law 〈Np|L〉 ∼ Ld:



4

100

101

102

103

104

105

106

107

1 10 100

0.1

1

1 10 100

FIG. 3: (Color online) The average number 〈Np|L〉 of d-
polyhedra in d-dimensional Poisson geometries as a function
of the linear size L of the domain. The scaling law Ld is dis-
played for reference with dashed lines. Inset. The dispersion
factor σ[Np|L]/〈Np|L〉 as a function of L. The scaling law

1/
√
L is displayed for reference with dashed lines.

the complexity of the random geometries increases with
system size and dimension (Fig. 3, top), as expected on
physical grounds. This means that the computational
cost to generate a realization of a Poisson geometry is
also an increasing function of the system size and of the
dimension. As for the dispersion factor, an asymptotic
scaling law σ[Np|L]/〈Np|L〉 ∼ 1/

√
L is found for large

L, independent of the dimension (Fig. 3, bottom): for
large systems, the distribution of Np will be then peaked
around the average value 〈Np|L〉.

B. Markov properties

Poisson geometries are Markovian, which means that
in the limit case of infinite domains an arbitrary line will
be cut by the (d − 1)-surfaces of the d-polyhedra into
segments whose lengths ` are exponentially distributed,
i.e.,

P(`) = µe−µ`, (1)

with average density µ = λ. Conversely, the number
of intersections ni of an arbitrary segment of length t
with the (d−1)-surfaces of the d-polyhedra in an infinite
domain will obey a Poisson distribution

P(ni) = νni
e−ν

ni!
, (2)

with mean value ν = λt.
In order to verify that the geometries constructed by

resorting to the algorithm described above satisfy the
Markov properties, we have numerically computed by
Monte Carlo simulation the probability density of the

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

10-7

10
-6

10
-5

10
-4

10
-3

10-2

10-1

100

0 2 4 6 8 10 12 14

FIG. 4: (Color online) The probability densities P(`|L) of the
segment lengths as a function of the linear size L of the do-
main, in dimension d = 3. Symbols correspond to the Monte
Carlo simulation results, with lines added to guide the eye:
blue triangles denote L = 1, red diamonds L = 2, green cir-
cles L = 3, black squares L = 5, and purple crosses L = 40.
The asymptotic (i.e., L→∞) exponential distribution given
in Eq. (1) is displayed as a black dashed line for reference.
The inset displays the same data in log-linear scale.

segment lengths and the probability of the number of
intersections as a function of the linear size L of the do-
main and for different dimensions d. For the former, a
Poisson geometry is first generated, and a line is then
drawn by uniformly choosing a point in the box and an
isotropic direction: this choice corresponds to formally
assuming a so-called I-randomness for the lines [36]. The
intersections of the line with the polyhedra of the geome-
try are computed, and the resulting segment lengths are
recorded. The whole procedure is repeated a large num-
ber of times in order to get the appropriate statistics.
For the latter, a test segment of unit length is sampled
by choosing a point and a direction as before, and the
number of intersections with the polyhedra are again de-
termined.

The numerical results for P(`|L) at finite L are illus-
trated in Figs. 4 and 5. For small L, finite-size effects are
apparent in the segment length density: this is due to the
fact that the longest line that can be drawn across a box
of linear size L is

√
dL, which thus induces a cut-off on

the distribution (see Fig. 4). For λL � 1, the finite-size
effects due to the cut-off fade away and the probability
densities eventually converge to the expected exponen-
tial behaviour. The rate of convergence appears to be
weakly dependent on the dimension d (see Fig. 5). The
case d = 1 can be treated analytically and might thus
provide a rough idea of the approach to the limit case.
For any finite L, the distribution of the segment lengths
for d = 1 is

P(`|L) = λe−λ`11`<L + e−λLδ(`− L), (3)
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11J being the marker function of the domain J . The
moments of order m of the segment length ` for finite
L thus yield

〈`m|L〉 =
Γ(m+ 1)

λm
− Γm+1(λL)

λm
+ e−λLLm, (4)

where Γa(x) is the incomplete Gamma function [35]. In
the limit case L→∞, we have 〈`m〉 = Γ(m+ 1)/λm, so
that for the convergence rate we obtain

〈`m|L〉
〈`m〉

= 1− Γm+1(λL)− e−λL(λL)m

Γ(m+ 1)
, (5)

which for large λL� 1 gives

〈`m|L〉
〈`m〉

' 1− (λL)m−1e−λL

Γ(m+ 1)
. (6)

Thus, the average segment length (m = 1) converges
exponentially fast to the limit behaviour, whereas the
higher moments (m ≥ 2) converge sub-exponentially
with power-law corrections. For d > 1, the cut-off is less
abrupt, but the distributions P(`|L) still show a peak at
` = L, and vanish for ` > L

√
d. The asymptotic av-

erage segment lengths for L → ∞ yield 〈`〉 = 1/λ for
any d: the Monte Carlo simulation results obtained for a
large L = 80 are compared to the theoretical formulas in
Tab. I.

d 〈`〉 Theoretical value Monte Carlo

1 1/λ 1 1.0002± 10−4

2 1/λ 1 0.9932± 6× 10−4

3 1/λ 1 0.9985± 3× 10−3

TABLE I: The average segment lengths 〈`〉. Monte Carlo
simulation results are obtained with L = 80 and λ = 1 for
any dimension d.

For d = 1 we performed 106 realizations, with an av-
erage number 〈Np〉 = 80.986 ± 9 × 10−3 of 1-polyhedra
per realization. For d = 2 we performed 105 realiza-
tions, with an average number 〈Np〉 = 5189 ± 3 of 2-
polyhedra per realization. For d = 3 we performed
2 × 103 realizations, with an average number 〈Np〉 =
2.82× 105 ± 1.4× 103 3-polyhedra per realization.

The convergence of the distribution of the number of
intersections to the limit Poisson distribution P(ni) is
very fast as a function of L, which most probably stems
from the unit test segment being only weakly affected by
finite-size effects (i.e., by the polyhedra that are cut by
the boundaries of the box), contrary to the case of the
lines. Finite-size effects are appreciable only for large val-
ues of the number of intersections ni, which in turn occur
with small probability. The asymptotic average number
of intersections per unit length for L→∞ yield 〈ni〉 = λ
for any d: the Monte Carlo simulation results obtained
for a large L = 80 are compared to the theoretical for-
mulas in Tab. II, with the same simulation parameters
as above.
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FIG. 5: (Color online) The probability densities P(`|L) of
the segment lengths as a function of the linear size L of the
domain and of the dimension d. Symbols correspond to the
Monte Carlo simulation results, with lines added to guide the
eye: for L = 1, blue crosses denote d = 1, green circles d = 2,
and orange triangles d = 3; for L = 2, red pluses denote
d = 1, grey squares d = 2, and purple diamonds d = 3.
The asymptotic (i.e., L→∞) exponential distribution given
in Eq. (1) is displayed as a black dashed line for reference.
Inset. The case of a system size L = 40: red crosses denote
d = 1, green circles d = 2, and blue diamonds d = 3; the black
dashed line corresponds to Eq. (1).

d 〈ni〉 Theoretical value Monte Carlo

1 λ 1 1.001± 10−3

2 λ 1 0.995± 3× 10−3

3 λ 1 1.03± 2× 10−2

TABLE II: The average number of intersections 〈ni〉. Monte
Carlo simulation results are obtained with L = 80 and λ = 1
for any dimension d.

C. The inradius distribution

The inradius rin is defined as the radius of the largest
sphere that can be contained in a (convex) polyhedron,
and as such represents a measure of the linear size of
the polyhedron [13]. The probability density of the in-
radius is exactly known in any dimension d for Poisson
geometries of infinite size: it turns out that rin has an
exponential distribution, namely,

P(rin) = Λde−Λdrin , (7)

where the dimension-dependent constant Λd reads Λ1 =
2λ, Λ2 = πλ, and Λ3 = 4λ. In principle, it would be pos-
sible to analytically determine the coordinates of the cen-
ter and the radius of the largest contained sphere, once
the equations of the (d − 1)-hyperplanes defining the d-
polyhedron are known [37]. We have however chosen to
numerically compute the inradius by resorting to a linear
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FIG. 6: (Color online) The probability density P(rin|L) of
the inradius as a function of the system size L and of the
dimension d. Symbols correspond to Monte Carlo simulation
results. For d = 1, red squares denote L = 5 and blue pluses
L = 40. For d = 2, red crosses denote L = 5 and blue
diamonds L = 40. For d = 3, red circles denote L = 5
and blue triangles L = 40. The black dashed lines represent
the asymptotic (i.e., L → ∞) distribution in Eq. (7). Inset.
Comparison between P(rin|L) for a typical polyhedron (blue
triangles) and P0(rin|L) for the polyhedron containing the
origin (green circles), for d = 3 and L = 40. The dashed line
represents the asymptotic distribution in Eq. (7).

programming algorithm. For a given realization of a Pois-
son geometry, we select in turn a convex d-polyhedron:
this will be formally defined by a set x ∈ Rd such that

aTi x ≤ bi (1 ≤ i ≤ q), (8)

where q is the number of (d− 1)-hyperplanes composing
the surface of the d-polyhedron. The inradius rin can be
then computed based on the Chebyshev center (x, rin) of
the d-polyhedron, which can be found by maximising rin

with the constraints

∀i ∈ {1, 2, ..., q}, aTi x + rin||ai|| ≤ bi (9)
rin > 0. (10)

This maximisation problem has been finally solved by
using the simplex method [38].

The results of the Monte Carlo simulation for rin are
shown in Fig. 6 as a function of L and d. The case
d = 1 is straightforward, since the inradius simply co-
incides with the half-length of the 1-polyhedron. For any
finite L, the numerical distributions suffer from finite-size
effects, analogous to those affecting the distributions of
the segment lengths `: in particular, a cut-off appears at
rin = L/2. As λL � 1, finite-size effects fade away and
the numerical distributions converge to the expected ex-
ponential behaviour. The convergence rate as a function
of the system size L is weakly dependent on the dimen-
sion d. The asymptotic average inradius for L → ∞
yields 〈rin〉 = 1/Λd: the Monte Carlo simulation results
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FIG. 7: (Color online) The probability density P(Yd|L) of
the dimensionless d-volume Yd = Vd/〈Vd〉 as a function of the
linear size L of the domain and of the dimension d. Black
inverted triangles denote a system size L = 40 for d = 1. For
d = 2, purple diamonds are chosen for a system size L = 40
and orange squares for L = 10. For d = 3, blue crosses are
chosen for a system size L = 40, red circles for L = 10 and
grey triangles for L = 5. For d = 1, the asymptotic (i.e., L→
∞) exponential distribution given in Eq. (1) is displayed as a
black dashed line. For d = 2 and d = 3, dashed lines denote
exponential decay. Inset. Comparison between P(Vd|L) for
a typical polyhedron (blue triangles) and P0(Vd|L) for the
polyhedron containing the origin (green circles), for d = 3.

obtained for a large L = 80 are compared to the the-
oretical formulas in Tab. III, with the same simulation
parameters as above.

D. The volume distribution

One of the most important physical observables related
to the stochastic geometries is the distribution P(Vd)
of the d-volumes Vd of the polyhedra. For d = 1, this
distribution coincides with that of the segment lengths,
P(`), which means that the approach to the limit case
of infinite domains follows from the same arguments as
above. Unfortunately, the functional form of the distri-
bution P(Vd) is not known for d > 1 [13, 30, 31]. We have
thus resorted to Monte Carlo simulation so as to assess
the impact of the domain size L and of the dimension

d 〈rin〉 Theoretical value Monte Carlo

1 1/2λ 0.5 0.50009± 6× 10−5

2 1/πλ 0.31831 0.31795± 9× 10−5

3 1/4λ 0.25 0.2499± 4× 10−4

TABLE III: The average inradius 〈rin〉. Monte Carlo simu-
lation results are obtained with L = 80 and λ = 1 for any
dimension d.
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FIG. 8: (Color online) The dimensionless first moment
〈Y 1
d |L〉 = 〈V 1

d |L〉/〈V 1
d 〉 of the d-volume, as a function of the

system size L and of the dimension d. Monte Carlo sim-
ulation results are displayed as symbols, with dashed lines
lines to guide the eye for d = 2 and d = 3. For d = 1, the
solid line represents the exact formula given in Eq. (5). Red
diamonds denote d = 1; green circles denote d = 2; blue
triangles denote d = 3. Inset. The dimensionless moments
〈Y md |L〉 = 〈V md |L〉/〈V md 〉 of the d-volume, for m = 1, 2, 3, as
a function of the system size L, for d = 1 and d = 2. Monte
Carlo simulation results are displayed as symbols, with dashed
lines lines to guide the eye for d = 3. For d = 1, the solid
line represents the exact formula given in Eq. (5). For d = 1,
red diamonds denote m = 1; red pluses denote m = 2; red
inverted triangles denote m = 3. For d = 3, blue triangles de-
note m = 1; blue crosses denote m = 2; blue squares denote
m = 3.

d on P(Vd|L) for finite L. In order to compare the re-
sults for different d, we found convenient to introduce the
dimensionless variable Yd = Vd/〈Vd〉, where the asymp-
totic average d-volume size is estimated by Monte Carlo
for large L. The numerical findings are shown in Fig. 7.
It is apparent that for λL� 1 the distributions P(Yd|L)
approach an asymptotic shape. The rate of convergence
as a function of L decreases with increasing d, which is
expected on physical grounds because the complexity of
the geometries grows as ∼ Ld. The tails of P(Yd) for
large values of the argument Yd also depend on d: for
d = 1, P(Yd) ∼ exp(−Yd), whereas for d > 1 the tail ap-
pears to be increasingly slower as a function of d. Due to
poor statistics for very large values of Yd, we are not able
to precisely characterize the asymptotic decay of P(Yd).
It seems however that for d > 1 the tail is not purely
exponential, and that power law corrections might thus
appear.

Supplementary information can be retrieved from the
analysis of the m-th moments 〈V md 〉, for which exact re-
sults are available in the case m = 1, 2 and 3 for infinite
domains [13, 30–32]. The convergence of the dimension-
less moments 〈Y md |L〉 = 〈V md |L〉/〈V md 〉 to the limit case
as a function of L is displayed Fig. 8. The convergence

to the asymptotic value limL→∞〈Y md |L〉 = 1 is increas-
ingly slower as a function of L as d increases, whereas
the order m of the moments has a weak impact on the
convergence rate. The Monte Carlo simulation results for
the asymptotic m-th moments 〈V md 〉 obtained for a large
L = 80 are finally compared to the theoretical formulas
in Tab. IV for 〈Vd〉, in Tab. V for 〈V 2

d 〉, and in Tab. VI for
〈V 3
d 〉, respectively, with the same simulation parameters

as above.

d 〈Vd〉 Theoretical value Monte Carlo

1 1/λ 1 1.0002± 10−4

2 4/πλ2 1.27324 1.2703± 7× 10−4

3 6/πλ3 1.90986 1.91± 10−2

TABLE IV: The average d-volume size 〈Vd〉. Monte Carlo
simulation results are obtained with L = 80 and λ = 1 for
any dimension d.

d 〈V 2
d 〉 Theoretical value Monte Carlo

1 2/λ2 2 2.0007± 5× 10−4

2 8/λ4 8 7.9609± 9× 10−4

3 48/λ6 48 47.7± 0.5

TABLE V: The second moment 〈V 2
d 〉 of the d-volume. Monte

Carlo simulation results are obtained with L = 80 and λ = 1
for any dimension d.

d 〈V 3
d 〉 Theoretical value Monte Carlo

1 6/λ3 6 6.003± 3× 10−3

2 256π/7λ6 114.893 114.1± 0.2

3 1344π/λ9 4222.3 4144± 75

TABLE VI: The third moment 〈V 3
d 〉 of the d-volume. Monte

Carlo simulation results are obtained with L = 80 and λ = 1
for any dimension d.

E. The moments of the surfaces

The analysis of the d-surfaces Ad of the d-polyhedra
is also of utmost importance, in that it provides infor-
mation on the interface between the constituents of the
geometry (see for instance the considerations in [31]). We
have then computed the first few moments 〈Amd 〉 of the d-
surfaces by Monte Carlo simulation. Results are recalled
in Tab. VII, where we compare the numerical findings for
large L = 80 to the exact formulas for infinite domains.
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〈Amd 〉 Theoretical value Monte Carlo

〈A2〉 4/λ 4 3.995± 10−3

〈A2
2〉 (2π2 + 8)/λ2 27.74 27.67± 2× 10−2

〈A3〉 24/πλ2 7.64 7.63± 2× 10−2

〈A2
3〉 240/λ4 240 239.5± 1.7

TABLE VII: The moments 〈Amd 〉 of the d-surface of the d-
polyhedra. Monte Carlo simulation results are obtained with
L = 80 and λ = 1 for any dimension d.

F. The moments of the outradius

The outradius rout is defined as the radius of the small-
est sphere enclosing a (convex) polyhedron, and can be
thus used together with the inradius so as to characterize
the shape of the polyhedra. For d = 1, the outradius coin-
cides with the inradius. The probability density and the
moments of the outradius of Poisson geometries for d > 1
are not known. We have then numerically computed the
moments of the outradius by resorting to an algorithm
recently proposed in [39]. This algorithm implements a
pivoting scheme similar to the simplex method for linear
programming. It starts with a large d-ball that includes
all vertices of the convex d-polyhedron and progressively
shrinks it [39]. For reference, the Monte Carlo simula-
tion results for the first few moments of rout obtained
for a large L = 80 are given in Tab. VIII, with the same
simulation parameters as above: these numerical findings
might inspire future theoretical advances.

d Monte Carlo

2 〈rout〉 0.8444± 2× 10−4

2 〈r2out〉 1.2291± 7× 10−4

3 〈rout〉 1.153± 2× 10−3

3 〈r2out〉 2.127± 7× 10−3

TABLE VIII: The moments 〈rmout〉 of the outradius in dimen-
sion d. Monte Carlo simulation results are obtained with
L = 80 and λ = 1 for any dimension d.

G. The polyhedron containing the origin

So far, the properties of the constituents of the Poisson
geometries have been derived by assuming that each d-
polyhedron has an identical statistical weight (for a pre-
cise definition, see, e.g., [24, 29, 30, 32]). It is also possi-
ble to attribute to each d-polyhedron a statistical weight
equal to its d-volume. It can be shown that the statistics
of any observable related to the d-polyhedron containing
the origin O obeys this latter volume-weighted distribu-
tion [29]. This surprising property can be understood by
following the heuristic argument proposed by Miles [24]:
the origin has greater chances of falling within a larger
rather than a smaller volume. In particular, for the mo-

ments 〈X〉0 of the d-polyhedron containing the origin we
formally have

〈X〉0 =
〈VdX〉
〈Vd〉

, (11)

where X denotes an arbitrary observable [29]. We have
carried out an extensive analysis of the moments of
the features of the d-polyhedra containing the origin by
Monte Carlo simulation: numerical findings for the most
relevant quantities are reported in Tab. IX. For some
of the computed quantities, such as the average inradius
〈rin〉0 or the average outradius 〈rout〉0, exact results are
not available, and our numerical findings may thus sup-
port future theoretical investigations.

The full distribution P0(rin|L) of the inradius of the
d-polyhedron containing the origin has been estimated,
and is compared to P(rin|L) for the inradius of a typical
polyhedron of the tessellation in the inset of Fig. 6 for
d = 3 and a large system size L = 40: it is immediately
apparent that 〈rin〉0 > 〈rin〉. Moreover, the behaviour
of the two distributions for small rin is also different:
for L → ∞, P(rin|L) attains a finite value for rin → 0
due to its exponential shape; on the contrary, our Monte
Carlo simulations seem to suggest a power-law scaling
P0(rin|L) ∼ rαd

in for rin → 0, with αd = 1 + (d− 1)/2.
The distribution P0(Vd|L) of the d-volume of the d-

polyhedron containing the origin has been also computed,
and is compared to P(Vd|L) for the d-volume of a typical
polyhedron of the tessellation in the inset of Fig. 7 for
d = 3 and a large system size L = 40. Again, 〈Vd〉0 >
〈Vd〉.

d Formula Theoretical value Monte Carlo

1 〈V1〉0 2/λ 2 2.000± 10−3

1 〈V 2
1 〉0 6/λ2 6 6.001± 9× 10−3

2 〈V2〉0 2π/λ2 6.28319 6.28± 2× 10−2

2 〈V 2
2 〉0 64π2/7λ4 90.2364 90.6± 0.9

2 〈A2〉0 π2/λ 9.8696 9.87± 2× 10−2

2 〈rin〉0 0.886± 2× 10−3

2 〈rout〉0 2.028± 3× 10−2

3 〈V3〉0 8π/λ3 25.1327 25.3± 0.9

3 〈V 2
3 〉0 224π2/λ6 2210.79 2129.1± 182

3 〈A3〉0 16π/λ2 50.2655 50.6± 1.0

3 〈rin〉0 0.89± 10−2

3 〈rout〉0 3.11± 3× 10−2

TABLE IX: Moments of the d-polyhedron containing the ori-
gin. Monte Carlo simulation results are obtained with L = 80
and λ = 1 for any dimension d.

H. Other moments and correlations

A number of moments and correlations of other physi-
cal observables are exactly known for Poisson geometries
of infinite size for d = 2 and d = 3. For the sake of
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completeness, our Monte Carlo estimates corresponding
to these quantities are reported in Appendix A. When
analytical results are not known, Monte Carlo simulation
findings are displayed for reference.

IV. COLOURED GEOMETRIES

So far, we have addressed the statistical properties
of Poisson geometries based on the assumption that all
polyhedra share the same physical properties, i.e., the
medium is homogeneous. In many applications, the poly-
hedra emerging from a random tessellation are actually
characterized by different physical properties, which for
the sake of simplicity can be assumed to be piece-wise
constant over each volume. Such stochastic mixtures can
be then formally described by assigning a distinct ‘label’
(also called ‘color’) to each polyhedron of the geometry,
with a given probability p. A widely studied model is
that of stochastic binary mixtures, where only two labels
are allowed, say ‘red’ and ‘blue’, with associated comple-
mentary probabilities p and 1− p [19].

Stochastic mixtures are realized by resorting to the fol-
lowing procedure: first, a d-dimensional Poisson geome-
try is constructed by resorting to the algorithm detailed
in Sec. II. Then, the corresponding coloured geometry is
immediately obtained by assigning to each polyhedron a
label with a given probability. Adjacent polyhedra shar-
ing the same label are finally merged. For the specific
case of binary stochastic mixtures, this gives rise to (gen-
erally) non-convex red and blue clusters, each composed
of a random number of convex polyhedra. For illustra-
tion, some examples of binary stochastic mixtures based
on coloured Poisson geometries are provided in Fig. 9 by
Monte Carlo simulation, for a three-dimensional box of
side L = 20 and different values of λ and p.

By increasing p, the size of the red clusters also in-
creases, and a large red cluster spanning the entire box
may eventually appear for p > pc, where pc is some crit-
ical probability value. In this case, the red clusters are
said to have attained the percolation threshold [33]. The
same argument applies also to the blue clusters: in par-
ticular, depending on the kind of underlying stochastic
geometry and on the dimension d, there might exist a
range of probabilities p for which both coloured clusters
can simultaneously percolate.

Percolation theory has been intensively investigated for
the case of regular lattices [33]. Although less is compar-
atively known for percolation in stochastic geometries,
remarkable results have been nonetheless obtained in re-
cent years for, e.g., Voronoi and Delaunay tessellations in
two dimensions [40–42], whose analysis demands great in-
genuity (see, e.g., [43–45]). The percolation properties of
two-dimensional isotropic Poisson geometries have been
first addressed in [34], where the percolation threshold pc
and the fraction of polyhedra pertaining to the percolat-
ing cluster were numerically estimated by Monte Carlo
simulation. In the following, we will focus on the case

FIG. 9: (Color online) Examples of Monte Carlo realizations
of coloured isotropic Poisson geometries restricted to a three-
dimensional box of linear size L. For all realizations, we have
chosen L = 20. The geometry at the top (a) has λ = 0.3 and
p = 0.5; the geometry in the center (b) has λ = 1 and p = 0.5;
the geometry at the bottom (c) has λ = 1 and p = 0.25.

of three-dimensional isotropic Poisson geometries, with
special emphasis on the transition occurring at p = pc.

A. Percolation threshold

To fix the ideas, we will consider the percolation prop-
erties of the red clusters in the geometry. The results for
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FIG. 10: (Color online) Monte Carlo simulation of the per-
colation probability PC(p|L) for d = 3 as a function of the
colouring probability p and of the system size L. Purple
crosses represent L = 30, green diamonds L = 40, orange
squares L = 60, blue triangles L = 80, and red circles
L = 100. Curves have been added to guide the eye. The
estimated pc is displayed as a dashed line, with confidence er-
ror bars drawn as thinner dashed lines. For all sizes L we have
generated 103 realizations, with the exception of L = 100, for
which 5× 102 realizations were generated.

blue clusters can be easily obtained by using the symme-
try p → 1 − p. For infinite geometries, the percolation
threshold pc is defined as the probability of assigning a
red label to each d-polyhedron above which there exists
a giant connected cluster, i.e., an ensemble of connected
red d-polyhedra spanning the entire geometry [33]. The
percolation probability PC(p), i.e., the probability that
there exists such a connected percolating cluster, has thus
a step behaviour as a function of the colouring probabil-
ity p, i.e., PC(p) = 0 for p < pc, and PC(p) = 1 for
p > pc. Actually, for any finite L, there exists a finite
probability that a percolating cluster exists below p = pc,
due to finite-size effects.

The case d = 1 is straightforward and can be solved
analytically: PC(p) simply coincides with the probability
that all the segments composing the Poisson geometry on
the line are coloured in red. For any finite L, this happens
with probability

PC(p|L) = pe−(1−p)λL. (12)

It is easy to understand that for d = 1 we have pc = 1.
For very large L→∞, PC(p|L) converges to a step func-
tion, with PC(p) = 1 for p = pc and PC(p) = 0 other-
wise. This behaviour is analogous to that of percolation
on one-dimensional lattices [33].

To the best of our knowledge, exact results for the per-
colation probability for Poisson geometries in d > 1 are
not known. The percolation threshold can be numerically
estimated by determining pc at finite L and extrapolat-
ing the results to the limit behaviour for L → ∞. The

10-4

10-3

10-2

10-1

100

0 5 10 15 20 25 30

FIG. 11: (Color online) Monte Carlo simulation of the seg-
ment length distributions Pr(`|L) and P†r (`|L) for d = 3 as
a function of the colouring probability p. Purple crosses rep-
resent Pr(`|L) with p = 0.2; blue triangles: Pr(`|L) with
p = 0.6; red diamonds: Pr(`|L) with p = 0.8. Green circles
denote the segment length distribution P†r (`|L) for p = 0.2.
All simulations have been performed for a system size L = 40
and 5 × 103 realizations. For each p, the black dashed lines
correspond to the exponential distribution Pr(`|L) given in
Eq. (13).

value of pc for two-dimensional isotropic Poisson geome-
tries has been estimated to be pc ' 0.586 ± 10−3 by
means of Monte Carlo simulation [34]. This means that
pc for Poisson geometries in d = 2 is quite close to the
percolation threshold of two-dimensional regular square
lattices, which reads psquare

c ' 0.5927 [46]. The compari-
son with respect to regular square lattices might nonethe-
less appear somewhat artificial, since the features of the
constituents of Poisson geometries have broad statistical
distributions around their average values. In particu-
lar, the typical 2-polyhedron of infinite Poisson geome-
tries, while having the same average number of sides as a
square (see Tab. XI), does not share the same surface-to-
volume ratio χ, which is a measure of the connectivity of
the geometry components: for the 2-polyhedron we have
χ = 〈A2〉/〈V2〉 = π for λ = 1, whereas for a square of side
u we have χ = 4/u, which for u equal to the average side
of the 2-polyhedron, namely u = 〈A2〉/〈N〉 = 1, yields
χ = 4.

Simulation results for the probability PC(p|L) in three-
dimensional Poisson geometries are shown in Fig. 10 as a
function of p, for various system sizes L. As L increases,
the shape of PC(p|L) converges to a step function, as
expected. Based on the Monte Carlo results, we were
able to estimate a confidence interval for the percolation
threshold, which lies close to pc = 0.290 ± 7 × 10−3. As
expected, pc decreases as dimension increases, since the
probability that a red cluster can make its way through
the blue clusters (acting as obstacles) and eventually
reach the opposite side of the box also increases with
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FIG. 12: (Color online) Monte Carlo simulation of the seg-
ment length distributions Pr(`) and P†r (`) for d = 3 and
L = 40 as a function of the colouring probability p. Grey
squares denote Pr(`|L) for p = 0.6 and red circles denote
Pr(`|L) for p = 0.8. Purple crosses denote P†r (`) for p = 0.6,
green diamonds P†r (`) for p = 0.8, blue triangles P†r (`|L) for
p = 0.95. The dashed curve corresponds to the chord length
distribution hI(`|L) of a cube, as given in Eq. (14). Inset. Ef-
fects of system size L for fixed p = 0.8. Black squares denote
Pr(`|L) for L = 20; red circles denote Pr(`|L) for L = 40.
Orange triangles denote P†r (`|L) for L = 20; green diamonds
denote P†r (`|L) for L = 40. The chord length distribution
hI(z), z = `/L, is displayed as a dotted curve for L = 20; and
as a dashed curve for L = 40.

dimension. For comparison, our estimate of pc for Pois-
son geometries lies close to the percolation threshold
for three-dimensional regular cubic lattices, which reads
pcube
c ' 0.3116 [47]. This difference might again be ex-

plained by noting that the typical 3-polyhedron of infi-
nite Poisson geometries has the same number of vertices
(nv = 8), edges (ne = 12) and faces (nf = 6) as a cube
(see Tab. XII), but it does not share the same surface-to-
volume ratio χ. The 3-polyhedron has χ = 〈A3〉/〈V3〉 = 4
for λ = 1, whereas for a cube we have χ = 6/u = 6 by
assuming an average side u = l3/ne = 1. For d = 3, the
estimated pc for Poisson geometries is also very close to
that of continuum percolation models based on spheres,
whose threshold reads psphere

c ' 0.2895 [48]; this is not
true for d = 2, where the threshold for continuum perco-
lation models based on disks yields pdisk

c ' 0.676339 [49].

B. Segment length distributions

In coloured geometries, the distribution of the seg-
ment lengths cut by the (d−1)-hyperplanes can be quite
naturally conditioned to the colour of the d-polyhedra.
Two possible ways of defining such conditioned prob-
ability densities actually exist. Suppose that a line is
randomly drawn as before, and that we are interested
in assessing the statistics of the segments crossing the

red d-polyhedra. Then, one can either assume that the
counter for the lengths is re-initialized each time that
the line crosses a red region (coming from a blue region),
regardless of whether the newly crossed region belongs
to an already traversed cluster (this is possible since the
coloured clusters are generally non-convex); or, one can
sum up all the segments crossing red d-polyhedra per-
taining to the same non-convex cluster. These two defi-
nitions give rise to distinct distributions Pc(`) and P†c (`),
respectively, where the index c can take the values red (r)
and blue (b). In the former case, it can be shown that
for domains of infinite size the segment lengths obey

Pr(`) = λre
−λr`,

Pb(`) = λbe
−λb`, (13)

respectively, where λr = (1−p)λ and λb = pλ, which can
be interpreted as a generalization of the Markov property
holding for un-coloured Poisson geometries [34]. Monte
Carlo simulation results corresponding to this former def-
inition are illustrated in Fig. 11 for different values of the
probability p: for large λL � 1, the obtained probabil-
ity densities of the segment lengths conditioned to red
polyhedra asymptotically converge to the expected ex-
ponential density Pr(`) given in Eq. (13). The average
segment length 〈`〉r has been also computed as a func-
tion of p: numerical findings are reported in Tab. X and
compared to the exact result 〈`〉r = 1/λr = 1/(1− p) for
λ = 1.

For the latter definition, the exact functional form
P†c (`) is not known. For p � pc, it turns out that
P†r (`) ' Pr(`) (see Fig. 11); on the contrary, for p � pc
the probability density P†r (`) largely differs from Pr(`)
and depends on the system size L (see Figs. 12 and 13).
This behaviour is due to the shape of the clusters in the
geometry: for small p, most red clusters are composed of
a small number of d-polyhedra, and are thus still typically
convex. As p increases, there is an increasing probability
for a random line to cross non-convex red clusters, and
the shape of P†r (`) correspondingly drifts away from that
of Pr(`). Eventually, for p → 1, the entire domain will
be coloured in red, and P†r (`) converges to the probabil-
ity density hI(z) of the chord through a d-box of side L,
which for our choice of lines obeying the I-randomness is
given by [36]

2πLhI(z) =


8z − 3z2 if 0 < z ≤ 1
f(z) if 1 < z ≤

√
2

g(z) if
√

2 < z ≤
√

3,
(14)

with z = `/L, where

f(z) =
6z4 + 6π − 1− 8

[
2z2 + 1

]√
z2 − 1

z2

and

g(z) =
8
[
z2 + 1

]√
z2 − 2 + 6π − 5− 3z4

z2

− 24
z2

tan−1
√
z2 − 2.
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The average segment lengths corresponding to P†r (`) have
been also computed as a function of p, and are reported
in Tab. X.

C. Average cluster size

For percolation on lattices, the average cluster size
S(p) is defined by

S(p) =
∑
s

sws, (15)

where ws is the probability that the cluster to which a
red site belongs contains s sites, and the sum is restricted
to sites belonging to non-percolating clusters [33]. Now,
ws ∝ sns(p), where ns(p) is the number of clusters
of size s per lattice site, which means that S(p) ∝∑
s s

2ns(p) [33]. Close to the percolation threshold, S(p)
is known to behave as S(p) ∝ |p − pc|−γ for infinite lat-
tices, where γ is a dimension-dependent critical exponent
that does not depend on the specific lattice type [33]. For
finite lattices of linear size L, the behaviour of S(p|L)
close to p → p−c is dominated by finite-size effects, with
a scaling S(p|L) ∝ Lγ/ν , where ν is another dimension-
dependent critical exponent that does not depend on the
specific lattice type [33].

In order to adapt the definition in Eq. (15) to the cal-
culation of average cluster size of the Poisson geometries,
we can either compute the sum by weighting each d-
polyhedron composing a non-percolating cluster by its
volume, or by attributing to each constituent an equal
unit weight. The former choice seems more appropri-
ate on physical grounds. We have computed the quan-
tity S(p|L) by Monte Carlo simulation by weighting each
polyhedron by its volume: numerical results as a func-
tion of the colouring probability p and of the system size

p 1/λr 〈`|L〉r (i) 〈`|L〉r (ii)

0.1 1.11111 1.08± 2× 10−2 1.09± 2× 10−2

0.2 1.25 1.20± 2× 10−2 1.27± 2× 10−2

0.25 1.33333 1.28± 2× 10−2 1.46± 2× 10−2

0.3 1.42857 1.38± 2× 10−2 2.25± 4× 10−2

0.35 1.53846 1.52± 2× 10−2 6.0± 0.1

0.4 1.66667 1.64± 2× 10−2 10.7± 0.2

0.6 2.5 2.49± 3× 10−2 28.8± 0.4

0.8 5 4.89± 7× 10−2 41.4± 0.5

0.9 10 9.6± 0.2 46.2± 0.6

TABLE X: The average segment length 〈`|L〉r restricted to
the red clusters, as a function of the colouring probability p.
Monte Carlo simulation results are obtained by either follow-
ing the prescriptions coherent with Pr(`) (marked with i), or
with P†r (`) (marked with ii). In both cases, we used L = 60,
with 103 realizations. For reference, the exact result corre-
sponding to prescription (i), namely, 1/λr = 1/(1− p) is also
reported.
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FIG. 13: (Color online) The average cluster size S(p|L) as
a function of the colouring probability p and of the system
size L. Purple crosses represent L = 10, green diamonds
L = 20, orange squares L = 30, blue triangles L = 40, and
red circles L = 60. Curves have been added to guide the eye.
The estimated pc is displayed as a dashed line for reference.
For all sizes L we have generated 103 realizations. Inset. The
behaviour of S(p|L) as a function of p−p∗c , where p∗c is our best
estimate for the percolation threshold, namely, p∗c = 0.290.
Blue triangles correspond to L = 40 and red circles to L =
60. The dashed line corresponds to the power law scaling
S(p) ∝ |p− pc|−γ , with γ = 1.793.

L are shown in Fig. 13. The shape of S(p|L) is similar
to that obtained for percolation on regular lattices (see,
for instance, [33]), and it displays in particular a diver-
gence for p close to the percolation threshold. Far from
the value of pc estimated above, the curves S(p|L) do not
depend on the system size, provided that L is large. For
p � pc, S(p|L) → 0. For p → 0, numerical evidences
show that S(p|L) → 〈V3〉0, which is coherent with the
volume-weighted average that we have introduced in or-
der to compute the mean cluster size.

Close to pc, S(p|L) suffers from strong finite-size ef-
fects, which are coherent with the behaviour of S(p|L)
for regular lattices. The inset of Fig. 13 illustrates the
scaling of S(p|L) as a function of p − p∗c , where p∗c is
our best estimate for the percolation threshold, namely,
p∗c = 0.290. We have examined different values of the
system size, namely, L = 40 and L = 60. As L increases,
S(p|L) shows a power law behaviour with an exponent
that is compatible with the universal critical exponent
γ = 1.793 for dimension d = 3 [33].

D. Strength of the percolating cluster

We conclude our investigation of the percolation prop-
erties by addressing the behaviour of the so-called
strength P (p), which for percolation on lattices is de-
fined as the probability that an arbitrary site belongs
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FIG. 14: (Color online) The percolation strength P (p|L) as
a function of the colouring probability p and of the system
size L. Purple crosses represent L = 10, green diamonds
L = 20, orange squares L = 30, blue triangles L = 40, and
red circles L = 60. Curves have been added to guide the eye.
The estimated pc is displayed as a solid line for reference.
For all sizes L we have generated 103 realizations. Inset. The
behaviour of P (p|L) as a function of p−p∗c , where p∗c is our best
estimate for the percolation threshold, namely, p∗c = 0.290.
Blue triangles correspond to L = 40 and red circles to L =
60. The dashed line corresponds to the power law scaling
P (p) ∝ (p− pc)β , with β = 0.4181.

to the percolating cluster [33]. Close to the percolation
threshold, for infinite lattices P (p) is known to behave as
P (p) ∝ (p− pc)β when p→ p+

c , where β is a dimension-
dependent critical exponent that does not depend on the
specific lattice type [33]. For finite lattices of linear size
L, the behaviour of P (p|L) close to p = pc is dominated
by finite-size effects, with a scaling P (p|L) ∝ L−β/ν [33].

The strength of Poisson geometries can be again com-
puted by either weighting each d-polyhedron composing
the percolating cluster by its volume, or by attributing
to each constituent an equal unit weight. Monte Carlo
simulation results of P (p|L) corresponding to weighting
each polyhedron by its volume are shown in Fig. 14, as a
function of the colouring probability p and of the system
size L. Analogously as in the case of S(p|L), the shape
of the strength P (p|L) is also similar to that obtained for
percolation on regular lattices [33]. Far from the value of
pc estimated above, the curves P (p|L) do not depend on
the system size, provided that L is large. In particular,
for p� pc the entire geometry will be coloured in red, so
that we obtain a linear scaling P (p|L) ∝ p for the proba-
bility of belonging to the percolating cluster. For p� pc,
P (p|L) falls off rapidly to zero. Close to pc, P (p|L) dis-
plays strong finite-size effects, which are again coherent
with the behaviour of P (p|L) for regular lattices. The
inset of Fig. 14 shows the scaling of P (p|L) as a function
of p − p∗c for different values of the system size, namely,
L = 40 and L = 60. As L increases, P (p|L) displays a

power law behaviour with an exponent that is compat-
ible with the universal critical exponent β = 0.4181 for
dimension d = 3 [33].

V. CONCLUSIONS

In this paper we have examined the statistical prop-
erties of isotropic Poisson stochastic geometries by re-
sorting to Monte Carlo simulation. First, we have ad-
dressed the scaling of the key features of the random
d-polyhedra composing the geometry, encompassing the
volume, the surface, the inradius, the crossed lengths,
and so on, as a function of the system size and of the di-
mension. When possible, we have compared the results
of our Monte Carlo simulations for very large systems to
the exact findings that are known for infinite geometries.
When exact asymptotic results were not available from
literature, we have provided accurate numerical estimates
that could support future theoretical advances.

Then, we have considered the case of binary mixtures
of Poisson geometries, where each d-polyhedron is as-
signed a random label with two possible values. All ad-
jacent polyhedra sharing the same label have been re-
grouped into possibly non-convex clusters, whose statisti-
cal features have been characterized for the case of three-
dimensional geometries. We have in particular examined
the percolation properties of this prototype model of dis-
ordered systems: the probability that a cluster spans the
entire geometry, the probability that a given polyhedron
belongs to a percolating cluster (the so-called strength),
and the average cluster size. We have been able to deter-
mine the corresponding percolation threshold, namely,
pc ' 0.290 ± 7 × 10−3, which lies close to that of per-
colation on regular cubic lattices. An analogous result
had been previously established for the two-dimensional
Poisson geometries, where the percolation threshold had
been also found to lie close to that of regular square lat-
tices. The critical exponents associated to the percola-
tion strength and to the average cluster size have been
finally determined, and were found to be compatible with
the theoretical values β ' 0.4181 and γ ' 1.793, respec-
tively, that are conjectured to be universal for percolation
on lattices. Future work will be aimed at refining these
Monte Carlo estimates.

Appendix A: Other moments and correlations
related to Poisson geometries

For the sake of completeness, in this Appendix we re-
port the exhaustive Monte Carlo calculations correspond-
ing to other relevant moments and correlations for the
physical observables of Poisson geometries of infinite size,
in dimension d = 2 and d = 3. The case of ‘typical’
d-polyhedra and that of d-polyhedra containing the ori-
gin are separately considered. When analytical results
are known (from [13, 30–32]), our Monte Carlo estimates
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are compared to the exact values. Otherwise, numeri-
cal findings are provided for reference. Notation is as
follows. For the case of the 2-polyhedron, we denote N
the number of sides. For the 3-polyhedron, we denote
l3 the total length of edges, nv the number of vertices,
ne the number of edges, and nf the number of faces,
respectively. All other symbols have been introduced
above. The moments and the correlations are reported
in Tabs. XI - XV. For the case d = 2 we have also com-
puted the fraction P3 of random polygons having 3 sides,
which yields 0.35505 ± 2 × 10−5 and the fraction P4 of
polygons having 4 sides, which yields 0.38148±3×10−5.
These estimates are to be compared with the exact re-
sults P3 = 2− π2/6 ' 0.35507 and

P4 = −1
3
− 7

36
π2 + π2 log(2)− 7

2
ζ(3) ' 0.38147, (A1)

respectively [50], where ζ is the Riemann Zeta func-
tion [35].

Formula Theoretical value Monte Carlo

〈N〉 4 4 4± 0

〈N2〉 (π2 + 24)/2 16.9348 16.9347± 10−4

〈NA2〉 (π2 + 8)/λ 17.870 17.848± 5× 10−3

〈NV2〉 2π/λ2 6.283 6.268± 3× 10−3

〈NV 2
2 〉 16(8π2 − 21)/21λ4 44.16 43.94± 5× 10−2

〈A2V2〉 4π/λ3 12.57 12.52± 10−2

〈A2V 2
2 〉 256π2/21λ5 120.3 119.6± 0.2

〈r2in〉 2/π2λ2 0.2026 0.2022± 10−4

TABLE XI: Moments and correlations of physical observables
related to two-dimensional Poisson geometries. Monte Carlo
simulation results are obtained with L = 80 and λ = 1.
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