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Laser‐induced breakdown spectroscopy (LIBS) is an analytical technique allowing the determination of elemental 
concentrations in a variety of matrices in the solid, liquid, and gaseous phases. Because of the inherent complexity of the 
signal and to the high dimensionality of experimental data, chemometrics has been more and more applied in LIBS to perform 
samples identification or quantitative measurements. But multivariate methods can also be used for the description and 
physical interpretation of the plasma, particularly to exploit the temporal dimension of the LIBS signal, which is usually 
neglected in spectrochemical measurements. In this work, time‐resolved spectra of a pure aluminum sample were treated 
with 2 methods, mean field‐independent components analysis and multivariate curve reso-lution–alternating least squares, 
applying non‐negativity constraints for scores and components in both cases. Results obtained were compared with reference 
univariate measurements of the emission of the species of interest (ions, neutral atoms, and molecules). The 
interpretation of scores and components provided a physical description of phenomena that take place between species 
in the plasma, like ionic recombination and molecules formation. Overall, mean field‐independent compo-nents analysis 
and multivariate curve resolution–alternating least squares yield equivalent solutions with our dataset. This new approach 
is very promising for the treatment of time‐resolved data obtained by LIBS.
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1 | INTRODUCTION

Laser‐induced breakdown spectroscopy (LIBS) is an analytical

technique that allows the determination ofa sample’s elemental

composition. A focused laser pulse induces a plasma at the

sample surface, and the emission spectrum of atoms, ions, or

molecules is detected and analyzed in the UV‐visible range.

The characteristics of LIBS, which include remote and rapid

analysis, no sample preparation, applicability to any type of

sample, and potential for field portability, make this quasi non-

destructive analytical technique a very attractive method.1,2

Laser‐induced breakdown spectroscopy has developed in

many fields, such as the nuclear industry,3 aerosols analysis,4

cultural heritage,5 biology,6 polymers,7 and metallurgy,8 and

the number of applications is still growing. The LIBS signal

stems from highly nonlinear, coupled phenomena driving the

sample laser ablation and the laser‐plasma interaction. It is

*Mean field‐independent components analysis and multivariate curve resolu-

tion–alternating least squares were used for the first time to describe the

temporal evolution of a laser‐induced aluminum plasma emission. When

non‐negativity constraints were applied both for scores and components, both

methods provided an equivalent description of phenomena that take place

between the species, like ionic recombination and formation of molecules.

This new approach is very promising for the treatment of time‐resolved data

obtained by laser‐induced breakdown spectroscopy.
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multi‐elemental, depends on time, and is amixture of the emis-

sion ofall species present in the plasma,which can interactwith

each other. From an instrumental point of view, LIBS spectra

are of large dimension, up to several tens of thousands of chan-

nels, and can be acquired in a very short time. This inherent

complexity of the LIBS signal, added to the high dimensional-

ity of the data, has soon stimulated the use of multivariate data

analysis methods to efficiently extract useful information from

the experimental spectra.

Hence, very recently, Zhang et al9 reviewed the use of

chemometric methods in qualitative and quantitative analysis

by LIBS and in spectral data preprocessing. The data prepro-

cessing methods in LIBS mainly consist of baseline correc-

tion,10,11 noise filtering,12,13 overlapping peak resolution,14

and data compression.15 Chemometric techniques have

proven efficient for samples identification and classification

by LIBS. To give only a few examples, principal components

analysis (PCA) and independent components analysis (ICA)

were successfully used for rocks discrimination.16,17 Partial

least squares–discriminant analysis was extensively devel-

oped for security purposes (identification of explosives and

chemical or biological warfare agents),18,19 as well as neural

networks.15 Soft independent modeling of class analogy was

used for the analysis of uranium concentrate20 and carbonate

grains.21 Now, the comparison of performances of different

techniques is a growing topic in LIBS, as shown by recent

papers on the subject.22,23 In quantitation by LIBS, chemo-

metric methods are used to cope with nonlinearities between

the emission signal and the concentration and with matrix

effects. Hence, partial least‐squares regression is currently

used to determine the elemental composition of Martian

rocks measured by the LIBS instrument onboard the Curios-

ity rover, and more advanced techniques are being devel-

oped.24 Artificial neural networks were used for on‐site

quantitative analysis of soils,25 for calibration of chrome

and nickel in steel,26 and to determine the concentration of

nickel and vanadium in vacuum residues of crude oils.27

More recent techniques were also tested by different authors,

such as support vector machines regression for slag samples

analysis9 or random forest regression for steel analysis.8 In

fact, so far chemometric methods have been exclusively used

in LIBS data analysis to perform samples identification or for

quantitative measurements, and it is now clear that in both

fields, chemometrics is becoming an essential tool.

However, LIBS spectra do not only contain chemical but

also physical information on the plasma. Some of its features,

such as the electron temperature and density, which can be

determined by standard spectroscopic methods,1 are key

parameters to understand its underlying physics. The use of

chemometrics in this field is in its infancy, but interesting

applications have already been published, with important

consequences for particular quantitation approaches.28,29

Among the different physical characteristics of the LIBS

signal, one crucial feature is its time dependence. Indeed,

LIBS measurements consist of time‐resolved and spectrally

resolved spectra of atomic and ionic lines emitted by the

plasma, on a microsecond time scale. Typically, the time

between the laser pulse and the start of the recording of

the plasma emission (gate delay) and the integration time

(gate width) are fixed for spectroscopic measurements. Sim-

ilarly, for kinetics studies, certain spectral lines are selected,

which can be a difficult task when dealing with complex

spectra. Therefore, either the temporal or spectral dimension

of the LIBS signal is usually neglected, although exceptions

can be found. As an example, Bohling et al showed that the

accuracy of identification of different materials is signifi-

cantly improved when the decay times of certain lines of inter-

est are added to the spectral intensity data as input variables of

a neural network.15,30

Several chemometric tools like PCA, ICA, or multivariate

curve resolution–alternating least squares (MCR‐ALS) were

successfully used by different authors to process time‐

resolved spectral data obtained by different techniques. Thus,

an approach based on PCA for analyzing time‐resolved X‐ray

absorption spectra was proposed by Smolentsev et al, which

allowed the determination of the local structure of intermedi-

ate forms of organometallic compounds during reactions as

well as the time dependence of their concentrations.31 By

analyzing the evolution of the mid infrared images as well

as the changes of oxidized products over time, using PCA,

Zhou et al proved that the dynamics of photooxidation of

polyolefin could be described.32 Independent components

analysis is becoming a method of choice to analyze tempo-

rally resolved data, such as in fluorescence spectroscopy,33

in functional magnetic resonance imaging,34 or in multichan-

nel time‐resolved absorption spectroscopy. For example,

Martin et al have used ICA to find linear decompositions of

multichannel time‐resolved absorption spectroscopy datasets

into physically meaningful components.35 Multivariate curve

resolution–alternating least squares was applied to many

types of data,36 but also to study time‐resolved data in Raman

spectroscopy,37 in X‐ray absorption spectroscopy,38 and in

infrared and UV‐visible spectroscopy.39,40 Ruckebusch et al

used chemometrics (evolving factor analysis, MCR‐ALS,

and hard– and soft–MCR‐ALS) to study time‐resolved spec-

tra in UV‐visible femtosecond transient absorption spectros-

copy, to identify an intermediate state of benzophenone,

and to determine its spectrokinetic properties.41

In this work, we propose to use ICA and MCR‐ALS to

explore simultaneously both the temporal and spectral dimen-

sions of the LIBS signal. Our fundamental objective is to

determine the potential of those multivariate methods for

the description and physical interpretation of the temporal

evolution of spectra, particularly in light of the kinetics of

ionic recombination and molecular formation within the

plasma. We underline that our approach is intended as unsu-

pervised and, as such, does not seek to incorporate any par-

ticular knowledge on the chemical system in the models. As

mentioned later, only a non‐negativity constraint for scores

and components, which has a clear physical meaning without
2



presupposing anything on the observed phenomena, was

introduced both in ICA and in MCR‐ALS. In doing this, we

are aware that we do not use the MCR‐ALS method at its full

potential, but on the other hand, this allows a more straight-

forward comparison of its performances to those of ICA.

Thus, the temporal evolution of the LIBS signal of a pure

aluminum sample was measured between 0.2 and 15 micro-

seconds after the laser pulse. The meaning of extracted scores

and components obtained by both techniques was then com-

pared to the standard univariate approach and discussed.

2 | EXPERIMENTAL

2.1 | Experimental setup

The LIBS setup is the MobiLIBS equipment (Ivea Solution,

France) using an Nd:YAG laser at 266 nm running at 20‐Hz

repetition rate and providing 5‐nanosecond (full width at half

maximum) pulses. The maximum laser pulse energy was

3 mJ, and the spot diameter at the sample surface was equal to

50 μm, leading to an irradiance of approximately 30GWcm−2.

The emission from the plasma was collected in the direc-

tion of the incident laser beam and transmitted through an

optical fiber to the entrance slit of an Echelle spectrometer

(Mechelle, Andor Technology, resolving power λ/Δλ = 4000)

equipped with an intensified charge‐coupled device camera

(iStar, Andor Technology).

In this work, a pure aluminum sample (198f, TechLab,

99.99% Al) was analyzed. To be able to study the temporal

behavior of the LIBS spectra, the delay time between the

laser pulse and the signal acquisition varied within the range

of 0.2 to 15 microseconds. The temporal gate width was

adapted to different delay times to improve the signal inten-

sity, which decreases when the plasma cools. Table 1 shows

the gate delay and width used.

A total of 25 spectra were acquired for each delay in the

spectral window between 200 and 900 nm (Figure 1). Each

spectrum resulted from the accumulation of 50 laser shots.

In addition, 2 pre‐pulses were used to be able to remove the

oxide layer (Al2O3) that was naturally formed at the sample

surface.42

2.2 | Spectral data

The laser‐induced plasma is inhomogeneous and transient

because of its expansion and its fairly rapid cooling. Thus,

the electron density and the plasma temperature undergo

major variations over time.

Figure 1 shows the spectra measured at different gate

delays after the laser pulse. We can see that the emission lines

spectrum from the early stage of the plasma is superimposed

on a relatively featureless continuous background emission

because of Bremsstrahlung radiation (collisions between free

electrons and excited atoms and ions) and radiative recombi-

nation of electrons with ions in the plasma.43

Then, following the decrease of the continuous radiation,

first, the aluminum ionic lines are observed followed by neu-

tral aluminum lines, and finally, molecular bands due to

recombination of the chemical species. Since the continuous

background and the elemental emission decay with different

temporal rates, it is possible to use time‐resolved detection

to discriminate informative signals from the strong continu-

ous radiation and also to avoid spectral interference between

species that emit at different times during the plasma decay.

Also, it can be noted that the lines at 308.2 and 309.3 nm

are reversed because of a very pronounced self‐absorption, ie,

absorption of photons emitted from the plasma core by colder

atoms located at its periphery. This phenomenon is all the

more pronounced that the element concentration in the

plasma is higher, that the energy of the lower level of the tran-

sition is lower, and that the Einstein coefficient of the transi-

tion is higher. Therefore, it is most probable for resonant lines

of major elements. When the delay increases, the lines

sharpen and reversal is less marked.

A very marked broadening and a spectral shift for lines at

256.8 and 257.6 nm are observed, related to the Stark effect.

This effect is the shifting and splitting of spectral lines due to

the presence of an electric field caused by the free electrons

present in the plasma in high density at short delay. The Stark

effect can lead to splitting of degenerate energy levels. It

increases with the plasma density.

It can also be seen that the lines at 308.2 nm (Ek= 4.02 eV,

gA = 2.35e + 08 s−1) and 309.3 nm (Ek = 4.02 eV,

gA = 4.37e + 08 s−1) last longer than the lines at 256.8 nm

(Ek = 4.82 eV, gA = 7.68e + 07 s−1) and 257.5 nm

TABLE 1 Gate delay and width after the laser pulse used for spectra

acquisition

Gate delay, μs Gate width, μs

0.2 0.1

0.3 0.1

0.4 0.1

0.5 0.1

0.6 0.1

0.7 0.1

0.8 0.1

0.9 0.1

1 0.1

1.1 0.3

1.4 0.3

1.7 0.3

2 0.5

2.5 0.5

3 0.5

3.5 1

4.5 1

5.5 1.5

7 3

10 5

15 10
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(Ek = 4.82 eV, 2.40e + 07 s−1) and this is because the upper

energy level (Ek) and the gA factor (A: Einstein coefficient

and g: degeneracy level) of the latter lines are higher, and

then they are harder to excite as the plasma cools down.

Therefore, the following lines, subject to a pronounced

self‐absorption leading to the line reversal, were eliminated

from the dataset: 308.22, 309.27, 394.40, and 396.15 nm.

The lines around 305 to 307 nm (305.01, 305.47, 305.71,

305.90, 305.99, 306.43, and 306.61 nm) located on the edge

of the 308.22‐nm line were also eliminated. The 266‐nm laser

line, visible on the spectra because of the persistence of the

intensifier, was also removed. Except for this removal of

some spectral regions, no preprocessing was applied to the

spectra before chemometric treatment. The final dataset was

composed of 525 spectra of 19 564 wavelength channels.

3 | CHEMOMETRIC METHODS

Two chemometric tools were applied in this study: mean field‐

independent components analysis (MFICA) and MCR‐ALS.

These tools are designed to decompose a spectrum into a linear

combination of synthetic spectra called components. The

coefficients of the linear combination are called scores. The

difference between the 2 methods lies in the criteria and

constraints used in the calculation.

3.1 | Independent components analysis

Independent components analysis is a statistical and computa-

tional technique for extracting source signals from their

mixtures. The observed signals are considered as weighted

sums of pure source signals, the weights being proportional

to the contribution of the corresponding pure signals to each

mixture.44,45 Therefore, the objective of ICA is to search for

the least Gaussian possible sources, ie, the most indepen-

dent.46–49 A number of ICA algorithms are to be found in

the study of Krishnaveni et al.49 In our case, we used the

MFICA algorithm.50 The particularities of MFICA are the

non‐negativity of components and weights, its appealing con-

vergence, and high computational speed for high dimensional

data. Compared to other algorithms, MFICA is a Bayesian

iterative algorithm that can constrain both sources and the

mixing matrix to be positive.

In MFICA, the source profiles are estimated from the

mean of their posterior distribution, and the mixing matrix

and noise level are estimated by maximizing a posterior solu-

tion. In MFICA, we applied a non‐negativity constraint on

both concentration and spectral profiles to be able to increase

the model interpretability. This was applied using non‐nega-

tive matrix factorization.51 In this case, the independence

assumption is not totally satisfied, and so the resolved com-

ponents are considered to be least dependent components.52

The optimal number of ICs was calculated by the ICA‐

by‐blocks algorithm.53

3.2 | Multivariate curve resolution–alternating least

squares

Multivariate curve resolution–alternating least squares is an

iterative multivariate self‐modeling curve resolution method

that aims to recover the response profile of pure components

FIGURE 1 Spectra obtained at different gate delays after the laser shot
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in an unresolved and unknown mixture obtained from evolu-

tionary processes.54 The MCR‐ALS methods try to maximize

the data variance explained by the different components under

a set of optional constraints (non‐negativity, unimodality,

closure, selectivity, local rank, and trilinearity).

Although different constraints could have been introduced,

for example, an empirical kinetic model of ion recombination

and molecules formation, we only imposed the non‐negativity

of the concentration and spectral profiles. Indeed, to be able to

have as general an approach as possible, we aim at doing as

unsupervised an analysis as possible. From that point of view,

the non‐negativity constraint does not introduce any particular

knowledge on the system under study in the model, as it has

a clear physical sense in all cases. In addition, in doing so,

the comparison of MCR‐ALS results to those of MFICA is

more straightforward, since the same constraints are used

for both methods.

The optimal number of components was determined by

applying singular value decomposition.55,56 Once the number

of components is estimated, the data structure can be

analyzed using evolving factor analysis,57 which provides

an initial estimation of components and proportions, which

are optimized iteratively by an alternating least squares pro-

cedure. During the ALS optimization, convergence is

achieved when in 2 consecutive iterative cycles, relative dif-

ferences in standard deviations of the residuals between

experimental and ALS calculated data values are less than a

previously selected value. The MCR‐ALS method is easily

extended to simultaneous analysis of several data matrices.

If the number and nature of columns (wavelengths in our case)

is the same for all the data matrices, the analysis can be

performed simultaneously over more than one data matrix.

Data treatment was done using MATLAB R2015a

(The Math Works, Natick, USA). The MFICA method was

obtained from the ICA:DTU Toolbox for MATLAB v3.58

The MCR‐ALS toolbox was downloaded from the website.59

4 | RESULTS

In both cases, 3 components were found sufficient to describe

the dataset. Information regarding extracted signals is gath-

ered in Table 2, listing the Einstein coefficients (A), the

degeneracy levels (g), and the lower and upper energy level

values (Ei and Ek, respectively). The scores are individually

normalized by the width of the measuring gate (see Table 1).

They are compared with the reference univariate measure-

ment, detailed later.

Figure 2 displays the components and scores obtained by

MFICA. The first component (Figure 2A) shows ionic and

neutral aluminum lines with the atomic lines of oxygen and

nitrogen. It is the only component where the oxygen, nitro-

gen, and aluminum ionic lines appear significantly. In

Figure 2B, MFICA only shows the neutral Al lines, so this

component is associated with Al neutral atoms. The third

component obtained (Figure 2C) mainly shows molecular

bands of AlO, as well as Al neutral lines to a lesser extent.

Figure 2D shows the average scores compared with reference

measurements. For the first component, 7 aluminum ionic

lines were identified, with excitation energies between

11.82 and 15.47 eV. We observed that the temporal evolution

of lines at 281.62 nm (Ek = 11.82 eV) and 358.66 nm

(Ek = 15.30 eV) was very close. We therefore chose the ionic

line intensity at 281.62 nm as reference measurement of the

decrease of ions emission. As shown on Figure 2D, the first

component clearly prevails between 0 and 0.4 microsecond,

and the temporal evolution of the MFICA scores is very close

to that of the reference measurement. Scores decrease very

quickly. This component therefore indicates the presence of

Al+ ions in the plasma and their rapid recombination to form

neutral atoms in the first few hundreds of nanoseconds, lead-

ing to a fast decrease in their emission.

The reference measurement for the second component

was performed by measuring the intensity of the neutral Al

line at 265.25‐nm over time. This component prevails

between 0.4 and 1 microsecond. The evolution obtained is

very similar to that of the MFICA scores, which continuously

decrease from 400 nanoseconds after the laser shot because

of plasma expansion and cooling.

The scores of the third component strongly decrease,

reach a minimum at 0.6 microsecond, increase up to a plateau

between 1 and 7 microseconds, and then decrease again with

the cooling of the plasma. Although the contribution of this

component is not significant before 1 microsecond, the evo-

lution of scores might be related to the fast decrease of the

continuum emission at very short delays and then to the start

of the formation of AlO molecules. Indeed, as can be seen in

TABLE 2 Wavelength (λ), degeneracy level (g), Einstein coefficients (A),

lower and upper energy level values (Ei, Ek) of the observed lines

Wavelengths of Al lines, nm Ei, eV Ek, eV gA, s−1

236.71 (Al) 0.000000 5.2363164 3.04e + 08

256.80 (Al) 0.000000 4.8266319 7.68e + 07

257.60 (Al) 0.0138938 4.8266319 2.40e + 07

265.25 (Al) 0.000000 4.6728907 2.84e + 07

281.62 (Al+) 7.420704 11.821967 3.57e + 08

358.66 (Al+) 11.846618 15.302546 2.12e + 09

466.30 (Al+) 10.598336 13.256459 1.74e + 08

559.33 (Al+) 13.256459 15.472500 4.63e + 08

624.34 (Al+) 13.076728 15.062034 7.77e + 08

669.87 (Al) 3.1427211 4.9930887 2.00e + 06

704.21 (Al+) 11.316595 13.076728 2.89e + 08

705.66 (Al+) 11.316595 13.073079 2.89e + 08

746.83 (N) 10.3358955 11.9955752 7.84e + 07

777.20 (O) 9.1460911 10.7409313 2.58e + 08

821.63 (N) 10.3358955 11.8444769 1.36e + 08

844.64 (O) 9.5213637 10.9888615 1.61e + 08

868.61 (N) 10.3259086 11.7528948 4.60e + 07

877.39 (Al) 4.0216500 5.4343637 2.77e + 06
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the components, the AlO emission spectrum has a similar

shape to that of the continuum, although over a reduced spec-

tral range, and we can assume that both contributions are

simultaneously taken into account by the third component.

After 1 microsecond, this component prevails. By comparing

the scores to the reference method (molecular band intensity

at 484.2 nm), it is clear that MFICA describes well the evolu-

tion of the AlO signal in this time range. Therefore, it can be

said that AlO molecules start to be detectable around this

time. We can note that MFICA reveals information on the 2

independent phenomena occurring during the plasma life-

time, the ion recombination, and the molecular formation.

Figure 3 displays the components and scores obtained by

MCR‐ALS. Similarly to the MFICA results, the first compo-

nent (Figure 3A) shows ionic and neutral aluminum lines

with the atomic lines of oxygen and nitrogen. The second

component (Figure 3B) shows the atomic lines of aluminum,

oxygen, and nitrogen. In the third component (Figure 3C), only

the molecular bands of AlO are visible. TheMCR‐ALS scores

compared with reference measurements are represented in

Figure 3D, and it is to be noted that for the 3 components

the temporal evolution of the scores is very close to that of

the corresponding reference measurement. We note that the

scores of the third component before 1 microsecond are

almost constant, which is a major difference compared to

MFICA. This might be attributed to a compensation of the

continuum emission decrease by the increase of the AlO

emission. The MCR‐ALS looks for pure contributions for

describing the different sources of variance, so it reflects the

simultaneous emission of ionic, neutral, and molecular lines.

This illustrates the ion recombination because the ionic spe-

cies disappear to form neutral atoms at short delays (C1),

and beyond 1 microsecond the neutral atoms interact with

oxygen to form emitting molecules (C3).

Overall, the ability of MFICA and MCR‐ALS to describe

the dataset is very similar, as shown by the good agreement

between scores obtained by both methods and the univariate

measurements. As mentioned previously, the main difference

lies in the scores of the third component before 1 microsec-

ond, but this occurs in a time range when the contribution

of this component is negligible compared to that of the 2

others. In addition, if we consider the variance explained,

we obtain an R2 = .9297 for MFICA and R
2 = .9274 for

MCR‐ALS, confirming that both MFICA and MCR‐ALS

similarly fit the experimental data.

Since both methods use a non‐negativity constraint for

scores and components, we may conclude that using a vari-

ance criterion (MCR‐ALS) or an independence criterion

(MFICA) leads to an equivalent modeling of our data.

Indeed, we found that the statistical independence of MCR‐

ALS and MFICA components was comparable, as illustrated

by Table 3 showing the mutual information of components

obtained by the 2 methods. This criterion is a measure of

mutual dependence between 2 variables. It is always non‐

negative, and it is zero if 2 variables are independent.60,61

The values obtained for the 2 methods are fairly similar. In

addition, if we compare the results (not shown) obtained by

MFICA and ICA using the JADE algorithm46 without any

FIGURE 2 (A‐C) Components obtained by mean field‐independent components analysis and (D) their associated scores (open symbols) compared with

reference measurements (dashed lines)
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non‐negativity constraint, we see that although MFICA

better models our data, the MFICA components are less

independent than those of ICA without non‐negativity. This

would indicate that independence of components is not a

very relevant criterion to model time‐resolved LIBS spectra.

This might be understood if we consider that the 2 physical

phenomena highlighted by the MCR‐ALS and MFICA com-

ponents, ion recombination and molecule formation, are not

strictly speaking independent, as molecules need neutral

atoms to form, which in turn need ions to form. As the num-

ber of atoms (ions and neutrals) is fixed after the end of the

ablation process, population transfers occur among ions, neu-

trals, and molecules, and so the resulting processes are not

independent.

Finally, both methods correctly model phenomena that

take place between the species, and the general conclusion

of this study is that in our case, MFICA solutions are equiv-

alent to those of MCR‐ALS. However, it is worth noting that

introducing more constraints in the MCR‐ALS model would

certainly lead to a better modeling of concentration profiles

and spectra. As explained previously, it was our intention to

keep an unsupervised approach, as general as possible.

However, MCR‐ALS performances could probably be

improved, for example, by using additional adequate con-

straints or by introducing univariate measurements as initial

estimates of the scores.

5 | DISCUSSION

To the best of our knowledge, this is the first published paper

describing the use of multivariate methods to treat spectro‐

temporal data. In the literature, the spectro‐temporal LIBS

data were processed and interpreted by univariate methods.

Nevertheless, multivariate methods increase the accuracy,

power, and efficiency of data analysis strategies compared

to separate univariate methods.

Hence, Baudelet et al studied the correlation between the

temporal signal of C and CN obtained on organic samples to

determine whether the CN emission originated from native

bonds or from recombination of carbon with nitrogen from

the ambient air.62 However, the correlation between the CN

and N signals was not studied. Similarly, Piehler et al used

univariate intensity measurements of AlO emission under

different atmospheres to be able to determine if this signal

stemmed from the reaction of aluminum atoms with oxygen

in the plasma or from the Al2O3 layer at the sample surface.63

However, the atomic oxygen signal could also have been con-

sidered to support their observation, which was not done in

FIGURE 3 (A‐C) Components obtained by multivariate curve resolution–alternating least squares and (D) their associated scores (open symbols) compared

with reference measurements (dashed lines)

TABLE 3 Mutual information values for components obtained by MFICA

and MCR‐ALS

MFICA MCR‐ALS

C1‐C2 1.8968 2.0737

C2‐C3 1.2111 1.5448

C1‐C3 1.2889 1.2161

Abbreviations: MCR‐ALS, multivariate curve resolution–alternating least

squares; MFICA,mean field‐independent components analysis.
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the paper. In the study of Diaz et al,64 the kinetics of successive

titanium ionic species in aTiOorTiO2plasmaweredetermined

by time‐of‐flight measurements. The relatively noisy signals

obtained are not straightforward to interpret, while the very

complex emission spectra seem to provide a lot of information,

and could have been more efficiently exploited bymultivariate

methods. In an aluminum plasma, Dawood et al did time‐

resolved measurements of the Al and Al+ emission, of the

plasma dimension, temperature, and density, for different

ambient gases and pressures.65 Here again, a multivariate

approach could be more suitable for such a multi‐parametric

study, to be able to interpret possible coupling between the dif-

ferent factors and responses. Finally, froman analytical point of

view, several issues are essential to optimize performances,

such as the choice of the emission line used for calibration,

the optimization of the detection time gating, or the diagnosis

of self‐absorption. All those parameters are coupled, as shown

by several articles,66–68 and might be efficiently studied by

multivariate analyses of time‐resolved spectra, using an

approach similar to the one developed in this paper.

Thework presented here is also related to simple spectra to

be able to focus on the comparison of 2 chemometric methods,

to determine their potential to describe time‐resolved LIBS

data, and to validate multivariate data treatment methods in

relation to the usual univariate methods. The papers cited in

this discussion show that these methods are indeed very prom-

ising and open the path to the interpretation of more complex

spectra (multi‐elemental compounds, line‐rich elements, etc),

and to a more precise and complete description of the plasma

temporal emission, leading to a deeper understanding of the

physical phenomena. Those issues will be addressed in more

detail in a forthcoming article.

6 | CONCLUSION

Chemometric methods have been used for several years to

analyze LIBS spectra for samples identification or for quanti-

tative measurements. Here, MFICA and MCR‐ALS are used

to describe the temporal evolution of the plasma emission

with an unsupervised approach. It is to be noted that the

use of these methods for this purpose is new and that this

approach has never been published in LIBS.

The MFICA solutions are equivalent to those of MCR‐

ALS when non‐negativity constraints are applied both for

scores and components. Phenomena that take place between

the species and ionic recombination and formation of mole-

cules are clearly characterized, and their temporal dynamics

can be accurately determined. Differences between both

methods are observed in the scores associated to the third

component, but this occurs in a time range when the contri-

bution of this component is negligible compared to that of

the other 2, and overall, both MFICA and MCR‐ALS

describe similarly the experimental data. Admittedly, MCR‐

ALS allows to introduce more constraints in the model,

which would help improving its accuracy. Yet in this work

our choice was different, as we aimed at testing as general

an approach as possible, hence at introducing no particular

knowledge on the sample analyzed in the model calculation.

This study illustrates the strength of a multivariate

approach to process time‐resolved LIBS spectra. Beyond this

study, we think that the interpretation of the components and

scores can be used to get physical information on the plasma

parameters (electron temperature and density), to optimize

the choice of the analytical line, and to optimize the temporal

gating used for quantitative measurements. These promising

perspectives will be addressed in our future work.
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