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Abstract — In neutron chain systems with material symmetries, various k-eigenvalues of the neutron
balance equation beyond the dominant one may be degenerate. Eigenfunctions can be partitioned into
several classes according to their invariance properties with respect to the symmetry operations (mirror
symmetries and rotations) keeping the material distribution in the system unchanged. Their calculation can
be limited to a fraction of the system (sector) provided that innovative boundary conditions matching the
symmetry classes are used, and whole-system eigenfunctions can then be unfolded from the solutions
obtained over the sector. With power iteration as the method for searching k-eigenvalues, this use of the
material symmetries to split the global problem into a variety of smaller-sized problems has several
computational advantages: lower computation times and memory requirements, increased dominance ratios,
lowered possible degeneracies in each subproblem, and possible parallel (separated) treatment of the
subproblems. The implementation is discussed in a companion paper using diffusion and transport theories.

Keywords — Flux eigenmodes, symmetry, degeneracy.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

I.A. General Background

The k-eigenvalue neutron balance equation is written as

A� �
1
k

F� ,

where

�(r¡, E, �
¡

, t) � neutron flux density at a given posi-
tion, energy, and direction

F � operator modeling neutron produc-
tion by fission

A � operator collecting contributions
of streaming (leaking) neutrons (L),
neutrons entering a collision (C), and
neutrons emerging from a collision (S).

With standard notation and variables omitted when
not explicitly necessary,

F� �
1

4 � �� �(E� ¡ E) ��f (E�) �(E�, �
¡

�)dE� d2��

and

A� � �
h

· 	
¡

� 
 �t� � �� �s(E� ¡ E, �
¡

� ¡ �
¡

)

� �(E�, �
¡

�)dE�d2�� � L� 
 C� � S� .

A dominant, simple, and positive k-eigenvalue
always exists and is called the fundamental (fission)
multiplication factor k0, associated with a positive fun-
damental flux �0. All other k-eigenfunctions are called
higher modes or harmonics. The k-spectrum is gener-
ally deemed to be discrete and real, even if it this seems
to be proved only under restrictive conditions (e.g.,
monoenergetic transport). If not theoretically, this*E-mail: jean.tommasi@cea.fr
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assumption is nevertheless supported by numerical evi-
dence on real-life problems.1 In the following, we will
make this assumption.

The ratio k1/k0 of the second largest k-eigenvalue to
the fundamental one is called the dominance ratio and
is used as a measure of the speed of convergence of the
power iteration method used to get (k0, �0) in determini-
stic or Monte Carlo solvers. In another form called the
eigenvalue separation EVS � k0k1 / (k0 � k1), the sec-
ond largest k-eigenvalue is used as a measure of core
decoupling and sensitivity to local perturbations.2–4 The
EVS is not a pure calculation parameter, but is, at least
indirectly, accessible to experiment.5–11 A larger num-
ber of k-eigenvalues and eigenfunctions can be used for
the modal decomposition of the fundamental flux of a
perturbed situation using the eigenfunctions associated
with a reference situation,12 for the prompt decay con-
stant or exponential experiment analysis,13 and for the
stability analysis for a boiling water reactor.14,15 How-
ever, theoretically, this set of k-eigenfunctions is not
complete; furthermore, when the perturbation is local-
ized in space or shifts the neutron spectrum, a rapidly
growing number of higher modes is needed to reach a
given precision, if this does not prove unachievable at
all. Nevertheless, practical decompositions, i.e., over a
limited number of eigenfunctions, may prove meaning-
ful, depending on the problem considered.

I.B. Orthogonality Properties of k-Eigenfunctions

The inner product of two possibly complex-valued
functions is defined as the hermitic form:

��1, �2� � ��̄1(r¡, E, �
¡

) �2(r¡, E, �
¡

)d3rdEd 2�

(complex functions will be used in the following as math-
ematical intermediaries, even if k-eigenfunctions are real).
The adjoint P� of a given operator P is defined as obeying
the relation ��1, P�2� � �P
�1, �2� for any �1 and �2.
For the operators involved in the neutron balance
equation, with appropriate boundary conditions, adjoint
operators are obtained reverting all kernels and changing
all derivatives to their opposites:

F

 �
1

4 � ���(E ¡ E�) ��f (E) 
(E�,�
¡

�, t) dE�d2��

and

A

 � ��
h

· 	
¡


 
 �t
 
 �� �s(E ¡ E�, �
¡

¡ �
¡

�)

� 
(E�, �
¡

�) dE�d2�� ,

so that the forward and adjoint balance equations over a
convex volume V, in integrodifferential transport form,
with void boundary conditions, can be written as

� A� �
1
k

F� (r¡ � V) �(r¡, E, �
¡�) � 0 (r¡ � �V)

A
�
 �
1

k̄
F
�
 (r¡ � V) �
(r¡, E, �

¡

) � 0 (r¡ � �V)

(on boundary �V of volume V, �
¡� stands for any inward-pointing direction and �

¡

 for any outward-pointing direction).

The k-eigenvalues being assumed all real, then the forward and adjoint k-eigenvalue equations share the same eigenvalue
spectrum.

It can be easily checked, by taking the inner product of the first equation by �= and of the second by �� and

subtracting, that if A
�
 �
1
k

F
�
 and A�� �
1
k�

F�� then (k � k�) ��
, F��� � 0. Consequently, the adjoint and
forward eigenfunctions corresponding to two distinct eigenvalues are F-orthogonal, i.e., ��
, F��� � 0 if k � k=.

I.C. Numerical Computation Methods for k-Eigenvalues and Eigenfunctions

For its conceptual simplicity, and as the dominant k-eigenvalue is simple, the power iteration method has been
widely used, both in deterministic and Monte Carlo codes to access the fundamental eigenpair (k0, �0). A sketch of this
iterative process is

�(L 
 C)�0

(q
1)
� S�0

(q)



1

k0

(q)
F�0

(q)

k0

(q
1)
�

� F�0

(q
1)
�

� A�0

(q
1)
�

,
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where q is the outer iteration index; �0

(q
1)
in the first

equation is obtained, using numerical linear algebra tech-
niques, through an iterative process called inner iterations.
This iterative process converges toward the first simple
eigenpair (k0, �0). The speed of convergence is known to
be dictated by the dominance ratio k1/k0 of the first har-
monic eigenvalue to the fundamental one. If the domi-
nance ratio approaches unity, as occurs, for example, with
large loosely coupled systems, the convergence of the
power iteration methods gets very slow and acceleration
techniques are required, such as Chebyshev or diffusion
synthetic accelerations.16

The power iteration method can be extended to
access higher-order eigenfunctions and eigenvalues, tak-
ing advantage of the F-orthogonality properties of eigen-
functions associated with distinct eigenvalues for cleaning
the output of the inner iterations from all previously cal-
culated eigenfunctions; this is called the filtering tech-
nique and it can be sketched as follows for the forward
harmonic number h:

�(L 
 C)�̃h

(q
1)
� S�h

(q)



1

kh

(q)
F�h

(q)

�h

(q
1)
� �̃h

(q
1)
� �

i�0

h�1 ��i

, F �̃h

(q
1)�
��i


, F�i�
�i

kh

(q
1)
�

� F �h

(q
1)
�

� A �h

(q
1)
�

.

If all the eigenvalues are simple, this method works
smoothly. If there are multiple (degenerate) k-eigenvalues,
i.e., if the successive k-eigenspace is spanned by p � 1
linearly independent eigenvectors, the method still converges
toward the eigenvalue of the successive dominant eigen-
space; however, convergence to an eigenvector is not
ensured, as drifts within the p-dimensional eigenspace
may occur during the iterations, preventing them from
reaching a point-by-point flux convergence. Nevertheless,
once a tight eigenvalue convergence is reached, the flux is
practically an eigenfunction within the p-dimensional
eigenspace. Then, the orthogonal filtering technique can
be used to successively span p independent directions of
the eigenspace. (All the previous statements hold out of
exceptional cases.) Irreducible convergence problems
may occur only with distinct eigenvalues sharing the same
modulus. If we assume all eigenvalues to be real and
positive, this cannot occur.

The power iteration method with the filtering tech-
nique to compute higher eigenpairs has been extensively
used in deterministic codes and has been extended
recently to Monte Carlo codes.17–23 However, other meth-
ods may prove quicker, more efficient, or more easily

parallelizable than the power method, for example, sub-
space iteration methods such as Krylov or Krylov-Arnoldi
methods for deterministic calculations14,24,25 or fission
matrix methods for both deterministic26 and Monte Carlo
calculations.1,27 These methods give simultaneous access
to estimates of several eigenvalues and eigenfunctions.

I.D. Material Symmetries, Eigenvalue Degeneracies,
and Problem Size Reduction

If there are material symmetries in the system, some
eigenvalues may be degenerate. Multiplicity of degenerate
eigenvalues can be linked to symmetry invariances of the
reactor material distribution, e.g., through group theory
considerations.28,29 Moreover, material symmetries can be
exploited to solve the neutron balance equation on reduced-
size geometries with appropriate innovative boundary con-
ditions. As an example for mirror symmetries, implicit28 or
explicit30 use can be made of antisymmetric reflective
boundary conditions in addition to the standard, symmet-
ric, reflective boundary condition.

In a more radical way, and to avoid possible conver-
gence problems, all existing symmetries can be broken
using small localized perturbations of the material distri-
bution within the reactor and then the k-eigenfunctions of
the asymmetric perturbed system may be used as an
expansion basis to approximate the eigenfunctions of the
symmetric system.31

Real-life reactors, once burnup occurs or control rods
are inserted at different heights, no longer exhibit global
material arrangement symmetries, but start-of-life designed
industrial reactor cores most often do. Moreover, critical
experiments in zero-power reactors are often, at least in a
first approximation, designed as presenting material sym-
metries. The point developed hereafter is that besides the
more recent methods hinted at (subspace iteration and
fission matrix), the old power iteration method can be
amended to compute efficiently the higher modes of
symmetric systems. Advantage can be taken of material
symmetries to split the computational task into several
classes of smaller-sized problems subject to specific
boundary conditions, not only for mirror symmetries
but also for rotation symmetries. This results in several
positive features:

1. Each class of solutions is worked out separately
(and possibly on a dedicated processing unit) on a fraction
of the global system, meaning less memory and a lower
computational burden.

2. The whole k-spectrum is partitioned into the var-
ious classes, increasing the dominance ratios in each class
with respect to the whole-core problem.

176 TOMMASI et al. · CALCULATION OF HIGHER-ORDER FLUXES IN SYMMETRIC CORES—I

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 184 · OCTOBER 2016



3. The degeneracy of any given k-eigenvalue is also
partitioned into the symmetry classes (i.e., a degenerate
k-eigenvalue for the whole core may be simple in a given
symmetry class).

I.E. Outline

The symmetry invariance is formalized in Sec. II,
from the material distribution in the system to functions
such as the neutron flux, and operators acting on such
functions. Section III recalls a few results from group
representation theory justifying the approach used in the
following sections. Section IV is devoted to the individ-
uation of the symmetry classes corresponding to order-n
rotation symmetry, and the associated innovative bound-
ary conditions, which, to our knowledge, do not seem to
have been used in finite difference neutron diffusion or
transport codes. Mirror symmetries are addressed in Sec. V,
and the results obtained are combined in Sec. VI when the
symmetry group of the system contains at the same time
mirror symmetries and rotations with complex-valued
eigenvalues, i.e., in practical cases, rotations of order 3, 4,
or 6.

In Sec. VII, a simple analytic monoenergetic diffu-
sion example (eigenvalues and eigenfunctions of the
Laplacian in the equilateral triangle) is given to support
and illustrate the theoretical results on symmetry classes
and associated eigenfunction shapes; additionally, the
example of eigenfunctions of the Laplacian in the regular
hexagon is sketched to show how the classifications asso-
ciated with rotation or mirror symmetry invariances match
together.

The implementation in an existing code package, ver-
ification, and applications are worked out in a companion
paper.32

II. SYMMETRY-INVARIANT FUNCTIONS AND OPERATORS

II.A. Symmetry Operations

The material distribution in the neutron chain reactor
(system) is assumed invariant by the application of symme-
try operations belonging to a group G. A symmetry operation
is a one-to-one point transform S preserving distances (iso-
metric), i.e., such that d�S(A), S(B)� � d(A, B) for any two
points A and B. The material distribution is G-invariant if
for any nuclide distribution N and any S in G we have
N(r¡) � N�S(r¡)� at any position.

In the Euclidean vector space, for every symmetry
operation S there corresponds an orthogonal matrix MS. A
symmetry operation S is either direct, if det(MS) � 
1, or
inverse, if det(MS) � �1. For systems of finite spatial

extension, translations are not allowed as symmetry oper-
ations and direct symmetries are rotations around an axis;
inverse symmetries are either mirror symmetries with
respect to a plane or products of such mirror symmetries
with rotations. If it exists, the lowest positive integer, such
that Sn � E (E standing for the identity), will be called the
order of the discrete symmetry operation S. A mirror
symmetry S is involutive, i.e., S 2 � E. Only finite-order
rotations will be dealt with here, i.e., rotations whose
angle is 2�/n, with integer n. Then, G is a finite group.

II.B. Symmetry-Invariant Functions

For any symmetry operation S � G in three-dimensional
Euclidean space, we associate a symmetry operation S in the

algebra of scalar functions � of � � (r¡, E, �
¡

) by the condition
�(�) � (S �)�S(�)�: in words, operating the transformed
function S� on the transformed point S(�) yields the
same result as operating the initial function � on the
initial point �. Formally, S is defined by

S: �(�) �(S �)(�) � �[S�1(�)]

� ��S�1(r¡), E, S�1(�
¡

)� . (1)

A function � is said to be S-invariant if S� � � and
S-antisymmetric if S� � ��. It is easily checked that S
is invertible: if S is associated with S, then S	1 is associ-
ated with S	1, and then the symmetry operation S maps
the function space algebra onto itself, with the following
relations:

�S(� � 
 � 
) � � S(�) 
 � S(
)
S(�
) � S� S

(S T) � � S(T �) .

(2)

Any spatial symmetry S, being an orthogonal trans-
form, maps any portion of the unit sphere onto an equiv-
alent portion (i.e., of same area), and any spatial domain
onto an equivalent domain (i.e., of same volume). Hence,
the absolute value of the Jacobian of S is 1. Using the
already defined inner product, we have then

�
, S�� � �
̄(�) �[S�1(�)] d�

��
̄[S(��)] �(��) d�� � �S�1
, �� , (3)

meaning that S is unitary (S
 � S�1), and that the inner
product is S-invariant,

�S
, S�� � �
, �� . (3�)
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It follows that all eigenvalues of the operator S are of
unit modulus. Then, if 
 and � are eigenvalues of S for,
respectively, eigenfunctions � and �,

��, 
� � �S�, S
� � ���, �
�

� �̄� ��, 
� �
�
�

��, 
� .

So, eigenfunctions of S corresponding to distinct
eigenvalues are orthogonal. The order of S is also the
order of S, and if S is of order n, any eigenvalue � of S
must obey the condition �n � 1. Mirror symmetries being
involutive, their only possible eigenvalues are 
1,
whereas the eigenvalues of an order-n rotation are the n
roots of unity, i.e., the εm � cm 
 ism (m � 0, . . ., n – 1),
using the notations

ε � exp( 2i�
n ), cm � cos(m2�

n ), sm � sin(m2�
n ) . (4)

The only possible real eigenvalues for discrete rota-
tions are ε0 � 1, in every case, and εn/2 � �1 if n is even.
The presence of possible complex R-eigenpairs is the
reason why complex functions are accepted and the inner
product used is hermitic.

II.C. Symmetry-Invariant Operators and Consequences
for k-Eigenfunctions

An operator P is said to be invariant for the symmetry
operation S (or S-invariant) if the operation of P on any
function � matches its application to the transformed
function S�, according to Fig. 1. This means that S and P
commute. As the symmetry operation S accounts for map-
ping any orthonormal frame onto another orthonormal
frame, this occurs if P takes the same form in the initial
orthonormal frame and its transform by S. This is the case
for the operators A and F used in the neutron balance
equation if they are constructed on S-invariant material
distributions, in particular because scattering cross sections

depend only on the S-invariant inner product �
¡

· �
¡

� between
the directions of neutrons entering and exiting the scat-
tering reaction. Consequently,

(A �
F
k )� � 0 ⇒ S (A �

F
k )� � 0

⇒ (A �
F
k )(S�) � 0 . (5)

Intuitively, if the material distribution in the system
is invariant under the symmetry operations of a group
G, and if � is a k-eigenfunction of the system, then for
any S in G the transformed neutron flux S� is also a
k-eigenfunction of the system, for the same k-eigenvalue.

III. RESULTS OF GROUP REPRESENTATION THEORY

We briefly recall a few results of finite group represen-
tation theory, as they justify the way we will proceed in the
following sections; more details of the vocabulary and dem-
onstrations can be found in any textbook on the subject.
Given a finite group G, a p-dimensional representation r of G
associates with any element g in G a p � p complex matrix
r(g) and is such that for any two elements g and g= in G,
r(gg�) � r(g) r(g�). Such a representation r is reducible if,
using a suitable change of basis vectors, all the p � p
matrices of the representation can be cast simultaneously into
equivalent block-diagonal forms with diagonal blocks of size
�p. A result of group representation theory is that, for any
finite group G, there exists only a finite number NG of
nonequivalent irreducible representations, which are the
building blocks for any representation of this group.

Given a group G � �S1, S2, . . ., Sn	 of order n, and a
n-dimensional vector space T with basis (e1, e2, . . ., en),
the regular representation � of G is defined as the repre-
sentation by n � n matrices Mi � �(Si) (i � 1, . . ., n)
operating on the basis vectors as Mi(ej) � ek if Si Sj �

Sk. It is easy to check that �(SiSj) � �(Si)�(Sj), as it is
required for � to be a representation. This regular repre-
sentation is reducible as a direct sum over the irreducible
representations of G, each irreducible representation being
counted with a multiplicity equal to its dimension [in

particular, this means that �
i�1

NG

(dim �1)
2 � n]. As for any

representation, it can be projected onto its irreducible
component, and reconstructed back from its projections:

1. Pi �
dim�i

�G�
�

g � G
�i(g)̄�(g) is the projection

operator on irreducible component number i.

2. �
i�1

NG

Pi � �(e) � E (e is the unit element of G,

and E is the n � n identity matrix).

The dimensions dim �i of the irreducible components
and their characters, i.e., the complex numbers �i(g) asso-

Fig. 1. Visualization of the condition for operator P to be
invariant under symmetry operation S.

178 TOMMASI et al. · CALCULATION OF HIGHER-ORDER FLUXES IN SYMMETRIC CORES—I

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 184 · OCTOBER 2016



ciated with each element of the group, can be found in the
character tables given in textbooks.

Additionally, all irreducible representations of a com-
mutative group are of dimension 1: then �i(g) is a 1 � 1
complex matrix, assimilated to the complex number �i(g), so
that �i(g�)Pi � �i(g�)Pi. In this case, the regular representa-
tion � contains all the one-dimensional irreducible represen-
tations once.

We will use these results as follows. If G is a com-
mutative group of symmetry operations acting on func-
tions according to Eq. (1) then, for any function f,

Pi f �
1

�G�
�

S � G
�i(S)̄Sf is an eigenvector for each symmetry

operation S= in G, the eigenvalue being equal to the
character of S= in the irreducible representation �i:

S�(Pi f) � �i(S�)Pi f. Together with the relation �
i�1

NG

Pi f � f,

this shows that, given a symmetry operation S, any func-
tion f can be expanded into a sum of eigenfunctions of S.
Going back to the initial problem, if the material distri-
bution is invariant under the action of a commutative
group G of symmetry operations, the search for solutions

of the balance equation (A �
F
k )� � 0 can be split into

as many subproblems as there are irreducible representa-
tions of G, with the additional conditions that � is also an
eigenfunction of symmetry operations, with their charac-
ters as eigenvalues. As will be shown below, these addi-
tional conditions make it possible to work on only a part
of the whole system, using appropriate and simple bound-
ary conditions.

IV. INVARIANCE UNDER DISCRETE ROTATIONS

We assume the system is of prismatic shape, as are
many industrial reactors, with a discrete rotation axis
being taken as the vertical direction. A system invariant
under a discrete rotation R of order n, i.e., such that
Rn � E, is invariant under the action of the commutative
cyclic group of order n, Cn � � E, R, R2, . . ., Rn�1	.

IV.A. Problem Decomposition

According to Sec. III and the character table of Cn, the
operators projecting any complex-valued function Z onto
the mutually orthogonal R-invariant subspaces are

PmZ �
1
n �

p�0

n�1

ε�pmR
p
Z (0 � m � n � 1) .

In addition, PmZ is an eigenvector of rotation operator
R for eigenvalue εm. We define the real and imaginary
parts of Pm by setting Pm � um 
 ivm, with

umZ �
1
n �

p�0

n�1

c�pmR
p
Z and vmZ �

1
n �

p�0

n�1

s�pmR
p
Z .

As seen in Sec. III, any function Z is the sum of its

projections onto the R-invariant subspaces: Z � �
m�0

n�1

PmZ.

We also define the conjugate of Pm as P̄m � um � ivm,

i.e., P̄m f �
1
n

�
p�0

n�1

ε
pmR
p
f for any function f. Then

RP̄m f � ε�mP̄m f. If vm � 0 and εm � ε�m, then as the
intersection of the orthogonal R-eigenspaces corre-
sponding to two distinct eigenvalues reduces to the null
vector, P̄mPm � PmP̄m � 0.

Then, by developing in um and vm,

Pm
2 � Pm ¡ �um

2 � vm
2 � um

umvm 
 vmum � vm

and

P̄mPm � 0 ¡ �um
2 
 vm

2 � 0
umvm � vmum � 0 .

Consequently,

um
2 �

um

2
; vm

2 � �
um

2
; umvm � vmum �

vm

2
(if vm � 0) .

If we write a complex-valued function Z of the
R-invariant subspace associated with eigenvalue εm as
the sum of its real and imaginary parts, Z � U 
 iV, the
relation RZ � εmZ may be written as R(U 
 iV) �
(cm 
 ism) (U 
 iV), and so

�RU � cmU � smV
RV � smU 
 cmV . (6)

If sm � 0, we can deal with real functions only. This
occurs for m � 0, and involves then R-invariant solutions
(RU � U). When n is even, this occurs also for m � n/2, and
involves R-antisymmetric solutions (RU � �U). For any
other value of m, U and V span a plane globally invariant
by R and we call this a coupled problem. We can restrict
these coupled problems to 0 � m � n/2, as Eq. (6) shows
that if (U, V) is a solution of the coupled problem for
R-eigenvalue εm, then (V, U) is a solution of the coupled
problem for eigenvalue εn–m. As a consequence of
Eq. (10�) demonstrated in the next section, U and V
are linearly independent, with �U, U� � �V, V� and
�U, V� � 0. Furthermore, the characteristic polynomial

associated with the 2 � 2 matrix 
cm sm

sm cm � shows that

U � 2cmRU 
 R2U � V � 2cmRV 
 R2V � 0 .
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To sum up, for a system invariant by rotation R of finite
order n, the search for nonnull real eigenfunctions of the neutron
balance equation can be partitioned into distinct subproblems:

1. the search for R-invariant functions (such that
R� � �)

2. only if n is even: the search for R-antisymmetric
functions (such that R� � –�)

3. for 0 � m � n/2: the search for real function
couples (U, V) such that

�RU � cmU � smV
RV � smU 
 cmV .

IV.B. Reduced-Sized Problems and Unfolding

We shall proceed to show that the distinct subprob-
lems can be solved on a limited spatial domain D (called
a sector) representing a fraction 1/n of the system, with
appropriate boundary conditions, and that the solutions

obtained on this sector can be unfolded to obtain the flux
distributions and associated integral values over the whole
system.

D is a sector containing the rotation axis and
extending over an angle 2�/n, with boundary �D �
�D� � �D
 � �Dext. �Dext is the external boundary,
where the boundary condition of the whole-system
equation holds. �D� and �D
 � R(�D�) are the left and
right edges of the sector, between which generic phase
space elements can be paired as

��� � (r¡, E, �
¡

)

�
 � R(��) � � R(r¡), E, R(�
¡

) �
(r¡ � �D�) . (7)

Assume Z to be simultaneously an eigenfunction of
the rotation operator R and a solution of the balance
equation over the whole spatial domain: RZ � εmZ and

(A �
F
k )Z � 0 with a void boundary condition. The

restriction z of Z to sector D is such that

(A �
F
k ) z � 0, on sector D ;

z � 0, outside sector D ;
Boundary condition of the global problem, on �Dext ;
z(��) � εmz(�
), connecting �D� to �D
 . (8)

The last boundary condition results from the conjunction of

(RZ)(�
) � Z�R�1(�
)� � Z(��) (by definition);

RZ(�
) � εm Z(�
) (Z eigenfunction of R) .

If Z � U 
 iV, U and V are real, and, correspondingly, z � u 
 iv, Table I details these sector boundary conditions
according to the rotation class of the problem solved. The boundary condition for the R-invariant problem is quite classical.
To our knowledge, the boundary conditions for the R-antisymmetric problem and for the coupled problems do not seem to
have been used in neutron transport or diffusion solvers. Z (on the whole spatial domain) can be reconstructed from z (nonnull
only on sector D) as

Z � �
p�0

n�1

ε�pmR
p
z . (9)

It can be checked that RZ � �
p�0

n�1

ε�pmRp
1z � εm �
p�0

n�1

ε� (p
1)mRp
1z � εmZ and that the boundary conditions (8)

ensure continuity of Z at sector edges.

TABLE I

Sector Boundary Conditions According to the Rotation Class

Rotation Class Boundary Condition Connecting �D � to �D 
 � R(�D �)

R-invariant (m � 0, RU � U) u(��) � u(�
)
R-antisymmetric (n even, m � n/2, RU � �U) u(��) � �u(�
)

Coupled problems 
ε2m � 1, RZ � εmZ, i.e., �RU � cmU � smV
RV � smU 
 cmV � z(��) � εmz(�
), i.e., �u(��) � cmu(�
) � smv(�
)

v(��) � smu(�
) 
 cmv(�
)
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Integrals such as �Z, QZ��, where Z and Z= are solu-
tions of the balance equation that are eigenfunctions of R
for the same eigenvalue and Q is any operator commuting
with R, can be expressed using integrals only involving
the solutions z and z= on sector D:

�Z, QZ�� � � �
p�0

n�1

ε�pmR
p
z, Q �

p��0

n�1

ε�p�mR
p�z��

� �
p�0

n�1

�ε�pmR
p
z, Qε�pmR

p
z��

� �
p�0

n�1

�z, Qz��

�n�z, Qz�� . (10)

We have used the fact that for p � p�, Rp and Rp= send
the nonnull parts of z and z= on different sectors, so that

�Rp
z, QR

p'
z�� � 0. If Z � U 
 iV and Z� � U� 
 iV�

(correspondingly, z � u 
 iv and z� � u� 
 iv�), this
can be written as

��U, QU�� 
 �V, QV�� � n(�u, Qu�� 
 �v, Qv��)
�U, QV�� � �V, QU�� � n(�u, Qv�� � �v, Qu��)

(for any m) . (10�)

Furthermore, as �Z̄, QZ�� � �RZ̄, QRZ�� � �ε�mZ̄,
QεmZ�� � ε2m�Z̄, QZ��, we have �Z̄, QZ�� � 0 for the cou-
pled problems (i.e., for m such that ε2m � 1). So, in this case,
we have

��U, QU�� � �V, QV�� � 0
�U, QV�� 
 �V, QU�� � 0

(for m such as ε2m � 1) .

(10�)

Table II summarizes the connection between integral
values on the whole domain and on the sector.

If (U, V) is a solution of the coupled problem, then for
any ε,

� U� � RεU � U cos ε � V sin ε
V� � RεV � U sin ε 
 V cos ε

is also a solution, and the functions obtained as a result of
the iterative numerical process can drift in the solution
plane. Then it is possible that even if the convergence in
k (integral convergence) is reached eventually, pointwise
functional convergence may never be achieved. To lift
indeterminacy in the solution plane, the U and V obtained
at the inner iteration stage may be rotated by an angle ε as
above so that U= is kept orthogonal to a given function X,
itself not orthogonal to the solution plane. This condition

may be written as cot ε � �
�V, X�
�U, X�

.

IV.C. Filtering Technique for Coupled Problems

The filtering technique for a higher mode search can
be applied straightforwardly to the R-invariant and
R-antisymmetric problems. For coupled problems, an
extension of this basic technique can be drawn as follows.
Assume the fundamental mode and the first n – 1 forward
and adjoint harmonics have been computed for both compo-
nents of the coupled problem, namely (i � 0, . . ., n – 1):

�
A �
F
ki �Ui � 0


A �
F
ki �Vi � 0

; �
A
 �
F


ki �Ui

 � 0


A
 �
F


ki �Vi

 � 0

;

�RUi � cmUi � smVi

RVi � smUi 
 cmVi
and �RUi


 � cm Ui

 � sm Vi




RVi

 � sm Ui


 
 cm Vi



with, for i � j: �Ui

, FUj� � �Ui


, FVj� � �Vi

, FUj� �

�Vi

, FVj� � 0. Then the inner iterations yield a calculation

result for the n’th harmonic, this result being possibly
contaminated by the previous harmonics:

�
A �
F
kn �Un � 0


A �
F
kn �Vn � 0

and

�RUn � cmUn � smVn

RVn � smUn 
 cmVn
.

TABLE II

Connection Between Sector and Whole-Domain Integrals

Noncoupled problems (RZ � �Z) V � V� � v � v� � 0 and �U, QU�� � n �u, Qu��

Coupled problems (RZ � εmZ with ε2m � 1) ��U, QU�� � �V, QV�� �(n / 2)(�u, Qu�� 
 �v, Qv��)
�U, QV�� � ��V, QU�� �(n / 2)(�u, Qv�� � �v, Qu��)
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A solution orthogonal to all the previous harmonics
can then be constructed as

�Ũn � Un � �
i�0

n�1

�iUi � �
i�0

n�1

�iVi

Ṽn � Vn 
 �
i�0

n�1

�iUi � �
i�0

n�1

�iVi

and

�RŨn � cmŨn � smṼn

RṼn � smŨn 
 cmṼn . (11)

Given the coefficients in the first equation of the left
side system of Eq. (11), the coefficients in the second
equation have been set so as to make Ũn and Ṽn obey the
coupled problem condition on the right side system; the
boundary conditions on a sector are then automatically
satisfied.

The values of these coefficients �i and �i are given by
(i � 0, . . ., n – 1):

�0 � �Ui

, FŨn� � �Ui


, FUn� � �Ui

, FUi��i

� �Ui

, FVi��i

0 � �Vi

, FŨn� � �Vi


, FUn� � �Vi

, FUi��i

� �Vi

, FVi��i . (12)

Effectively, the determinant of the system of index i
is, using the same derivation as the one that resulted in
Eq. (10�):

�i � �Ui

, FUi� �Vi


, FVi� � �Ui

, FVi� �Vi


, FUi�

� �Ui

, FUi�2 
 �Ui


, FVi�2 ,

so that �i � 0 as soon as �Ui

, FUi� � 0 or

�Ui

, FVi� � 0. A formally similar derivation can be

drawn for the adjoint harmonics.

V. MIRROR SYMMETRY INVARIANCE WITH RESPECT TO
THREE ORTHOGONAL PLANES

We suppose here the system invariant under p � 1, 2,
or 3 mirror symmetries with respect to p mutually orthog-
onal planes. Let S1, S2, and S3 be the mirror symmetries
with respect to the three mutually orthogonal planes �1,
�2, and �3. S1, S2, and S3 are involutive and commute;
their eigenvalues are 
1. SiSj is the order-2 rotation of
axis �i � �j, and S1S2S3 the inversion with respect to the
point �1 � �2 � �3.

S1, S2, and S3 generate D2h � �E, S1, S2, S3, S1S2,
S2S3, S3S1, S1S2S3	.

S1 and S2 generate C2v � �E, S1, S2, S1S2	.
S1 alone generates Cs � �E, S1	.
For p � 3 (this can be easily particularized to p � 2

or 1), we can define, according to Sec. III, eight projection
operators Pε1ε2ε3

, which can be cast into the form (each of
the εj can take the values 
1):

Pε1ε2ε3
�

1
8

(E 
 ε1S1) (E 
 ε2S2) (E 
 ε3S3) .

The projections of any real function U are eigenfunc-
tions of the mirror symmetries, and U is the sum of its
projections:

Sj(Pε1ε2ε3
U) � εjPε1ε2ε3

U and U � �
ε1,ε2,ε3

Pε1ε2ε3
U .

Assume U to be simultaneously an eigenfunction of
the symmetry operators S1, S2, and S3, and a solution of
the balance equation over the whole spatial domain:

SjU � εjU and (A �
F
k )U � 0 ,

with a given boundary condition for the whole system.
The restriction u of U to the octant O limited by the planes
�1, �2, and �3 is such that

(A �
F
k )u � 0, on octant O ;

u � 0, outside octant O ;
Boundary condition of the global problem, boundaries other than the planes �j (j � 1, 2, 3) ;
u(Sj�) � εju(�), on plane �j (j � 1, 2, 3) . (13)

The boundary condition for the Sj-invariant problems (εj � 
1) is the usual mirror symmetry condition. To our
knowledge, the condition for the Sj-antisymmetric problems (εj � �1) has been used only occasionally, e.g., it is the
antireflective boundary condition in Ref. 30.

U (on the whole spatial domain) can be reconstructed from u (on octant O) as

U � (E 
 ε1S1) (E 
 ε2S2) (E 
 ε3S3) u . (14)
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It can be checked that SjU � εjU and that the bound-
ary conditions (13) ensure continuity of Z at octant faces.
Integrals such as �U, QU��, where U and U= are solutions
of the balance equation that are eigenfunctions of the Sj

for the same eigenvalues εj and Q is any operator com-
muting with the Sj, can be expressed using integrals only
involving the solutions u and u= on octant O [we use that
U and U= are expressed by Eq. (14) as linear combinations
of eight operators sending each nonnull part of u and u= on
a different octant]:

�U, QU�� � 8�u, Qu�� . (15)

VI. SYSTEMS INVARIANT UNDER MIRROR SYMMETRIES
AND DISCRETE ROTATIONS

We restrict again to prismatic systems of vertical axis
� but assume there are vertical mirror symmetry planes
containing �. If there are two such vertical mirror sym-
metry planes �0 and �1 separated by an angle �/n (n � 1)
and corresponding to mirror symmetries S0 and S1, R �
S0S1 is the rotation of axis � and angle 2�/n (as an
illustration, see Fig. 2, established for hexagonal geome-
try) and the group generated by S0 and S1 is the dihedral
group Cnv � � E, R, R2, . . ., Rn�1, S0, S1, S2, . . ., Sn�1 	
with Sp � S0R

p and the following composition rules
(index sum or difference taken modulo n):

�RpRq � Rp
q SpR
q � Sp
q

SpSq � Rq�p RpSq � Sq�p

.

Note that as a particular case, RSp � SpR
�1 � Sp�1.

We cannot solve on a sector of angle �/n (n � 2)
using only reflective boundary conditions at left and right
edges, as the functions so obtained would be invariant or
antisymmetric for mirror symmetries with respect to the
edges of the sector and for their product, the rotation of
angle 2�/n: all solutions related to the complex eigenval-
ues of this rotation (the coupled problems) would then be
skipped. When the system is Cnv-invariant (n � 2), we can
restrict resolution of the equations over a 2�/n sector
only when using rotation-related boundary conditions.
Anyway, once having found a k-eigenfunction using one
classification type (related either to rotations on a 2�/n
sector or to mirror symmetries with respect to 1, 2, or 3
orthogonal planes), then applying projections of the other
type to it will possibly (not always) yield directly addi-
tional linearly independent k-eigenfunctions.

VI.A. Solving First for Rotation Eigenfunctions

If � is an R-invariant k-eigenfunction not belonging to a
S0-eigenspace, it can be projected onto the two orthogonal
S0-eigenspaces, yielding the R-invariant independent func-

tions a �
1
2

(� 
 S0�) and ã �
1
2

(� � S0�), such
as Sia � a, Siã � � ã, and �a, Qã� � 0 for any Cnv-
invariant operator Q.

If � is an R-antisymmetric k-eigenfunction not belong-
ing to a S0-eigenspace, it can be projected onto the two
orthogonal S0-eigenspaces, yielding the R-antisymmetric

independent functions b �
1
2

(� 
 S0�) and b̃ �
1
2

(� �

S0�) such as Sib � b, Sib̃ � � b̃, and �b,Qb̃� � 0 for any
Cnv-invariant operator Q.

For the coupled problems, assume a function couple
(�m, �m) such as R(�m 
 i�m) � εm(�m 
 i�m) has been
found. Then, multiplying by –i, R (�m � i�m) �
εm(�m � i�m), and so, (�m, –�m) is also a solution of the
coupled problem. Using the composition rules,

RSp(�m � i�m) � SpR
�1(�m � i�m)

� SpR
�1(�m 
 i�m) � Spε�m(�m 
 i�m)

� εmSp(�m � i�m) .

This means that (Sp�m, –Sp�m) is also a solution of the
coupled problem. Finally, combining these two results,
(Sp�m, Sp�m) is another solution of the coupled problem.
These relations can be used to construct formally two
solution couples of the coupled problems with invari-
ance properties with respect to Sp, e.g., with the first
component of each couple being Sp-invariant and the
second Sp-antisymmetric:

Fig. 2. Cross section of a prismatic hexagonal homoge-
neous system with a trace of the mirror symmetry planes
(�0 to �5), with �/6 clockwise angle between one and the
next. R � S0S1 is the counterclockwise rotation of angle
2�/6.
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�um � �p

�m �

1
2

(�m 
 Sp�m)

vm � �p
��m �

1
2

(�m � Sp�m)

and

�ũm � �p

�m �

1
2

(�m 
 Sp�m)

ṽm � � �p
��m �

1
2

(��m 
 Sp�m) .

It is easily checked that if (�m, �m, Sp�m, Sp�m) are
linearly independent, so are (um, vm, ũm, ṽm); in this case,
the two solutions initially found yield, in fact, four indepen-
dent solutions, thus sparing calculation time. In contrast, if
(�m, �m, Sp�m, Sp�m) are linearly dependent, they span a
plane only and no additional independent solution can be
found this way. A practical check of the coplanarity of u, v,
Spu, and Spv may be implemented as follows: if u, v, and Spu
are coplanar, then �u,u�Spu � �u,Spu�u 
 �v,Spu�v, as u and
v are orthogonal and of same norm, and by squaring:
�u,u�2 � �u,Spu�2 
 �v,Spu�2.

VI.B. Solving First for Mirror Symmetry Eigenfunctions

Assume we have found a real solution f of the prob-
lem within a class of reflective boundary conditions; we
can apply to it the projectors on R-invariant subspaces: um

and vm (0 � m � n/2). If f already belongs to one of these
R-invariant subspaces, all projections on any other
R-invariant subspace will yield null functions (if f
belongs to the m’th coupled problem R-invariant sub-
space, application of um and vm will produce an additional
linearly independent k-eigenfunction). If not, and if
degeneracy extends over more than one R-invariant sub-
space, several new linearly independent k-eigenfunctions
may be produced directly this way from f.

VII. TWO SIMPLE ILLUSTRATIVE EXAMPLES

These examples are given to illustrate on simple con-
figurations the validity of the previous theoretical deriva-
tions, and how the possibly degenerated k-eigenfunctions
may be sorted into the symmetry classes belonging to
commutative subgroups of the symmetry group. They
involve monoenergetic diffusion over simple geometric
objects made of a homogeneous material. Looking for
k-eigenfunctions of the diffusion equation is then equiv-
alent to searching for eigenfunctions of the Laplacian
operator. The boundary condition used will be a null flux
on the outer boundary (Dirichlet condition). Two exam-
ples are given, involving the symmetry groups C3v

(equilateral triangle) and C6v (regular hexagon), respec-
tively. The homogeneous square geometry (symmetry
group C4v), also with an analytic solution, will be used in
the companion paper32 as a simple validation tool to check
the implementation, in a diffusion solver and rectangular
geometry, of innovative boundary conditions with a solu-
tion over a sector.

VII.A. Equilateral Triangle, Symmetry Group C3v

This problem has an analytical solution.33 Most of the
result is in the Appendix for the interested reader. A
complete orthogonal basis of analytic solutions of
equation �T 
 �2T � 0 on the homogeneous equilateral
triangle vanishing on the sides is

� Ts
mn 	0�m�n � � Ta

mn	0�m�n .

Ts
mn and Ta

mn (see formulation and properties in the
Appendix) are, respectively, symmetric and antisymmet-
ric with respect to a given median of the triangle (the
vertical median in Fig. 3). Eigenvalues are given by

�2 �
4�2

27r2
(m2 
 mn 
 n2). R being defined as a rotation

of angle 2�/3, the R-invariant basis functions are those
with indices such as m � n (modulo 3), while the basis
functions with indices not congruent modulo 3 are solu-
tions of the coupled problem for R:

�RTs
mn � �

1
2

Ts
mn �


3
2

Ta
mn

RTa
mn �


3
2

Ts
mn �

1
2

Ta
mn

(m and n not congruent modulo 3) .

The multiplicity of an eigenvalue �2 �
4 �2

27 r2
q depends on

the number of possible representations of q by the qua-
dratic form m2 
 mn 
 n2 with m � n. If only one such
representation is possible, the behavior is given in
Table III (the presence of two conjugate complex
R-eigenvalues means a real coupled problem with an
R-invariant plane).

The mirror symmetries double the degeneracy with
respect to the pure rotation case for m � n with m con-
gruent to n modulo 3, as we have then only one rotation
eigenvalue (�1) for a two-dimensional invariant sub-
space, and so two linearly independent R-invariant basis
eigenfunctions, one symmetric and the other antisymmet-
ric with respect to the chosen median. In that case, one
calculation may provide two eigenfunctions thanks to the
projection operators P�1 and P�1 (see Sec. V).

Figure 3 illustrates some examples. The fundamental
mode corresponds to (m, n) � (1, 1) and is an R-invariant

184 TOMMASI et al. · CALCULATION OF HIGHER-ORDER FLUXES IN SYMMETRIC CORES—I

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 184 · OCTOBER 2016



function. For higher-order eigenfunctions, when m is not
congruent to n modulo 3, the twofold degeneracy is already
present in the pure rotation case (coupled problem), and the
mirror symmetries can provide no additional linearly
independent eigenfunction; they only allow us to shape
the solutions of the coupled problem into a symmetric and
an antisymmetric solution in the same invariant plane. This
is the case for (m, n) � (1, 2). The degeneracy is doubled
only for R-invariant solutions with m � n while m is con-
gruent to n modulo 3, for instance with (m, n) � (1, 4).

VII.B. Hexagon: Classifications According to Rotations
or Mirror Symmetries

We take here the example of the homogeneous regu-
lar hexagonal prism of vertical axis (see Fig. 2) with six
mirror symmetry planes (�0 to �5, associated with
mirror symmetries S0 to S5) and, consequently, invari-
ance under the order-6 rotation R. The system is invari-
ant under the action of the noncommutative symmetry
group C6v � � I, R, R2, R3, R4, R5, S0, S1, S2, S3, S4, S5	.

Using only the material rotation invariance under R,
i.e., under the action of the cyclic (commutative) subgroup
C6 � � I, R, R2, R3, R4, R5	, we search for k-eigenfunctions
in R-invariant subspaces corresponding to eigenvalues

e
m

2i�

6 for 0 � m � 3, resulting in the four solutions classes
below:

Ra � a ,

�Ru �
1
2

u �

3
2

v

Rv �

3
2

u 

1
2

v ,

�Ru� � �
1
2

u� �

3
2

v�

Rv� �

3
2

u� �
1
2

v� ,

and

Rb � �b.

It is then easy to check that

� b 
 R3b � u 
 R3u � v 
 R3v � 0
a � R3a � u� � R3u� � v� � R3v� � 0 .

If, in addition to R, we use any given mirror sym-
metry (e.g., S0), shifting to the full symmetry group C6v,
degeneracy inside a given class may be doubled if the

Fig. 3. Some eigenfunctions of the Laplacian operator in the equilateral triangle.

TABLE III

Degeneracy of Laplacian Eigenvalues in the Equilateral Triangle and Projection of Eigenfunctions on C3v-Invariant Subspaces

Dimension of Invariant
�2-Eigenspace

Eigenvalues in Invariant
�2-Eigenspace for . . .

Rotation Mirror Symmetries

m � n 1 �1 �1

m � n Congruent modulo 3 2 �1 
1
Not congruent modulo 3 2 e �

2i�

3

1
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R-eigenvector found (real or complex) and its image by S0

are linearly independent. In any case, we assume we have
obtained for the coupled problems solutions such as

�S0u � u
S0v � �v and �S0u� � u�

S0v� � �v�
(see end of Sec. VI.A). The

resulting partition of solutions into four rotation classes is
given in Table IV. For the m � 0 and m � 3 classes,
functions with either symmetry or antisymmetry with
respect to S0 may exist. If, instead, we start by taking into
account two mirror symmetries with respect to perpendic-
ular planes (e.g., S0 and S3), thus using effectively the
subgroup C2v � � I, R3, S0, S3	 to partition the problem
into four classes, then these classes contain functions with
R-invariance properties as given in Table V. Using the

relation R3S0 � S0R
3 � S3, it follows that �S3u � �u

S3v � v and

�S3u� � u�
S3v� � �v� .

Here the degeneracy of the coupled problems is lifted,
in the sense that the solutions of the functions of the
coupled problems are split into different classes.

VIII. CONCLUSIONS

In neutron chain systems with material symmetries,
various k-eigenvalues of the neutron balance equation
beyond the dominant one are degenerate, i.e., with several

linearly independent eigenfunctions associated with the
same eigenvalue k.

It has been shown here that in such cases, the various
eigenfunctions of the neutron balance equation associated
with the same eigenvalue can be partitioned into several
symmetry classes according to their invariance properties
with respect to the symmetry operations, leaving the material
distribution unchanged in the system. Furthermore, the cal-
culation of these eigenfunctions can be limited to a fraction
of the system (sector) provided that boundary conditions
matching the symmetry operations are used. The whole-
system eigenfunctions can then be deduced (unfolded) from
the solutions obtained over the sector.

If there is material invariance under p � 1, 2, or 3 mirror
symmetries with respect to mutually orthogonal planes, the
balance equation can be solved on a sector representing the
fraction 1/2p of the system; the boundary conditions are of
the reflective type, either symmetric (the most usual) or
antisymmetric (seldom considered in the past), effectively
partitioning the solutions into 2p classes with respect to the
boundary condition type for each symmetry plane.

If there is material invariance under a rotation R of order
n, the balance equation can be solved on a sector represent-
ing the fraction 1/n of the system; the boundary conditions
link matching phase space elements of the left and right
boundaries of the sector while the whole-system boundary
conditions are still applied to the outer boundary of the
sector. The calculation is partitioned into several class types:

1. R-invariant functions

2. R-antisymmetric functions (only for even n)

3. as many classes of coupled functions (real and
imaginary parts of complex R-eigenfunctions) as
there are integers m satisfying 1 � m � n/2.

To our knowledge, the boundary conditions involved

here (except for the basic R-invariance) do not seem to
have been addressed yet.

If there is material invariance under rotations and
mirror symmetries, either approach may be used, resulting
in different classifications of the eigenfunctions.

When using the power iteration method to search
k-eigenvalues, the use of material symmetries to split the
global problem into a variety of smaller-sized problems
has several computational advantages:

1. Each class of solutions is worked out separately
on only a fraction of the global system, allowing a parallel
treatment of the various classes.

2. The whole k-spectrum is partitioned into the var-
ious classes, increasing the dominance ratios in each class
with respect to the whole-core problem.

TABLE IV

Partition of the Regular Hexagon Eigenfunctions into
Symmetry Classes According to Order-6 Rotation R

and Mirror Symmetry S0

S0-symmetric S0-antisymmetric

R-invariant, m � 0 Ra � a

Coupled problem, m � 1 u � (u, v) v � (u, v)

Coupled problem, m � 2 u� � (u�, v�) v� � (u�, v�)

R-antisymmetric, m � 3 Rb � �b

TABLE V

Partition of the Regular Hexagon Eigenfunctions into
Symmetry Classes According to Mirror Symmetries

S0 and S3 with Respect to Perpendicular Planes

S3-symmetric S3-antisymmetric

S0-symmetric
Ra � a Rb � �b

u� � (u�,v�) u � (u,v)

S0-antisymmetric
Rb � �b Ra � a
v � (u,v) v� � (u�,v�)
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3. The degeneracy of any given k-eigenvalue may
also be partitioned into the symmetry classes.

APPENDIX

ANALYTICAL SOLUTION FOR MONOENERGETIC
DIFFUSION IN THE EQUILATERAL TRIANGLE

We consider an equilateral triangle with inradius r, and
Lamé’s triangular coordinates u, v, and w (see Fig. A.1), such
that u�2r, v�2r, and w�2r are the distances of a generic
point of the triangle to the parallels of the sides drawn by each
vertex. The center of the triangle has coordinates (0, 0, 0), and
u, v, and w are linked by the condition u 
 v 
 w � 0.

Lamé obtained analytical solutions, symmetric or
antisymmetric with respect to the u-axis of equation v � w
and obeying Dirichlet conditions on the sides. They are
given by the following formulas, the three integer indices
being linked by l 
 m 
 n � 0:

Ts
mn � sin� �l

3r
(u 
 2r)� cos� �(m � n)

9r
(v � w)� 
 sin� �m

3r
(u 
 2r)� cos� �(n � l)

9r
(v � w)�


 sin� �n
3r

(u 
 2r)� cos� �(l � m)
9r

(v � w)�
and

Ta
mn � sin� �l

3r
(u 
 2r)� sin� �(m � n)

9r
(v � w)� 
 sin� �m

3r
(u 
 2r)� sin� �(n � l)

9r
(v � w)�


 sin� �n
3r

(u 
 2r)� sin� �(l � m)
9r

(v � w)� .

These functions vanish on the sides of the triangle and are such that �Ts/a
mn 
 k2Ts/a

mn � 0 with k2 �
2�2

27r2
(l 2 


m2 
 n2) �
4�2

27r2
(m2 
 mn 
 n2). They also have the following properties, with the inner product defined as

��, �� � �� �dA, dA being the area element in the triangle:

1. Ts
mn vanishes when one of the integers l, m, or n is null; Ts

mn � Ts
nm.

2. Ta
mn vanishes when one of the integers l, m, or n is null or if two of them are equal; Ta

mn � � Ta
nm.

3. �Ts
mn 	n�m�0 � � Ta

mn 	n�m�0 is a complete orthogonal basis of functions over the triangle.

4. �Ts
mm, Ts

mm� �
9
3

2
r2 and �Ts

mn, Ts
mn� � �Ta

mn, Ta
mn� �

9
3
4

r2 (m � n).

5. �1, Ts
mn� �

9
3
�m

r2  mn.

6. Condition for invariance under rotation R of angle 2�/3:

a. RTs
mn � Ts

mn ⇔ m � n (modulo 3)

b. RTa
mn � Ta

mn ⇔ m � n (modulo 3).

An extensive review of the results above, with a historical background dating back to Lamé’s pioneering work, can
be found in Ref. 33, together with fully worked or sketched proofs.

Fig. A.1. Lamé’s coordinates of point P in the equilateral
triangle are such that u � A1P1 � 2r, v � A2P2 � 2r, and
w � A3P3 � 2r (r being the inradius of the triangle and P1,
P2, and P3 being, respectively, the orthogonal projections
of P onto A1H1, A2H2, and A3H3). Examples are O(0, 0, 0),
A1(–2r, 0, 0), and H1(r, –r/2, –r/2).
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The symmetry group of the equilateral triangle is C3v � �E, R, R2, S0, S1, S2	, the symmetry operations being defined
by their action on the coordinates as

E : (u, v, w) ¡ (u, v, w) S0 � Su : (u, v, w) ¡ (u, w, v)
R : (u, v, w) ¡ (v, w, u) S1 � Sw : (u, v, w) ¡ (v, u, w)

R2 : (u, v, w) ¡ (w, u, v) S2 � Sv : (u, v, w) ¡ (w, v, u) ,

in such a way that their composition rules are (sums of
indices to be taken modulo 3)

�RpRq � Rp
q SpR
q � Sp
q

SpSq � Rq�p RpSq � Sq�p .

The following results are easily checked:

S0 Ts
mn � Ts

mn, S0 Ta
mn � � Ta

mn,
S1 Ts

mn � R2Ts
mn, S1 Ta

mn � �R2Ta
mn ,

S2 Ts
mn � RTs

mn, S2 Ta
mn � �R Ta

mn ,

�Ts
mn, RTs

mn� � �Ts
mn, R2Ts

mn�,

�Ta
mn, RTa

mn� � �Ta
mn, R2Ta

mn�,

and

�Ts
mn, RTa

mn� � �S0Ts
mn, S0RTa

mn�

� �S0Ts
mn, R�1S0Ta

mn� � ��RTs
mn, Ta

mn� .

Additionally, accurate numerical calculations strongly
suggest (and we will assume) that for m and n not congruent
modulo 3:

1. �RTs
mn, Ts

mn� � �RTa
mn, Ta

mn� � �
9
3

8
r2.

2. �RTs
mn, Ta

mn� � ��Ts
mn, RTa

mn� �
27
8

r2sgn (m � n).

These numerical values can be used to show that when m

and n are not congruent modulo 3: � RTs
mn 


1
2

Ts
mn 



3
2

Ta
mn � � 0 and � RTa

mn �

3
2

Ts
mn 


1
2

Ta
mn � � 0.

In other words, if m and n not congruent modulo 3,
then (Ts

mn, Ta
mn) is a solution of the coupled problem

�RTs
mn � �

1
2

Ts
mn �


3
2

Ta
mn

RTa
mn �


3
2

Ts
mn �

1
2

Ta
mn .
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