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Highlights 

 sorption of trace U(VI) and Ra(II) on kaolinite was studied 

 multi-site sorbent/multi-species sorbate ion exchange model used to describe sorption 

 results provided U and Ra sorption equilibria stoichiometry and associated constants 

 Ra
2+

 was the main adsorbed species over the pH range 

 U negatively charged hydroxylated forms dominated sorption at pH>8 

 

Highlights



 
1 

Abstract 1 

Uranium and the long-lived decay product radium-226 areabundantly present in mine 2 

wastes produced during uraniumextraction activities. In the case of release to thesurrounding 3 

environment, these radionuclides are attrace levels compared to groundwater solutes, and the 4 

presence, content and properties of clay minerals in these subsurface environments influence 5 

the extent of radionuclide sorption and, in turn, radionuclide migration. Since clays are known 6 

to havethe distinctive property of retaining ions,the aim of this work was to study the sorption 7 

of traceuranium(VI) and radium(II) on a common phyllosilicatemineral, kaolinite, in the 8 

presence of excess K, a common groundwater cation, in order to obtain a thermodynamic 9 

database that describesthe ion-exchangeequilibria occurring at the mineral-solution 10 

interface.The sorption ofU(VI) and Ra(II) at trace level was obtainedfrom pH 2 to 11 11 

bymeasuring the distribution coefficient (Kd), and additional sorption isotherms were carried 12 

out over a representative concentration range and at two different pH.The sorption data for 13 

both elements was processedaccording to a general multi-site sorbent / multi-species 14 

sorbatemodel and provided fundamental sorption equilibria stoichiometryand associated 15 

equilibrium constants. Radium was sorbed from pH 2 to 10.5 on two main sorption sites as 16 

Ra
2+

. U sorption was observed on all the sorption sites of kaolinite governed by its solution 17 

speciation,with positively charged hydroxylated species adsorbed between pH 2 and 4, 18 

whereas its negatively charged forms dominated U sorption at pH > 8. 19 

Keywords 20 

Uranium(VI), radium, kaolinite, sorption, ion exchange 21 

 22 

1. Introduction 23 

Considerable large volumes of mill tailings are disposed every year near uranium mining 24 

sites(Abdelouas, 2006). Since most of the ore deposits have low uranium content, the mill 25 

tailings still comprise a small portion of the initial uranium and almost all of the daughter 26 

radionuclides of the 
238

U decay series, including 
226

Ra (Déjeant et al., 2014; Nirdosh et al., 27 

1984). These decay products add to the environmental impactof uranium-waste, making the 28 

mill tailings to be considered low-level radioactive waste. In particular,
226

Ra is of notable 29 

relevance due to its long half-life (1600 y), degree of radiotoxicity and its short-lived 30 
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decayproducts, such as gaseous 
222

Rn. The environmental concern of these tailings (and any 31 

contaminated land) arises from the potentialreleaseof radionuclides into the groundwater, and, 32 

as a result, contamination of subsurface environments in the vicinity ofthe mine 33 

(Phrommavanh et al., 2013). 34 

As thoroughly reviewed in Payne et al.(2013), a key factor on migration predictions is 35 

the extent of radionuclide sorption onto the surfaces of solid phases found in natural 36 

environments. These solid phases must be methodically characterised, with special emphasis 37 

on the identification of sorption sites, the estimation of their concentration and their sorption 38 

behaviour towards radionuclides under different conditions. The sorption of U(VI) and, in less 39 

extent, Rahave been previously studied for different iron oxyhydroxide, carbonate and clayey 40 

minerals(Catalano and Brown Jr, 2005; Jones et al., 2011; Payne et al., 2004; Sajih et al., 41 

2014; Stammose et al., 1992; Tachi et al., 2001; Turner et al., 1996). Clay minerals are 42 

abundant in geological formations and soils, and have the distinctive property of retaining 43 

ions,with high affinity for cationic species.The sorption process on clays is mainly via ion 44 

exchange on the surface, becoming even more important with trace-level concentrations and 45 

low ionic strength conditions, as the onesin natural environments. Catalano and Brown Jr 46 

(2005)studied the sorption of U on montmorillonite and observed that the fraction of uranyl 47 

sorbed via cation exchange under low ionic strength conditions was more important than 48 

observed in previous studies, where only surface complexation was considered. Turner et al. 49 

(1996)used an ion exchange model to describe sorption of uranyl on a smectite type clay, and 50 

obtained equilibrium constants for the different sorption sites on the surface. An ion exchange 51 

model (considering two types of sorption sites) was also more suitable than surface 52 

complexation model to describe the retention of U(VI) at trace level on a clay mixture of 53 

kaolinite and smectite (Stammose et al., 1992), and the sorption of Ra was also demonstrated 54 

to happen via an ion exchange mechanism on purified smectite (Tachi et al., 2001).  55 

When radionuclides are found at trace or ultra-trace level, major cations (found at higher 56 

aqueous concentrations) are strong competitors for clay sorption sites in natural 57 

environments(Tertre et al., 2011). Therefore, a full characterisationof the clay properties 58 

towards the major ions is also required to describe the sorption of trace metals on clays. This 59 

type of characterisation has already been carried out, for example, with argillaceous rock 60 

(Motellier et al., 2003),beidellite(Robin et al., 2015)and kaolinite (Reinoso-Maset and Ly, 61 

2014). In these three studies, the sorption of major ions was described using a multi-site ion 62 
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exchange model, and provided with a comprehensive and robust sorption data setsthat can be 63 

applied when studying sorption of trace elements on these clays. 64 

Therefore, the aim of this work was to study the sorption of trace level uranium(VI) and 65 

radium(II) on a common phyllosilicate mineral, kaolinite, in the presence of excess K, a 66 

common groundwater cation, in order to determine the ion-exchange equilibria occurring at 67 

the mineral-solution interface. This work has followed a multi-site ion exchange model that 68 

can describe chemical systems such as a multi-site sorbent/multispecies sorbate, and which 69 

has already been applied in Reinoso-Maset and Ly (2014) to successfully characterise the ion 70 

exchange properties of the same kaolinite used in this work. The model is presented in detail 71 

therein, thus here we focused on the part of the model that describes sorption of a trace 72 

element. Following a detailed experimental protocol using chemical and radiochemical 73 

analytical techniques, batch experiments over a wide pH range (from 2 to 11)were carried out 74 

to measure the distribution coefficient (Kd) of traceU(VI) and Ra(II) sorption on kaolinite. 75 

Additionally, sorption isotherms of both elements were measured over a representative 76 

concentration rangeand at two different solution pH.Finally, to obtain fundamental sorption 77 

equilibria stoichiometry and associated constants, the sorption data for both elements was 78 

processed according to the ion exchange model described here. 79 

2. Methodology 80 

Reinoso-Maset and Ly (2014) obtained the type and concentration of sorption sites of the 81 

kaolinite used in this work, the related major ions sorption equilibria occurring at the mineral-82 

solution interface and their associated selectivity coefficients (expressed as the corrected 83 

selectivity coefficients, K*). The main formalisms and assumptions of the model are 84 

presenttherein, hence we have focused this section on the part of the model describing 85 

sorption of an element at trace level in the presence of two competitor ions. 86 

2.1 Adsorption on major sorption sites 87 

The kaolinite crystal structure, Al2Si2O5(OH)4, presents permanent negatively charged 88 

sites, Xi, and hydroxylated sites with pH-dependent charge, YjOH, that can result in different 89 

sorption equilibria occurring at the solid solution interface. When the element M is found at 90 

trace level compared to a major competitor N
+
and in the absence of other ligands than OH

-
, 91 

the adsorption of M on a major sorption site can occur under its free M
m+

 form or as one of its 92 

hydroxylated species, M(OH)x
m-x

, depending on the solution pH. 93 
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Therefore, when consideringH
+
 as the reference competitor ion, the sorption of freeor 94 

hydroxylated species of Mand N
+
on permanently charged sorption sites, Xi, can be described 95 

by Equations 1 and 3 respectively. Their associated equilibrium constants (as the corrected 96 

selectivity coefficients) have the form of Equations 2 and 4. 97 

M𝑚+ + 𝑝X𝑖
−H+        +  𝑚 − 𝑝 H2O ↔   X𝑖

− 𝑝  M OH 𝑚−𝑝
𝑝+                      + 𝑚H+ (1) 

𝐾M OH  𝑚−𝑝 𝑚H 
∗𝑖 =  

   X𝑖
− 𝑝  M OH 𝑚−𝑝

𝑝+                        H+ 𝑚

 X𝑖
−H+         

𝑝
[M𝑚+]

∙
 𝑦H 𝑚

𝑦M
 (2) 

N+ +  Xi
−H+         ↔    Xi

−   N+          + H+ (3) 

𝐾N H 
∗𝑖 =  

  Xi
−   N+            H+ 

 Xi
−H+         [N+]

∙
 𝑦H

 

𝑦N
 (4) 

where K*
i
is the corrected selectivity coefficient for M

m+
or N

+
and H

+
 exchange on a 98 

surface site;i is the index number of the surface site;m is the cation 99 

charge;   X𝑖
− 𝑝  M OH 𝑚−𝑝

𝑝+                      , Xi
−   N+           and   Xi

−H+         are the chemical forms describing the sorption 100 

state of M, N and H
+
 on site Xi respectively; the square brackets [ ] indicate the concentration 101 

of species either in solution or adsorbed to site Xi (in mol L
-1 

and mmol g
-1

 of dry solid 102 

respectively); and yH, yM and yN are the molar activity coefficients for H
+
, M

m+
and 103 

N
+
quantified in the present work according to Davies expression, log 𝑦𝑖 = −0.5 ∙ zi

2 ∙104 

 
 𝐼

1+ I
− 0.3 ∙ 𝐼 , with ionic strength 𝐼 =

1

2
∙  Cizi

2
i , where Ci andzi are the molar concentration 105 

and charge of the species i respectively. 106 

In the case of hydroxylated sorption sites, YjOH, the sorption of anions (L
-
and anionic M 107 

hydroxylated species) must be also considered. Equations from5 to 10showall the chemical 108 

equilibria involved and their associated thermodynamic constants. 109 

N+ + Y𝑗OH       ↔  Y𝑗  O−N+          + H+ (5) 
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𝐾N H 
∗𝑗

=  
  Y𝑗  O−N+            H+ 

 Y𝑗OH        [N+]
∙
 𝑦H

 

𝑦N
 (6) 

L− + Y𝑗OH       + H+ ↔  Y𝑗  OH2
+L−            (7) 

𝐾L
∗𝑗

=  
  Y𝑗  OH2

+L−            

 Y𝑗OH        [L−] H+ 
∙

1

𝑦L𝑦H
 (8) 

-if M(OH)x
m-x

 are cationic species, 0 ≤ x = m – p ≤ m–1 and 1 ≤ p ≤ m, and thus:  

M𝑚+ + 𝑝Y𝑗OH       +  𝑚 − 𝑝 H2O ↔    Y𝑗  O− 
𝑝

M OH 𝑚−𝑝
𝑝+                          + 𝑚H+ (9) 

-if M(OH)x
m-x

are anionic species, x > m and q ≥ 1, and thus: 

M𝑚+ + 𝑞Y𝑗OH       + 𝑚H2O ↔    Y𝑗   𝑞M OH 𝑚+𝑞
                      + 𝑚H+ (10) 

Since the exchange reactions ofthe element M are in competition with the ones involving 110 

N
+
, as well as L

-
, the total concentration of sites Xiand YjOH(SCi and SCj respectively) will 111 

be given by Equation 11 and 12. 112 

SC𝑖 =  X𝑖
−H+         +   X𝑖

−   N+           +  𝑝   X𝑖
− 𝑝  M OH 𝑚−𝑝

𝑝+                       

1

𝑝=𝑚

 (11) 

SC𝑗 =  Y𝑗 OH        +   Y𝑗 O−   N+             +   Y𝑗  OH2
+L−            +  𝑝    Y𝑗  O− 

𝑝
M OH 𝑚−𝑝

𝑝+                           

1

𝑝=𝑚

+  𝑞    Y𝑗   𝑞M OH 𝑚+𝑞
                       

𝑞≥1

 
(12) 

However, the concentration of sites occupied by the trace metal M (either in Equation 11 113 

or 12) can be considered negligible respect to the concentration of sites with adsorbed H
+
, N

+
 114 

and L
-
, and thus the distribution coefficient of the element M (KdM

=  M   M  ) canbe 115 

expressed as a function of the corrected selectivity coefficients of M, N and L, the 116 
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concentration of sites i and j(SCi and SCj) and the solution pH by combining Equations 2, 4, 117 

6, 8 11 and 12. The final mathematical development yields to Equation 13. 118 

KdM
=

1

αM ∙  H+ 𝑚 ∙
 𝑦H  𝑚

𝑦M

∙    
𝐾M OH  𝑚−𝑝 𝑚H 

∗𝑖 ∙  SC𝑖 
𝑝

 1 + 𝐾N H 
∗𝑖 ∙

 N+ 

 H+ 
∙
𝑦N

𝑦H
 
𝑝

1

𝑝=𝑚 sites  𝑖

  

+     
𝐾M(OH )𝑚−𝑝 /𝑚H

∗𝑗
∙  SC𝑗  

𝑝

 1 + 𝐾N/H
∗𝑗

∙
 N+ 

 H+ 
∙
𝑦N

𝑦H
+ 𝐾L

∗𝑗
∙  L− ∙  H+ ∙ 𝑦L ∙ 𝑦H 

𝑝

1

𝑝=𝑚sites  𝑗

+  
𝐾M(OH )𝑚 +𝑞/𝑚H

∗𝑗
∙  SC𝑗  

𝑞

 1 + 𝐾N/H
∗𝑗

∙
 N+ 

 H+ 
∙
𝑦N

𝑦H
+ 𝐾L

∗𝑗
∙  L− ∙  H+ ∙ 𝑦L ∙ 𝑦H 

𝑞

𝑞≥1

   

(13) 

where αM is the overall side-reaction coefficient expressed as 119 

𝛼M =
[M]total

[M𝑚+]
= 1 +  

𝛽𝑟

 H+ 𝑟
+  𝛽𝑠 ∙

𝑠

 L𝑙− 𝑠

𝑟

 

toaccount for the aqueous chemical equilibria, including the complexation of M by hydroxide 120 

ion(effective formation constant βr) and ligands L
l-
(effective formation constantsβs).The 121 

reactions and constants to calculate the side-reaction coefficient for U and Ra in this work are 122 

shown in the Supplementary Information, Table S1. 123 

If the terms in Equation 13 that are independent to i and j are arranged with the Kd, an 124 

equation with the form of a Y = F(X, Z) function can be obtained (Equation 14): 125 

𝐘 = log    
𝐾M OH  𝑚−𝑝 𝑚H 

∗𝑖 ∙  SC𝑖 
𝑝

 1 + 𝐾N H 
∗𝑖 ∙ 10𝐗 

𝑝

1

𝑝=𝑚 sites  𝑖

+    
𝐾M(OH )𝑚−𝑝/𝑚H

∗𝑗
∙  SC𝑗  

𝑝

 1 + 𝐾N/H
∗𝑗

∙ 10𝐗 + 𝐾𝐿
∗𝑗

∙ 10𝐙 
𝑝

1

𝑝=𝑚sites  j

+  
𝐾M(OH )𝑚 +𝑞/𝑚H

∗𝑗
∙  SC𝑗  

𝑞

 1 + 𝐾N/H
∗𝑗

∙ 10𝐗 + 𝐾𝐿
∗𝑗

∙ 10𝐙 
𝑞

𝑞≥1

   

(14) 
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where Y, X and Zcontain factors that can be obtained experimentally or calculated 126 

(Equations 15-17). 127 

𝐘 = log  Kd M
∙ αM ∙  H+ m ∙

(𝑦H)m

𝑦𝑀
  (15) 

𝐗 = log  
 N+ 

 H+ 
∙
𝑦N

𝑦H
  (16) 

𝐙 = log  L− ∙  H+ ∙ 𝑦L ∙ 𝑦H  (17) 

Equation 14 is a logarithm of a sum of different terms describing the following possible 128 

sorption processes occurring in the system: 129 

- cation adsorption on permanently charged sites Xi 130 

Yi(p) = log  
KM OH m-p/H

*i ∙  SCi 
p

 1+KN/H
*i ∙10X 

p  =  𝑓𝑖(𝑝) 𝐗  

- cation adsorption on hydroxylated sites YjOH 131 

Yj(p) = log  
KM OH m-p/H

*j
∙ SCj 

p

 1+KN/H
*j

∙10X + KL
*j
∙10Z 

p =  𝑓𝑖(𝑝) 𝐗,𝐙  

- anion adsorption on hydroxylated sites YjOH 132 

Yj(q) = log  
KM OH m+p/OH

*j
∙  SCj 

q

 1+KN/H
*j

∙10X + KL
*j
∙10Z 

q =  𝑓𝑗 (𝑞) 𝐗,𝐙  

Therefore, when X - , then Yi(p) log(KM OH 
m-p

/H
*i ∙  SCi 

p), which results in a 133 

horizontal asymptotefor the Yi(p) = fi(p)(X) curve that allows estimating the value of the 134 

corrected selectivity coefficient for M (K
*i

). WhenX+, then Yi(p) log 135 

 
KM OH 

m-p
/H

*i ∙ SCi 
p

 KN/H
*i  

p  − p∙ X, which isa linear asymptote with negative slopeindependently of the 136 

value of p, always a positive number (1 ≤ p ≤ m). This slope provides the stoichiometry of the 137 

adsorbed species and the associated chemical equilibrium.  138 
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In the same way, andif KN/H
*j

.10
X≫ KL

*j
.10

Z
 ,Yj(p) log  

K
M OH 

m-p
/H

*j
∙ SCj 

p

 KN/H
*j

 
p  − p∙ X and  Yj(q) 139 

 log  
K

M OH m+p/OH

*j
∙ SCj 

q

 KN/H
*j

 
q  − q∙ X when X +,  defininglinear asymptotes with negative 140 

slopes (1 ≤ p ≤ m andq ≥ 1). Since X and Z vary in the opposite direction with increasing pH 141 

(see Equations 16 and 17), the increase of Y with X (i.e. positive slope of the curve Y = f(X)) 142 

implies that KN/H
*j

.10
X≪KL

*j
.10

Z
 , which gives evidence of hydroxylated sorption sites that are 143 

able to absorb anionic species of M. 144 

The curvesY = f(X) and Y = g(Z)can be obtained experimentally by determining the 145 

distribution coefficient of M in the presence of excess N
+
 over a wide pH range. The 146 

commonly used Kd vs. pH curve can then be converted to Y = f(X) and Y = g(Z)curves 147 

representation, where the charge of the adsorbed species p and q can be determined through 148 

the slopes of the curves, which consequently allows to write the stoichiometry of the sorption 149 

reaction for the trace element M (Equations 1, 9or 10). The corrected selectivity coefficient 150 

associated to the reaction on each sorption site, KM OH 
m-p

/H
*i

 , KM OH 
m-p

/H

*j
 and KM OH m+p/OH

*j
, 151 

can be obtained by nonlinear fitting of the experimental data. The values of SCi, SCjand 𝐾N/H
∗𝑖 , 152 

𝐾N/H
∗𝑗

, KL
*j

need to be determined a priori from saturation curves of major cations and anions 153 

over pH. The clay material used in Reinoso-Maset and Ly (2014)is the same as the one used 154 

in this work, therefore site concentrations and stability constants obtained therein were used in 155 

the calculations presented here (see discussion). 156 

2.2 Adsorption on minor sorption sites 157 

Minor sorption sites (<0.001 mmol g
-1

 of dry clay) can have a significant affinity for 158 

elements at trace level.Reinoso-Maset and Ly(2014) identified one minor sorption site on the 159 

kaolinite after performing adsorption isotherms of Cs over a concentration range, at constant 160 

pH and excess of Na
+
 in solution (i.e. a competitor ion for the sorption sites). Therein, the 161 

methodology and equations for the sorption of monovalent cations is fully explained. In this 162 

work, the trace elements are present in solution mainly as their doubly charged species.The 163 

equation to calculate the total adsorbed concentration,  M  T , of a doubly charged elementM in 164 

the presence of a monovalent competitor cation can be derived in the same manner and has 165 

the final form of Equation 18. 166 
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 M  T =   (Xi
−)2M2+               

n

𝑖=1

= 

=  

 

  
 SC𝑖

2
+

 1 + 𝐾N/H
∗𝑖 .

 N+ 

 H+ 
.
𝑦N

𝑦H
 

2

8 ∙  KM/H
*i .

 M2+ 

 H+ 2
∙

yM

 yH 2

n

𝑖=1

−   
 1 + 𝐾N/H

∗𝑖 .
 N+ 

 H+ 
.
𝑦N

𝑦H
 

2

8 ∙  𝐾M/H
∗𝑖 .

 M2+ 

 H+ 2
∙

𝑦M

 𝑦H  2

 

2

+ SC𝑖 ∙
 1 + 𝐾N/H

∗𝑖 .
 N+ 

 H+ 
.
𝑦N

𝑦H
 

2

8 ∙  𝐾M/H
∗𝑖 .

 M2+ 

 H+ 2
∙

𝑦M

 𝑦H  2

 

 
 

 

(18) 

This equation can then be used, along with the measured M concentration in solution at 167 

equilibrium, M , to obtain the distribution coefficient (Kd) of the element M. Ata given pH 168 

and constant N
+
 concentration, and providing thatM is at trace level compared to the 169 

concentration of sites, M  Tchanges proportionally to  M and thus the Kd tends to a constant 170 

value. When  M  Treaches the concentration of minor sorption sites, SCs, a pronounced 171 

decrease of Kd towards 0 occurs due to full saturation of the sorption sites. In Equation 18, the 172 

solution pH and concentrations can be obtained experimentally, whereas the values of SCi and 173 

𝐾N/H
∗𝑖 were determined from the cation saturation curves over pH in Reinoso-Maset and Ly 174 

(2014). By performing a nonlinear fitting of the adsorption isotherms (logKd vs. log M  T), the 175 

corrected selectivity coefficients associated to the adsorption equilibria reactions on minor 176 

sorption sites can be calculated. 177 

3. Materials and methods 178 

3.1 Reagents and solutions 179 

All solutions were prepared with ultrapure water (18.2 MΩ·cm
-1

, Milli-Q gradient 180 

system, Millipore) and analytical grade reagentspurchased from Sigma Aldrich (USA), Fisher 181 

Scientific (UK), Fluka (Germany) or VWR (France).Solid phase masses and solution volumes 182 

were always determined by weight using daily calibrated 4 decimal figure balances (Mettler 183 

Toledo AT200 or XP504, France). Experiments were carried out at room temperature and 184 

atmospheric CO2, except for the preparation of K hydroxide solutions (used to adjust the pH 185 
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of the clay suspensions) which was carried out in CO2-free conditions to minimise additional 186 

complexation processes. 187 

Radioisotopes solutions of 
232

U and 
226

Ra were obtained from Isotope Products 188 

Laboratories (USA). Due to the relatively short half-life of 
232

U (t1/2= 68.9 years), the 189 

formation of decay products (i.e. 
228

Th, 
224

Ra, 
220

Rn, etc.) can cause interferences in the 190 

activity counting, therefore the source solution was firstpurifiedfollowing the methodology 191 

proposed by Kraus et al. (1956). Analiquot of the 
232

U source solution wasloaded in an ion 192 

exchange resin column (AG1X8, 100-200 mesh, chloride form; Biorad Laboratories, 193 

USA)pre-conditioned with 8 M HCl. The decay products were washed out using 8 M HCl, 194 

and to recover the more strongly retained 
232

U, the column was rinsed with 0.1 M HCl. The 195 

eluted solution was neutralised with a small volume of 4 M KOH. This fresh
232

U spiking 196 

solution was used within 21 days to ensure that less than 2% of the total activity was due to 197 

the accumulated decay products. In the case of 
226

Ra (t1/2= 1600 years), the source and spiking 198 

solutions were aerated under the fume hood before sampling to avoid any external 199 

contamination by the daughter gas 
222

Rn (t1/2= 3.825 days). The formation of other decay 200 

products was not an issue for the type of experiments carried out in this study. 201 

3.2 Clay preparation 202 

The kaolinite clay mineral used in the workwas 100% wt. pure kaolinite purchased from 203 

Sigma-Aldrich (Germany). Its purity was verified by X-ray diffraction and its N2-BET 204 

specific surface area was 21.38 m
2
g

-1
(Reinoso-Maset and Ly, 2014). Prior to the batch 205 

experiments, the raw pure kaolinite was conditioned to its K homoionic form as explained in 206 

detail in (Reinoso-Maset and Ly, 2014).Briefly, raw kaolinite was first homoionized to Na-207 

kaolinite and then converted to K-kaolinite. A MilliQ water suspension was carried out to 208 

eliminate any residual salt solution, and a final ethanol suspension was used to enhance the 209 

drying process. The homoionic K-kaolinite was then gently ground to fine powder and stored 210 

in a constant relative humidity container until use. The water content calculated after drying 211 

few mg at 105°C was less than 1.30% and considered for the actual mass involved in each 212 

individual batch. 213 

3.3 Adsorption over pH experiments 214 

The adsorption of U(VI) and Ra(II) at trace level was studied at room temperature for a 215 

pH range between 2 and 12in the presence of excess K. The U and Ra distribution coefficients 216 

weredeterminedusing 0.1 g of K-kaolinite and 20 mL solution phase in tightly capped 30 mL 217 
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Nalgene centrifuge tubes.This experimental configuration offered a minimal headspace and 218 

when sampling was needed the exposure to the laboratory air was for a short time, thus 219 

limiting the introduction of atmospheric CO2 to a negligible amount. In addition, other 220 

potential sources of air CO2 were prevented, e.g. KOH was prepared in a glove-box and added 221 

to clay suspensions via an automatic burette. 222 

In order too fully disperse and hydrate the clay material, itwas first suspended with 223 

MilliQ waterand after > 16 h aliquots of KClO4solution were added accordinglyto obtain5·10
-

224 

2
 M K.The potassium perchlorate saltwas used to avoid any potential complexation of U or Ra 225 

by the salt anion.After > 16 h equilibration time, the pH was adjusted with known aliquots of 226 

concentrate HClO4 and KOH (previously determined by titration of an equivalent clay 227 

amount)and suspensions were shaken for > 20 h, a sufficient time to reach thermodynamic 228 

equilibrium between solid and solution phases. The final solution pH was measured after 229 

phase separation by ultracentrifugation (20 min, 20000 rpm), and two 1 mL and one 5 mL 230 

supernatant aliquots were collected for anion, cation and dissolved Si analysis. 231 

At this stage, an aliquot of known 
232

U and 
226

Ra activitywas added to each batch 232 

suspensions, corresponding to initial U and Ra concentrations of ca. 10
-9 

and 10
-10

 M 233 

respectively. In both cases, the spiked suspensions were equilibrated overnight on a 234 

TURBULA orbital mixer before solid and solution phases were separated by 235 

ultracentrifugation. A 1 mLaliquot of the supernatant was taken from uranium batch 236 

experiments for liquid scintillation counting (LSC) and 10 mL aliquot from Ra batch 237 

experiments forgamma spectrometry. Based on the isotopic dilution principle of no-238 

fractionation between stable and radioactive M, determining thesupernatant activityis a simple 239 

approach to measure the distribution ratio between solid and solution phases, and 240 

consequently the concentration of adsorbed U or Ra (Reinoso-Maset and Ly, 2014). 241 

3.3 Adsorption isotherm experiments 242 

The U(VI) and Ra(II)adsorption isotherms were obtained at two given pH using 0.15 g of 243 

K-kaolinite. Buffer solutions of2.5·10
-3

 M KOH and 5·10
-3

 M 2-[N-morpholine]ethane-244 

sulfonic acid (MES) or 3-[cyclohexylamino]-1-propane-sulfonic-acid (CAPS) were used to 245 

fix the solution pH at 6.1 and 10.2 respectively. These reagents are known to have no 246 

interaction with metallic elements (Yu et al., 1997) and their anionic forms are unlikely to be 247 

adsorbed onto the clay surface, therefore, they will not interfere with the ion exchange 248 

reactions.The buffer solutions also contained 5·10
-2

 M KClO4 to provide excess K in solution. 249 
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In order to avoid pH changes during the adsorption process, the K-kaolinite was first 250 

washed with 20 mL of buffer solutions. The suspensions were mixed during 1 h and after 251 

ultracentrifugation (20 min, 20000 rpm) the supernatant was carefully removed to avoid clay 252 

loss. The buffer solution wash was repeated one more time. A final 20 mL buffer solution was 253 

used to equilibrate the system overnight. Clay dissolution and K concentration were checked 254 

after ultracentrifugation (20 min, 20000 rpm) by sampling 5 mL of the supernatant for 255 

Sianalysis, and two 0.1 mL aliquots for cation and anion determination. 256 

In the U batch experiments, and without exceeding the solubility limit of U at each pH 257 

value, aliquots of stable U stock solutions prepared from an ICP-AES standard solution (1000 258 

μg mL
-1

 U in 4% HNO3, PlasmaCAL, SCP Science, Canada) were added to the suspensions 259 

to obtain 10 concentrations between 2·10
-10

 and 1·10
-7

 M for the MES series (pH 6.1), and 12 260 

concentrations up to 1.26·10
-6 

M for the CAPS series (pH 10.4). The suspensions were placed 261 

on an orbital shaker and left to equilibrate for > 20 h. Both series were finally spiked with 200 262 

μL of 
232

U spiking solution prepared as described above. The additionof
232

U was taken into 263 

account in the total U concentration in solution.Stable Ra salts or solutions are not available, 264 

thusthe concentration range in the Ra batch experiments was obtained from a 
226

Ra spiking 265 

solution. The added activities corresponded to an initial Ra concentration between 1.82·10
-10

 266 

and 2.73·10
-7

 M for the 10 MES batch experiments (pH 6.1), and between1.12·10
-10

 and 267 

3.47·10
-7

 M for the 10 CAPS batch experiments (pH 10.4). In both set of experiments, the 268 

spiked suspensions were shaken overnight on a TURBULA mixer before solution and solid 269 

phases were separated by ultracentrifugation (20 min, 20000 rpm) and 1 and 10 mL aliquots 270 

were taken for 
232

U LSCand
226

Ra gamma spectrometry respectively. 271 

3.4 Analytical methodology and experimental error 272 

The solution pH, cation and anion concentration by ion chromatography and dissolved 273 

silicon concentration by UV-Vis spectrometry were determined in the exact same manner as 274 

the methodology followed in Reinoso-Masetand Ly (2014) and analytical details are 275 

explained therein. 276 

The activity of 
232

U was measured on a Tri-CARB 2700TR liquid scintillation analyser 277 

(Packard, USA) using the α/β discrimination mode to verifythat the activity is originated by a 278 

pure α emitter. Since the batch series contained high concentration of salt buffer solutions, 0.3 279 

mL supernatant aliquots were diluted with 0.7 mL of acetate buffer (0.3 M final 280 

concentration) before mixing with 4 mL scintillation cocktail. This resulted in an equal 281 
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quenching level for all samples with a constant counting efficiency. The counting was 282 

performed during 15 min and only the α emission band (200 – 400 keV) was considered. 283 

The γ activity of 10 mL supernatant aliquots containing 
226

Ra was determined using a 284 

gamma spectrometer equipped with an N-type coaxial high purity germanium detector 285 

(ITECH-Instruments). The gamma spectra were collected from 0 to 2000 keV during 60 min 286 

and treated with the InterWinner 6.0 software. The 
226

Ra band was identified at 186 keV. This 287 

band coincides with the 
235

U energy band, but since U was not present in these batch 288 

solutions, any registered activity at this specific energy was attributed to the Ra isotope. 289 

The uncertainties reported in this work were calculated for each experimental batch by 290 

the propagation of known measurement errors theory,as explained in detail inReinoso-291 

Masetand Ly(2014). 292 

4. Results and discussion 293 

4.1 Adsorption of U and Ra over pH 294 

The Kddistribution for trace U and Ra sorption on K-kaolinite was obtained over pH in 295 

the presence of excess K (Figure 1). The U data shows a sorption edge at around pH 3.5 296 

followed by a wide sorption plateau, that ends with a slight Kd increase and another two short 297 

sorption edges are seen at the highest pH range of the experiments (pH 10-11). Radium 298 

however was completely adsorbed at the highest pH, causing null Kd results and thus the data 299 

points above pH 10.6were excluded from the curve representation. Negligible sorption was 300 

observed below pH 4, resulting in Kd values around 0. This data is shown in the graph for 301 

reference, but it was not considered in the data treatment. Between pH 4 and 10, the Kd 302 

increased gradually with increasing pH, as expected from the exchange reaction. However, 303 

these results in this form do not provide further information about the charge of the adsorbed 304 

species nor the stoichiometry of the reaction.Therefore, the experimental Kd data was 305 

transformed to the Y = f(X) and Y = g(Z) functions and Y was represented against X for both 306 

trace U and Ra sorption (Figure 1). 307 

In the case of U, a small plateau is observed at 1 < X < 2.5, followed by a decrease of the 308 

curve with slope between -2 and -1, for then, at X > 6, increase with +1 and +2 slope up to X 309 

= 10. The positive slope observed in the Y = f(X) could be due to the precipitation of uranyl 310 

silicate minerals formed with Si brought into solution by the inevitable dissolution of 311 

kaolinite. However, special care was taken when choosing the U concentration for these 312 
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experiments, by working with considerable low total concentration of the radioisotope. The 313 

non-precipitation was confirmed by the total U in solution at equilibrium for each 314 

experimental batch falling below the calculated limiting solubility curves for three U mineral 315 

phases at the experimental conditions (Figure S1in SI). Another consideration is the formation 316 

of uranyl carbonate species. Payne et al. (2004) studied the sorption of U over the pH on two 317 

Georgia kaolinites and observed that at pH > 8 the complexation of U by dissolved carbonate 318 

reduced the U uptake. It was elsewhere mentioned that uranyl carbonate species could be 319 

adsorbed on another clay mineral surface, montmorillonite(Catalano and Brown Jr, 2005). 320 

Both studies, however, were conducted on air-equilibrated clay suspensions, i.e. systems 321 

containing more than about 10
-5

 M total dissolved carbonate. According to thermodynamic 322 

predictions, this dissolved concentration will exponentially increase at pH higher than 5.5 323 

(Figure S2 in SI) and would explain the observed uranium reactivity. As mentioned above, in 324 

this work the amount of carbonate involved in each experiment was sufficiently small to 325 

prevent a significant formation of uranyl carbonate complexes.Therefore, the positive slopes 326 

were assigned to the sorption of negative uranyl species according with the dissolved species 327 

distribution in the absence of carbonate, which shows thatthe main speciesat pH > 8 are 328 

UO2(OH)3
-
 and UO2(OH)4

2-
(Figure S3 in SI). 329 

The Y = f(X) representation for Ra shows a curve with two linear parts (1 < X < 7 and 7 330 

< X < 9) both with slope -2, corresponding to a positively doubly charged species being 331 

adsorbed on two different sorption sites. This speciation of Ra agrees with previous studies 332 

(e.g. Sajih et al. (2014)) and with its solution speciation distribution of Ra, which is 333 

dominated by Ra
2+

 up to pH 11.5 in the absence of carbonate or any other complexing agent 334 

(Figure S3 in SI). 335 

Once the charge of the adsorbed specieswere deduced, a nonlinear fitting of the Y = F(X, 336 

Z) representation for both U and Ra adsorption was performed using Equation 14. The 337 

number and concentration ofsorption sites on the kaolinite, as well as the constants describing 338 

the ion exchange reaction for the major cation and anion (K and ClO4 in these experiments) 339 

were obtained inour previous work (Reinoso-Maset and Ly, 2014). Briefly, cation and anion 340 

saturation curves revealed five major sorption sites on the kaolinite surface, of which two 341 

were identified as permanently charged sites (X3
-
, X4

-
) and three as hydroxylated sorption 342 

sites (Y1OH, Y2OH, Y5OH). The sorption isotherms confirmed the presence of a minor 343 

sorption site of lower concentration but higher affinity. Table S2 in SI shows all the solution 344 

species, sorption sites and equilibrium constants used to resolve Equation 14 for each 345 
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system.After some trial and error fittings with all the possibilities, the calculated curves were 346 

simplified to the sum of the curves corresponding only to the sorption equilibria that 347 

contributed most at each pH interval (e.g. the sorption of negative uranyl species at low pH 348 

was negligible compared to the positively charged species). The Y = F(X, Z) fittings for U 349 

and Ra were optimized by nonlinear regression using Excel Solver tool and are represented in 350 

Figure 2.The stability constants, as corrected selectivity coefficients, obtained from the 351 

optimized fittings are summarised in Table 1. These corrected selectivity coefficients for U 352 

and Ra, along with constants previously obtained for K, ClO4 and sorption site concentrations 353 

(Reinoso-Maset and Ly, 2014)were subsequently used in Equation 13 to fit the logKd vs. pH 354 

graphs (Figure 1 for raw data). Figure 2 shows the individual curves for each U and Ra 355 

species as well as the overall calculated Kd curve.  356 

For U, the sorption of the free uranyl (UO2
2+

) was dominant at pH < 5 on sorption site 357 

Y2OH but also presented considerable sorption on X4 at circumneutralpH. The positively 358 

charged hydroxylated form, UO2(OH)
+
, adsorbed mainly on site X3. The negatively charged 359 

species, UO2(OH)3
-
 and UO2(OH)4

2-
, were the predominant species adsorbed on site Y5OH at 360 

pH > 7. This distribution of the adsorbed species over pH highly agrees with the speciation in 361 

solution (Figure S2 in SI), and the overall calculated Kd curve fits satisfactorilywell to the 362 

experimental data (see comparison of calculated vs experimental data in Figure 1).In the case 363 

of Ra, the lower number of experimental points limited the fitting to only few possible 364 

modelling assumptions. Despite higher uncertainty (see calculated vs experimental in Figure 365 

1), the fitting reveals that the sorption of Ra
2+

 over pH occurred more importantly on sites 366 

Y2OH and X4, behaviour that resembles the sorption of divalent cations, Ca and Mg, on the 367 

same kaolinite material(Reinoso-Maset and Ly, 2014). 368 

4.2 Adsorption isotherms of U and Ra 369 

Figure 3 shows the experimental adsorption isotherms of U and Ra at trace level at pH 370 

6.1 and 10.4. Regardless the variability on the pH 10.4 series for U, a significant difference on 371 

the coefficient distribution was observed between the different pH series. This difference was 372 

more remarkable between the Ra series, demonstrating that as the pH increases higher 373 

sorption is observed, as seen in the saturation curves.  374 

For both elements and both pH series, a decrease of sorption at around log[M] = -4.5 375 

mmol g
-1

 proves the existence of a low concentration site, which was saturated as the 376 

concentration of U or Ra increased in solution. Since all series showed the same inflexion 377 
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point, the concentration of this site is hence independent of the solution pH and solution 378 

speciation. Moreover, this estimated concentration (0.082 µmol g
-1

)agrees with the minor site 379 

(Xs) identified on the Cs isotherm in Reinoso-Maset and Ly (2014). Therefore, at the time of 380 

calculating the U and Ra isotherm curves by non-linear fitting, this value was used to 381 

determine the contribution of a minor site on the overall U and Ra sorption. In both cases, the 382 

contribution of a major site (i.e. Y1OH) was also taken in account, along with the corrected 383 

selectivity coefficients for K that had been obtained in previous experiments(Reinoso-Maset 384 

and Ly, 2014). 385 

The calculated isotherms curves are shown in Figure 3. For trace U at both pH and Ra at 386 

pH 10.4, the major contribution to the sorption was by the minor site, Xs, while for Ra at pH 387 

6.1 the major site, Y1OH, had a significant contribution to the sorption. From the non-linear 388 

fitting, the best estimated of the corrected selectivity coefficients for U and Ra sorption on the 389 

minor site XS were calculated as well as the U sorption on site Y1OH, which had not been 390 

revealed in the saturation curve (Table 2). The comparison of calculated and experimental Kd 391 

values shows a satisfactory agreement for both elements (Figure 3).  392 

5. Conclusions 393 

The treatment of common experimental Kd values using the multi-site ion exchange 394 

model presented here provided with extra information about the speciation of sorbed U and 395 

Ra at trace level on kaolinite over a wide pH range. Moreover, the thermodynamic constants 396 

of the sorption equilibria were also obtained during optimisation of the model. Table 3 397 

compiles the chemical equilibria for U and Ra and their associate equilibrium constants (as 398 

corrected selectivity coefficients). Ra was sorbed as its free form, Ra
2+

, from pH 2 to 10.5 on 399 

two main sorption sites, comparably to the behaviour of Ca and Mg sorption on kaolinite. 400 

Uranium, on the other hand, showed a more complicated speciation with positively charged 401 

species (free and hydroxylated forms) dominating the sorption at pH below 7, while 402 

negatively charged uranyl species were sorbed at higher pHs on the most basic sorption site. 403 

The sorption isotherms proved the existence of minor sites, which have lower concentration 404 

but high affinity for elements at trace level concentrations. 405 

The sorption equilibria and associated constants reported here complete the major ions 406 

sorption equilibria obtained previously (Reinoso-Maset and Ly, 2014) and consolidate the 407 

multi-site ion exchange model as a reliable approach to obtain a robust  thermodynamic 408 

databasedescribing the sorption of trace elements in the presence of major cations on 409 
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kaolinite, and in any other similar multi-site ion exchanger. Consequently, this fundamental 410 

thermodynamic database will improve the knowledge on radionuclide behaviour in 411 

environments containing clayey minerals, which are extremelyrelevant for migration 412 

predictions at contaminate sites. 413 
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Figures 

 

Figure 1. Left:Experimental distribution coefficient (Kd) over pHfor U (top) and Ra (bottom) sorption 

on K-kaolinite in the presence of 5·10
-2

M K.Grey triangles were excluded for further data analysis. 

Right: Y = f(X) representation of the same U and Ra sorption data following Equation 14. Grey lines 

are 1:1 grids to help visualize the slopes. In all cases, the error bars represent ± 1 σ. 
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Figure 2.Left: Non-linear fitting of the Y = f(X) representation for trace U (top) and Ra (bottom) 

sorption. Centre: Fitting of experimental distribution coefficient (Kd) for U (top) and Ra (bottom) 

sorption on K-kaolinite using Equation 13. In both graphs, the dotted and dashed lines correspond to 

individuallycalculated fit for the sorption of U and Ra species   on different sorption sites, while full 

red lines are the overall sum of U and Ra species and sorption sitesfits.Right: Comparison of 

experimental and calculated distribution coefficient of U (top) and Ra (bottom) on kaolinite. In all 

cases, the error bars represent ± 1 σ. 
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Figure 3. Adsorption isotherms of U (top) and Ra (bottom) on K-kaolinite. The distribution coefficient 

is represented as a function of adsorbed U or Ra concentration at pH 6.1 (empty symbols) and 10.4 

(filled symbols), in the presence of 4.75·10
-2

 M K. The dotted and dashed lines correspond to the 

calculated adsorption isotherms on a minor sorption site, Xs, and a major sorption sites, Y1OH; and the 

full red lines are the overall U and Ra adsorption isotherms fittings. Graphs on the right are the 

comparisonof experimental and calculated distribution coefficients. In all cases, the error bars 

represent ± 1 σ. 
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Tables 

Table 1. Type and concentration of major sorption sites, charge of the adsorbed species and the 

associated corrected selectivity coefficients, 𝐾[𝑴 𝑂𝐻 𝑥 ]𝑚−𝑥 (𝑚−𝑥)H 
∗𝑖 𝐾[𝑴 𝑂𝐻 𝑥 ]𝑚−𝑥 (𝑚−𝑥)OH 

∗𝑗 describing the 

sorption of trace U(VI) and Ra(II) on K-kaolinite in the presence of 5·10
-2

M K. The values of the 

constants were determined after non-linear fitting of the Y = F(X, Z) representation of the U and Ra 

sorption (Equation 14). 

Sorption sites 

Xi, YjOH 

Site conc. 

(mmol g
-1

) 
𝑲𝐊 𝐇 

∗𝒊  
Charge 

(m-x) 
Adsorbed Species 

Corrected selectivity 

coefficients 

𝑲∗𝒊 / 𝑲∗𝐣 

Y2OH 0.0190* 6.91e-03* 2 𝑈𝑂2
2+ 1.21 ± 0.01 

X3 0.0069* 6.91e-03* 1 𝑈𝑂2 𝑂𝐻 + (1.03 ± 0.06)·10
-3

 

X4 0.0107* 5.21e-09* 2 𝑈𝑂2
2+ (1.98 ± 0.07)·10

-5
 

Y5OH 0.0089* 2.16e-09* -1 𝑈𝑂2 𝑂𝐻 3
−

 (6.05 ± 0.04)·10
-3

 

   -2 𝑈𝑂2 𝑂𝐻 4
2−

 95.8 ± 4.7 

Y1OH 0.0108* 1.83* 2 𝑅𝑎2+ 1292 ± 20 

Y2OH 0.0190* 6.91e-03* 2 𝑅𝑎2+ (1.61± 0.02)·10
-2

 

X3 0.0069* 6.91e-03* 2 𝑅𝑎2+ (1.65 ± 0.10)·10
-2

 

X4 0.0107* 5.21e-09* 2 𝑅𝑎2+ (2.88 ± 0.02)·10
-14

 

Y5OH 0.0089* 2.16e-09* 2 𝑅𝑎2+ ≤ 3.70·10
-14

 

*values previously obtained (Reinoso-Maset and Ly, 2014) 

 

 

Table 2.Type and concentration of sorption sites and their associated corrected selectivity coefficients 

(K
*i

M/mH) describing the sorption of trace U(VI) and Ra(II) on K-kaolinite in the presence of excess K. 

Values were determined after non-linear fitting of the U and Ra isotherms at pH 10.4 and 6.1 and [K] 

= 5·10
-2

M using Equation 18. 

Sorption 

Sites 

Concentration 

(mmol g
-1

) 

Corrected selectivity coefficients 

𝑲𝐔𝐎𝟐 𝐇 
∗𝒊  𝑲𝐑𝐚 𝐇 

∗𝒊  𝑲𝐊 𝐇 
∗𝒊  

XS 0.000082 ± 0.000002* 
35.4 ± 0.2 (pH 6) 

50.3 ± 0.2 (pH 10) 

0.121 ± 0.004 (pH 6) 

17.5 ± 0.2 (pH 10) 
(12.7±0.5)·10

-5
 

Y1OH 0.0108 ± 0.0001* 3.56·10
-5

 1292 ± 20* (1.83 ± 0.05)* 

*values takenfrom Table 1and Reinoso-Maset and Ly (2014) 
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Table 3.Stoichiometry and associated corrected selectivity coefficientsof trace level U(VI) and Ra(II) 

adsorption equilibria on kaolinite. 

Adsorption equilibria logK* 

Uranium 

UO2
2+ +  2 Xs H     − 2H+ ↔ (Xs )2UO2

             1.55 / 1.70 

UO2
2+ +  2 Y1OH       − 2H+ ↔ (Y1O)2UO2

               5.55 

UO2
2+ +  2 Y2OH       − 2H+ ↔ (Y2O)2UO2

              
 

0.08 

UO2
2+ + X3H     + H2O − 2 H+ ↔ (X3)UO2OH                -2.99 

UO2
2+ +  2 X4H     − 2 H+ ↔ (X4)2UO2

             -4.70 

UO2
2+ + Y5OH       + 2 H2O − 2H+ ↔ (Y5)UO2(OH)3

                    -2.22 

UO2
2+ +  2 Y5OH       + 2 H2O − 2H+ ↔ (Y5)2UO2(OH)4

                     1.98 

Radium 

Ra2+ + 2 Xs H     − 2H+ ↔ (Xs )2Ra           -0.92 / 1.24 

Ra2+ + 2 Y1OH       − 2H+ ↔ (Y1O)2Ra             3.11 

Ra2+ + 2 Y2OH       − 2H+ ↔ (Y2O)2Ra             -1.79 

Ra2+ +  2 X3H     − 2 H+ ↔ (X3)2Ra           -1.78 

Ra2+ +  2 X4H     − 2 H+ ↔ (X4)2Ra           -11.54 

Ra2+ + 2 Y5OH       − 2H+ ↔ (Y5O)2Ra             -13.43 

 

 


