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1. Introduction

In the last decade, the Embedded Finite Element Method (E-FEM) has gained wide popularity for the description of crack-
ing phenomena [1–6]. Due to the local nature of the kinematic enrichment, this approach presents some advantages con-
cerning the computational effort with respect, for example, to the Extended Finite Element Method (X-FEM) [7–11].
Indeed the additional degrees of freedom can be statically condensed, since they are expressed at the element level in terms
of crack opening displacement components [5], thus leaving unchanged the dimension of the global system of equations. As
a counterpart, since no information is available in the vicinity of cracked elements, the continuity of the crack path is not
intrinsically guaranteed and a loss in objectivity may be encountered in numerical simulations [12,13]. For this reason,
the E-FEM is usually associated with the adoption of tracking algorithms leading to C0-continuous crack paths [14–17]. Dif-
ferent crack-tracking strategies can be found in the literature. In general, two families may be distinguished: local tracking
and global tracking algorithms [14,5,18,19].

Local tracking relies on geometry-based or energy-based schemes, which are applied for each element able to crack. The
main difference between the two strategies stands in the evaluation of the direction of the propagating discontinuity. In case



Nomenclature

X bi-dimensional domain
T tangent vector field
N normal vector field
h scalar temperature-like field
C isovalue of the temperature-like field h
q conduction-like flux vector
K conductivity-like tensor
� numerical conductivity-like parameter
a scalar diffusion-like parameter
J normal diffusion-like flux
m unit outward normal vector
hT mesh characteristic length
E Young’s modulus
m Poisson’s ratio
Gf tensile fracture energy
f t uniaxial tensile strength
r root of the propagating discontinuity
r Cauchy’s stress tensor
IC crack input point
s curvilinear abscissa
½u� displacement jump
SEN single-edge notched
CMOD Crack Mouth Opening Displacement
CMOD Crack Mouth Sliding Displacement
of a geometrical approach, the crack orientation is given by the assumed failure criterion, e.g. accordingly to Rankine it is
supposed to be perpendicular to the maximum tensile principal direction [20,5,21], whereas in case of an energetic
approach, it is computed from linear-elastic fracture mechanics (LEFM) by minimization of the mechanical energy
[18,22]. From the knowledge of the root of each discontinuity, i.e. the material point experiencing failure and not associated
to any pre-existing crack path, it is possible to make the input point of the crack inside an element match the output point of
the crack present in an adjacent element. Local tracking techniques are able to reproduce continuous crack paths in a robust
manner by exploiting the informations of nearby elements. Nevertheless, their implementation in the case of multiple crack
problems may be cumbersome and this strategy can loose much of its robustness.

Global tracking has been introduced to overcome the limits of local strategies when dealing with multi-cracking modeling
[14,5]. The main idea is to trace the envelopes of the tangent vector field to the discontinuities as the isovalues of the tem-
perature field of a heat conduction-like problem in the case of steady state conditions and no internal sources. Dirichlet and
Neumann boundary conditions must be prescribed on the respective portions of the boundary, in terms of fixed temperature
values and (null) heat flux. Once the assumed failure criterion is fulfilled for the first time in a certain material point, the
latter becomes the root of a new discontinuity line, which can be traced as the isovalue passing through that point. Numer-
ical applications can be found in [23,18,24]. The main advantage of this approach is the fact that no information from the
neighbourhood of the cracked elements is required to perform the analysis: indeed, since the isovalues are available at every
point of the domain, only root element coordinates shall be provided in order to ensure a continuous crack path.

The finite element formulation of the heat conduction-like problem is straightforward. However, the stiffness-like matrix
deduced from the anisotropic conductivity tensor reveals to be singular and a user-defined perturbation (isotropic algorith-
mic conductivity) is introduced in numerical simulations to circumvent this drawback. The dependence of the solution on
this parameter may then represents a limitation for the application of global tracking, since its value changes for each speci-
fic structural problem. In addition, it is found out that the capability of the thermal-like isovalues to envelop the vector tan-
gent field is reduced as soon as cracking occurs. This fact, due to the rotation of the principal stress directions outside the
region crossed by the discontinuity, may lead to a loss of continuity of the crack path and, in the worst case, to a wrong eval-
uation of the enriched shape functions whenever the element domain is not decomposed properly [12,25]. Such a circum-
stance becomes increasingly critical as the evolution of the principal stress field is important, see Fig. 1.

The objective of this paper is to provide an alternative formulation of the global crack-tracking strategy able to improve
the performance of this technique with respect to the aforementioned issues. This paper is organized as follows. In Section 2
a new physical interpretation of the problem is given in terms of Navier-Stokes equations, where the concept of numerical
diffusion is introduced in order provide a stable and consistent solution of the initially ill-posed discrete problem. A revised
algorithm for ensuring continuous crack paths in case of step-by-step analysis is presented in Section 3, considering the
evolution of the root for the choice of the isovalue enveloping the propagating discontinuity. Section 4 investigates the
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Fig. 1. Evolution of the thermal isovalues in a double-edge notched specimen under tension.
application of the proposed model to the E-FEM by means of benchmark tests. Section 5 then concludes with a critical com-
parison between the proposed approach and the original formulation.

2. Global equations

The problem of tracing the envelopes of a vector field TðxÞ in a domain X has been treated in [14,5]. For the sake of sim-
plicity, let us focus upon the bi-dimensional case. If we indicate with NðxÞ the normal vector field to TðxÞ, we can consider a
scalar function hðxÞ whose gradient is parallel to NðxÞ, i.e. such that:
NðxÞ ¼ rhðxÞ
rhðxÞk k ; x 2 X ð1Þ
Hence, the following partial differential equation will hold in the domain X:
TðxÞ � rhðxÞ ¼ 0 ð2Þ

Since the level contours of the function hðxÞ are orthogonal to the gradient, the envelope of the vector field TðxÞ passing

through a generic point P can be defined as:
CP ¼ x 2 X j hðxÞ ¼ hPf g ð3Þ

The envelopes of the vector field T thus provide C0-continuous curves, which are well-suited to model crack-paths within

the framework of the E-FEM. From now on the dependence of all the quantities on x will be omitted.

2.1. Heat conduction-like problem

Eq. (2) can be manipulated by multiplying it by the vector field T. After some analytical computations and using the same
notations as in [14], the previous problem can be reformulated as the following boundary value problem for the unknown
function h:
r � q ¼ 0 8x 2 X ð4aÞ
q ¼ �K � rh 8x 2 X ð4bÞ
q � m ¼ 0 8x 2 @qX ð4cÞ
h ¼ h� 8x 2 @hX ð4dÞ
with:
K :¼ T� T ð5Þ

where � denotes the tensor product. The boundary value problem (4) defines a heat conduction-like problem in the domain
X, where h is the temperature field and where q is the conduction flux vector. Boundary conditions are prescribed on the
boundary @X ¼ @qX [ @hX such that @qX \ @hX ¼ £. More precisely, Eq. (4c) expresses the Neumann condition of a null heat
flux on the set @qX, whereas Eq. (4d) represents the Dirichlet condition of fixed temperature values on the boundary @hX.

From expression (5), it turns out that the conductivity tensor K is singular. In order to avoid the ill-posedness of the con-
duction problem, the following isotropic perturbation is introduced [14,5]:
½K�� ¼
T2
x TxTy

TxTy T2
y

" #
þ �

1 0
0 1

� �
ð6Þ
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where Tx and Ty are the Cartesian components of the vector field T and where � is a user-defined numerical parameter. No
rigorous criterion is available for its choice. However, it should be as small as possible in order to fulfil Eq. (4a), but
sufficiently large to break down the singularity of K. The dependence of the results on this numerical parameter may then
limit the applicability of global tracking, eventually leading to numerical instability issues.

2.2. Heat convective-diffusion-like problem

With the aim of overcoming the aforementioned limitation, a new interpretation of the original problem defined by Eq.
(2) is here proposed. To start with, let us consider a convection-diffusion-like problem, which consists in finding a temper-
ature field h such that:
T � rh|fflfflffl{zfflfflffl}
Convective term

� divðarhÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Diffusive term

¼ 0 8x 2 X ð7aÞ

J ¼ �arh � m ¼ 0 8x 2 @JX ð7bÞ
h ¼ h� 8x 2 @hX ð7cÞ
where a is a diffusion coefficient and m the unit outward normal vector to the boundary. Problem (7) can be derived from
Navier-Stokes equations in case of incompressible fluids. In this context, the vector field T takes the physical meaning of
a fluid velocity. Therefore Eq. (7a) describes a heat transfer process where two contributions can be distinguished: the first
one of convective nature, the second one of diffusive nature. Boundary condition (7b) expresses the Neumann condition on
the diffusive flux J, while Eq. (7c) assumes the same meaning as in problem (4). However, since T is now a velocity field,
Dirichlet boundary conditions should be prescribed only on the portions of the boundary where the former is directed
inward the domain X.

In order to better understand the preceding formulation, let us focus upon the one-dimensional case. Assuming a constant
diffusion coefficient and considering, on the one hand, a first order upwind scheme for the convective term and, on the other
hand, a second order centered scheme for the diffusive term, Eq. (7a) is discretized as:
T
hi � hi�1

Dx
� a

hiþ1 � 2hi þ hi�1

Dx2
¼ 0 ð8Þ
where Dx is the one-dimensional spatial discretization step. If we consider now a centered discretization of the convective
term, it turns out that the difference between the upwind discretization and the aforementioned one is given by:
T
@h
@x

� �
Upwind

� T
@h
@x

� �
Centered

¼ T
hi � hi�1

Dx
� T

hiþ1 � hi�1

2Dx

¼ � TDx
2

hiþ1 � 2hi þ hi�1

Dx2

¼ TDx
2

@2h
@x2

" #
Centered

ð9Þ
Eq. (9) shows that the discretized expression of the convective term by means of the first order upwind scheme is equal to the
second order centered scheme discretization of the same term plus an additional diffusive contribution. By comparing Eqs. (8)
and (9), we notice that a numerical diffusive term comes out naturally and it is characterized by a diffusion coefficient TDx

2

which is function of a mesh characteristic length - Dx in the case of one-dimensional problems. This term is similar to
the numerical conductivity coefficient � introduced in Eq. (6) but it is no more user-defined and it tends towards zero as
Dx ! 0, which means that the centered and the upwind discretization schemes are consistent. This observation constitutes
the fundamentals of upwind discretization methods, classically used in fluid mechanics [26]. Higher dimensional extensions
of the concept of numerical diffusion have been well-established in fluid mechanics in the case of finite element discretiza-
tions. More precisely, two formulations are considered in this study. Given the vector field TðxÞ, the following bi-dimensional
extension of the concept of numerical diffusion has been proposed [26] (Streamline Upwind method - SU):
T � rh� div
hTkTk
2

rh

� �
¼ 0 8x 2 X ð10aÞ

J ¼ �hTkTk
2

� rh

� �
� m ¼ 0 8x 2 @JX ð10bÞ

h ¼ h� 8x 2 @hX ð10cÞ

where hT is a mesh characteristic length. Problem (10) describes the numerical diffusion as an isotropic process and this may
lead to imprecise results if coarse meshes are adopted. As a matter of fact, since in this case a large amount of diffusion is
introduced in all directions, the isovalues of the temperature-like field do not longer envelop the tangent vector field.
Another formulation, which considers an anisotropic numerical diffusion only in the direction of the vector field T (Stream-
line Upwind Petrov Galerkin method - SUPG) has also been proposed:
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T � rh� div
hTkTk
2

T� T

kTk2
rh

 !
¼ 0 8x 2 X ð11aÞ

J ¼ �hTkTk
2

T� T

kTk2
� rh

!
� m ¼ 0 8x 2 @JX ð11bÞ

h ¼ h� 8x 2 @hX ð11cÞ

It can be demonstrated that the tensor T�T

kTk2 has only one non-zero eigenvalue associated to T as eigenvector. The product
T�T
kTk2 rh then retains only the part of rh parallel to T.

2.3. Preliminary results

Concrete structures often experience mixed mode fracture mechanisms, due to the strong interaction between shear and
bending. This occurrence can translate into curved crack paths developing from the zones where maximum tensile principal
stresses concentrate. Therefore, global tracking must allow to reproduce such behavior. In particular, the capability of the
three formulations presented in Sections 2.1 and 2.2 to envelop the principal stress field is now investigated. These are
recalled in Table 1.

The well-known experiment performed by Schlangen [27] has been simulated. The specimen is a single-edge notched
(SEN) plain concrete beam subjected to four-point shear (see Fig. 2).

The isovalues of the thermal-like field obtained by solving problems (4), (10) and (11) are shown respectively in Figs. 3–5
for three different meshes of 3-node triangular finite elements (879, 3672, 13370 elements). The isovalue crossing the first
material point experiencing cracking is also traced in bold. In all simulations, Dirichlet boundary conditions have been
imposed on the lower edge of the beam, such that a linearly increasing temperature profile is established onto this boundary.

In case of the HC formulation, a numerical perturbation � ¼ 10�5 has been considered (see [14,28] for typical values of this
parameter). As it can be observed in Fig. 3b, a loss of uniqueness of the solution is encountered near the notch for the inter-
mediate discretization.

The isovalues obtained by the HCD-SU formulation, implemented in the finite element software Cast3M-CEA [29], are
depicted in Fig. 4. It can be noticed that the solution is now more diffused, which means that the prescribed temperature
values are more easily transported all over the domain. This feature gives stability to the solution, but at the same time it
provides less accurate results if coarse meshes are adopted. However, for finer discretizations, the results are closed to those
obtained for the HC problem.

The HCD-SUPG formulation seems to be a good candidate to reduce the dependence on the mesh refinement. The results
are shown in Fig. 5. In fact, the solution reveals to be unstable, even though less diffused than in the previous case. Therefore,
the introduction of a numerical diffusion only in the direction of the tangent field T is not sufficient to solve out our problem.
As a consequence of the above considerations, the most appropriate convection-diffusion-like formulation of the global
tracking problem is the one given by Eqs. (10).
3. Crack-tracking algorithm

In Section 2.2 the problem of tracing the envelopes of a vector field Tðx; tÞ has been formulated in terms of Navier-Stokes
equations for incompressible fluids. As for the heat-conduction-like formulation, the scalar function hðx; tÞ represents the
temperature field whose isovalues describe all the possible discontinuity lines in the domain X.

The choice of the right isovalue stands on the stress distribution at time t. In particular, global tracking associates to each
discontinuity line Ci a root ri, i.e. the material point (or the element) at time t0 not belonging to any crack path and satisfying
for the first time the activation condition [14,5]. The discontinuity is thus represented as follows:
CiðtÞ ¼ x 2 X j hðx; tÞ ¼ hðxri ; tÞ
� � ð12aÞ

xri 2 X j rðxri ; t0Þ
			 			P f t ð12bÞ
where the activation condition is expressed in terms of a certain tensorial norm :k k and the material strength f t . The refer-
ence isovalue is considered to pass through the centroid of the root element of the discontinuity [14,5].
Table 1
Possible strategies to envelop the principal stress field.

Formulation

HC Heat conduction
HCD-SU Heat convection-diffusion SU
HCD-SUPG Heat convection-diffusion SUPG
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Fig. 2. Four point shear of a single-edge notched beam according to Schlangen [27] – dimensions in mm.

Fig. 3. Isovalues of the HC problem.

Fig. 4. Isovalues of the HCD-SU problem. Isotropic diffusion ranges: (a) [1:66� 10�3; 6:12� 10�3], (b) [9:89� 10�4; 3:48� 10�4], (c)
[3:95� 10�4; 2:39� 10�4].
The previous definition implicitly assumes that the portion of isovalue associated to the active part of the crack, i.e. with
points characterized by sutCi

– 0, does not change any more. In reality, due to the approximative nature of the finite element
solution, this is not generally guaranteed: indeed, since principal stress directions are free to rotate where the material is
linear elastic, the isovalues of the thermal field may evolve also inside the elements already exhibiting a crack. As a conse-
quence, the nodes of the element domain Xe traversed by the crack may be incorrectly separated, with a loss of continuity of
the crack-path and stress-locking effects taking place. A possible solution would be to freeze the nodal temperature of the
cracked element by imposing additional Dirichlet boundary conditions [6,28]. However, the initial boundary value problem
(4) or (10) would be contradicted with respect to the initial boundary conditions and local techniques should be adopted in
order to perform the analysis at each time step [25].
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Fig. 5. Isovalues of the HCD-SUPG problem. Anisotropic diffusion ranges: (a) [1:66� 10�3, 6:12� 10�3], (b) [9:89� 10�4, 3:48� 10�4], (c) [3:95� 10�4,
2:39� 10�4].
This drawback can be found if the root ri is not updated for t P t0. Thus, the tracking procedure should explicitly take into
account both the active part Cia and the potential part Cip of each discontinuity Ci and, at the same time, impose the match
between the root ri, used to trace the prosecution of the crack, and the crack-tip. In these circumstances, the reference point
for tracing the isovalue defining Cip does not coincide with the root element centroid but instead with a point belonging to
one of the root element edges, i.e. the crack-tip. If we consider a time discretization ft0; . . . ; tk; . . . ; tng, the total discontinuity
Ci at time tn can then be represented as:
Ci ¼ Cia [ Cip ¼
[n�1

k¼0

~Ci
ðkÞ [ ~Ci

ðnÞ ð13aÞ

~Ci
ðkÞ ¼ x 2 X j hðx; tkÞ ¼ h xðkÞ

ri
; tk


 �
; suðx; tkÞt – 0

n o
ð13bÞ

~Ci
ðnÞ ¼ x 2 X j hðx; tnÞ ¼ h xðnÞ

ri
; tn


 �
; suðx; tnÞt ¼ 0

n o
ð13cÞ

xðkÞ
ri

2 X j rðxðkÞ
ri
; tkÞ

			 			P f t ð13dÞ
From the previous definition, the potential part of the discontinuity Cip has been defined as the portion of the isovalue
triggered off the root ri at time tn and characterized by linear elastic behavior. Consequently, only the portion of the isovalue
that does not cross the element associated to ri should be taken into account. Since root ri divides the potential line into two
parts, in order to avoid ambiguity, it seems convenient to orient the curve by setting the origin at the root itself and assume
as positive the direction of the propagating discontinuity. This can be done by means of a curvilinear abscissa si, whose origin
is set to coincide with root ri (see Fig. 6).

Thus, the prosecution of the crack path Ci at time tn will be associated to the positive values of si, with origin at the root ri.
This procedure can be translated by the following steps:

1. Make the input point ICi
match the crack-tip.

2. Trace of the isovalue passing trough ICi
.

Fig. 6. Crack path tracking in a bi-dimensional domain by means of the variable-root algorithm.

7



3. Create the curvilinear abscissa si with origin in ICi
and with positive values in the sense of the propagating discontinuity.

4. Choose the potential continuation of discontinuity Ci as the part of isovalue associated to si > 0.

The algorithms derived by problem (12) and problem (13) are now compared. The test reported in [30] has been simu-
lated. The geometry is depicted in Fig. 7 and consists in a concrete specimen under tension, characterized by two notches
with an offset in the direction of the load. An imposed displacement d is applied horizontally on the right side of the struc-
ture, while the left side is fixed in this direction. A hinged support is introduced at the upper left corner in order to forbid any
rigid body motion.

In Fig. 8a the case of fixed roots r1 and r2 for the crack paths C1 and C2 is shown. It appears that the evolution of the ref-
erence isovalues due to the rotation of the principal stress directions inside linear elastic elements may lead to an imprecise
evaluation of the propagating discontinuities. In particular, even if the principal stress directions are freezed inside cracked
elements, the isovalues may no longer be able to envelop the tangents to the active part of the discontinuities. A change in
the decomposition mode of the elemental domain Xe may then occur whenever the nodes shared by adjacent elements do
not belong to the same sub-domain Xþ

e or X�
e .

If the root of each discontinuity is updated, it is possible to separate its active part from its potential prosecution. This
strategy allows to enforce the continuity of the crack path even if the isovalue distribution evolves during the analysis. As
depicted in Fig. 8b, the requirement of a domain of unique decomposition is attained for all the cracked elements.
4. Numerical examples

In this section, the performances of the global crack-tracking technique applied to the E-FEM are investigated. A compar-
ison between the version presented in [14,5] and the version proposed in this paper is made by means of bi-dimensional
benchmark tests, presented in order of increasing complexity. Both the mathematical formulation and the tracking scheme
are here discussed.

4.1. Double-edge notched specimen under tension

The first example is the same as the double-edge notched specimen under tension that has been preliminarily studied in
Section 3. The formation of two principal crack paths has been observed experimentally in [30]. A correct evaluation of the
propagating discontinuities is essential in order to properly simulate the structural response. Firstly, the fixed-root algorithm
deriving from Eqs. (12) is applied in the case of the HCD-SU formulation. Three discretizations counting 496, 1691 and 6762
3-node triangular elements respectively have been considered. The corresponding load-displacement curves are plotted in
Fig. 9a. The localization zones at the end of each simulation are depicted in Fig. 9b.

It can be noticed that the crack paths start developing correctly from the notches, but then, as the distance from the
respective root element increases, a loss of continuity occurs in all the three simulations. As it can be observed in Fig. 9b,
the localizations zones are not always defined by simple bands of elements, which means that stress-locking and spurious
cracking take place. Consequently the knowledge of the crack-tip position is lost and the constitutive response is not well
evaluated. In addition, numerical issues are encountered already at early stages in particular when fine meshes are adopted.
These drawbacks have already been reported in [25] and may constitute a limitation to the applicability of the global track-
ing scheme.

If the variable-root algorithm derived from Eqs. (13) is adopted, the position of the crack-tip is always available during the
analysis. This information allows to impose the continuity of each crack path by separating it into an active part and a poten-
tial part without the use of any further strategy. As shown in Fig. 10a, the numerical simulations fit pretty well with the
experimental result in terms of load-displacement curves, denoting a good mesh-size independence. The localization zones,
depicted in Fig. 9b, consist in a fully developed crack-band initiating at the upper notch and a partially developed crack-band
starting from the lower notch.

The mathematical formulation is now discussed. A comparison between the heat conduction-like problem and the heat
convection-diffusion-like problem is drawn in case of the variable-root global tracking. The load-displacement curves and
Fig. 7. Tension test on double-edge notched specimen according to [30] – dimensions in mm.
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Fig. 8. Crack propagation scheme.

Fig. 9. Results of the fixed-root global tracking algorithm for the Shi’s test.
the localizations zones are shown in Figs. 11 and 12 for the intermediate mesh containing 1691 elements. The global struc-
tural response shows minor differences between the two simulations, in particular it seems that the HC approach allows a
better energy dissipation in the final stage of the analysis. By observing the crack trajectories, it appears that an asymmet-
rical propagation takes place for the HCD-SU problem, whereas two almost identical crack paths are found for the HC prob-
lem, which is coherent with the fact that the stress distribution is symmetrical with respect to the vertical axis. This
discrepancy may be due to the different physical meaning of the mathematical formulation. In particular, for the HCD-SU
problem the tangent vector field represents a fluid velocity, deduced from the principal stress directions. Therefore, the solu-
tion is affected by the sense given to the velocity field. Such operationmay lead to less accurate results with respect to the HC
formulation if not properly done, especially in presence of singular points or high gradients in the stress distribution.
9



Fig. 10. Results of the variable-root global tracking algorithm for the Shi’s test.

Fig. 11. Load-displacement curve comparison of the HC and HCD-SU formulations for the Shi’s test.

Fig. 12. Crack path comparison of the HC and HCD-SU formulations for the Shi’s test.
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4.2. Four-point shear test on a single-edge notched beam

The second example is the numerical simulation of four-point shear of a single-edge notched beam. In literature this
problem has been addressed by several authors, see e.g. [31–33,22]. At first, the same SEN beam configuration studied in
Section 2.3 is considered. An imposed vertical displacement is applied centrally to the loading platen. A curved crack path
is expected to initiate at the right lower corner of the notch.

The fixed-root algorithm is compared to the variable-root algorithm when the HCD-SU is adopted. Fig. 13a and b depict
the total applied load F versus the Crack Mouth Opening Displacement (CMOD) for the two cases. In Fig. 14, the same com-
parison is made in terms of load-Crack Mouth Sliding Displacement (CMSD). It can be noticed that in the case of the SEN
beam the global structural response is less sensitive to the evolution of the thermal-like field. This can be explained by con-
sidering the fact that the structure undergoes a sudden failure mechanism as soon as the peak-load is reached. As a conse-
quence of this brittle behavior, a fully developed localization zone is observed once equilibrium is re-obtained. Thus, the
reference isovalue at the end of the simulation does not differ substantially from the initial one. Nevertheless, in the case
of fine meshes, the difference between the two approaches is more important: indeed, spurious cracking arises for the
fixed-root algorithm, as it can be seen in Fig. 15a. The band of elements that undergo failure thus does not define a strictly
Fig. 13. CMOD curves for the SEN beam.

Fig. 14. CMSD curves for the SEN beam.
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Fig. 15. Localization zones for the SEN beam.

Fig. 16. CMOD and CMSD comparison of the HC and HCD-SU formulations for the SEN beam.
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Fig. 17. Crack path comparison of the HC and HCD-SU formulations for the SEN beam.

Fig. 18. Problem in the tracking procedure.
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continuous crack path, although it reproduces pretty well the shape of the experimental failure surface. On the contrary, the
continuity requirement is recovered by the variable-root algorithm (see Fig. 15b).

The capability to well reproduce the failure mode is now analyzed once again for the two reference formulations consid-
ered here, i.e. the HC and HCD-SU problems. This is done by means of the variable-root algorithm applied to the intermediate
discretization containing 3672 elements. The global structural response is plotted in Fig. 16 in terms of load-CMOD and load-
CMSD curves, while the resulting cracks paths are depicted in Fig. 17. A good agreement between the simulations can be
observed, although in the case of the heat conduction-like problem a loss of uniqueness of the thermal solution has been
encountered in the proximity of the peak-load. This numerical issue has obliged the authors to stop the tracking procedure
in order to complete the analysis (see Fig. 18).

5. Conclusions and perspectives

In this paper a modified global crack-tracking strategy has been applied to the E-FEM simulation of quasi-brittle mate-
rials. Firstly, the problem of tracing the envelopes of a vector field has been addressed by comparing different mathematical
formulations. The Streamline Upwind discretization of the heat convection-diffusion-like problem (HCD-SU) has been cho-
sen as the privileged candidate for this task. Secondly, a revised algorithm for the representation of the propagating discon-
tinuity has been presented. The main ingredient is the updating of the material point used to trace the potential part of the
crack, instead of assuming a fixed-root for its representation. These issues have been discussed in detail by means of repre-
sentative numerical examples and the following conclusions can be drawn:

� Independently from the mathematical formulation of the thermal-like problem, a fixed-root scheme does not prevent the
loss of continuity of the crack path due to the rotation of the isovalues. As a consequence, spurious cracking appears and
both stress-locking effects and numerical instability issues occur;

� The variable-root scheme is able to provide a C0-continuous crack path at no additional computational cost and without
integrating any further technique;

� A good agreement with the experiments is found when coupling the variable-root algorithm to the HCD-SU formulation,
although in the case of coarse meshes its precision is reduced with respect to the heat conduction-like approach (HC).
However, from the authors’ experience, good results have been obtained for all the spatial discretizations adopted in
the analysis;

� Attention must be paid to the sense of the tangent vector field, especially in the case of strong gradients of the stress dis-
tribution. This consideration is important since Dirichlet boundary conditions can be applied only on the portions of the
boundary where the velocity field is directed inward the domain;

� The HCD-SU formulation provides better stability performances with respect to the HC formulation. The latter is strongly
dependent on the numerical conductivity parameter, which may be not sufficient to guarantee stable solutions and there-
fore to perform the global tracking procedure.

The applicability of the variable-root HCD-SU tracking strategy to three-dimensional problems has not been investigated
yet, in particular the variable-root algorithm could be object of further studies. The extension of the proposed approach to
branching scenarios should be also evaluated, such as the possibility to handle intersecting cracks.
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