cea-02381488
https://cea.hal.science/cea-02381488
https://cea.hal.science/cea-02381488/document
https://cea.hal.science/cea-02381488/file/riccardi2016.pdf
doi:10.1016/j.engfracmech.2016.11.032
[CEA] CEA - Commissariat à l'énergie atomique
[CNRS] CNRS - Centre national de la recherche scientifique
[ENS-CACHAN] Ecole Normale Supérieure de Cachan
[LMT] Laboratoire de mécanique et technologie
[DEN] Direction des énergies
[CEA-UPSAY] CEA - Université Paris-Saclay
[UNIV-PARIS-SACLAY] Université Paris-Saclay
[CEA-UPSAY-SACLAY] CEA-UPSAY-SACLAY
[ENS-CACHAN-SACLAY] ENS-CACHAN-SACLAY
[DEN-SACLAY] DES Saclay
[SORBONNE-UNIVERSITE] Sorbonne Université
[SU-SCIENCES] Faculté des Sciences de Sorbonne Université
[TEST-HALCNRS] Collection test HAL CNRS
[LMT-SACLAY] Laboratoire de mécanique et technologie
[SU-TI] Sorbonne Université - Texte Intégral
[ANR] ANR
[FARMAN] Institut Farman
[ENS-PARIS-SACLAY] Ecole Normale Supérieure paris-Saclay
[ENS-PSACLAY] Ecole Normale Supérieure Paris-Saclay
[GS-ENGINEERING] Graduate School Sciences de l'Ingénierie et des Systèmes
[ALLIANCE-SU] Alliance Sorbonne Université
[LMPS] Laboratoire de Mécanique Paris-Saclay
A step-by-step global crack-tracking approach in E-FEM simulations of quasi-brittle materials
Riccardi, Francesco
Kishta, Ejona
Richard, Benjamin
[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]
[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]
ART
Cast3M
Concrete
Discontinuity
Fracture
Tracking
The numerical simulation of two-dimensional fracture processes of quasi-brittle materials by means of the Embedded Finite Element Method is dealt with. Attention is paid to the coupling with the global crack-tracking strategy, which has been proposed in the literature in the form of a heat conduction-like problem. It turns out that the stiffness-like matrix associated with this formulation is singular and a numerical perturbation has to be introduced in order to overcome the ill-posedness of the problem. The dependence of the solution on this parameter may represent a limitation for the global tracking approach. Furthermore, it is found that if the root of each discontinuity is not updated during an incremental analysis, a loss of continuity of the crack path may appear when principal stress directions rotate. This paper aims to provide a solution to the aforementioned issues. An alternative mathematical formulation of the problem is thus given in terms of Navier-Stokes equations, linking the diffusive contribution to a characteristic mesh length. Additionally, a modified crack-tracking algorithm, considering the evolution of the root for the identification of the crack path, is proposed. The numerical assessment of the proposed tracking strategy is reported by means of benchmark tests at the structural level.
2017-02
2020-01-29
en
http://creativecommons.org/licenses/by/
Engineering Fracture Mechanics
Elsevier