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Abstract: A novel method has been developed to calculate sensitivity coefficients in coupled 

Boltzmann/Bateman problem for nuclear data (ND) uncertainties propagation on the reactivity and 

is here extended to power factors. Different uncertainty propagation methodologies, such as One-At-

a-Time and hybrid Monte-Carlo / deterministic methods have been tested and are discussed on an 

actual example of ND uncertainty problem on a MTR-type reactor benchmark. Those methods, unlike 

total Monte Carlo sampling for uncertainty propagation and quantification (UQ), allow obtaining 

sensitivity coefficients, as well as correlations values between nuclear data, during the depletion 

calculation for global neutronics parameters such as reaction rates. The methodologies are 

compared to a pure MC sampling method, usually considered as the “reference” method. The 

present paper extends the development to power factor by introducing a new methodology enabling 

to decorrelate direct and transmutation terms for local factors. The total uncertainty can be 

decomposed in two effects: a direct effect coming from the perturbation and an effect coming from 

transmutation. The most impacting ND are the scattering reactions, principally coming from 
27

Al and 

H2O. The overall effect is a reduction of the propagated uncertainties throughout the cycle thanks to 

negatively correlated terms. 
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1 INTRODUCTION 

Sensitivity analysis plays an important role in the field of core physics, and nuclear data Uncertainty 

propagation and Quantification (UQ) is more and more extensively used in safety calculations of 

large NPP cores [1,2], as well as innovative design relevant of Gen-IV systems [3,4].  

Reactor design and safe operation strongly rely on the quality of numerical simulation codes. Among 

the various components of nuclear power plant simulations, the precise description of neutron 

transport and fuel depletion of the reactor core is of particular importance. Although the methods 

and their implementations in the computer codes have reached a high quality level, final result 

uncertainties remain, mainly due to uncertainties in the input parameters which cannot be 

eliminated.  

An emerging need also raises for the new generation of very versatile and efficient MTRs, where 

performances and safety concern both lifetime, cycle length and isotope production [5]. A good 

understanding of biases and uncertainties on reactor core calculations is essential for assessing 

safety features and design margins in current and future NPPs, as well as in experimental reactors 

such as MTRs. In recent years there has been an increasing demand from nuclear industry, safety 

and regulation for best estimate predictions to be provided with their confidence bounds, leading to 

the definition of several benchmarks for acquiring, on an international level, a realistic estimation of 

these uncertainties is necessary for judging the reliability of the simulation results [2]. Among them, 

the UAM-LWR Phase II [3] 

 

Biases are induced by modelling assumptions (geometry simplification, spatial discretization) and 

deterministic calculation options (resonance self-shielding formalism, flux solver, etc.). Those biases 

are usually determined, almost straightforward; by comparison between deterministic calculations 

and reference Monte Carlo calculations, within the Validation phase of the VV&UQ (Verification, 

Validation & Uncertainty Quantification) process of deterministic codes and calculation schemes 

deployment [11].  

 

For almost 30 years, nuclear data uncertainty propagation and nuclear data statistical adjustment in 

fast reactor applications have been widely used to produce “adjusted” sets of multigroup cross 

sections and to assess the uncertainty on neutronics design parameters. As a consequence, these 

methods are naturally implemented in calculation tools dedicated to GEN-IV neutron calculations, 

such as the ERANOS2 code [12] in France. Recent publications have already presented results of 

nuclear data propagation for GEN-IV reactors [13]. However, results concerning the nuclear data 

propagation on GEN-II and GEN-III reactor parameters, and even more for MTR are scarce: if UQ 

methods are well established for Boltzmann problem, and in particular using MC methods [4,5], as 

well as separated Bateman problems [9], an accurate and rigorous treatment of nuclear data 
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uncertainty propagation in coupled problem is still missing, even if an important theoretical work 

was performed by the end of the 70’s [20,21]. Use of the Monte Carlo method to solve the transport 

equation introduces stochastic uncertainty in computed fluxes. These fluxes are used to collapse 

cross sections, estimate power distributions, and deplete the fuel within depletion calculations; 

therefore, the predicted number densities contain random uncertainties from the Monte Carlo 

solution. These uncertainties can be compounded in time because of the extrapolative nature of 

depletion and decay calculations. Additionally, such errors are known to have a spatial component. 

The flux errors will be smallest in the most reactive regions of the fuel (where greater sampling 

occurs) and will be larger in the lower flux regions of the fuel. There is a need to determine and 

understand statistical uncertainties and their propagation in Monte Carlo depletion calculations [14]. 

 

An important gap between “step 0” uncertainty calculation and depletion uncertainty calculation 

must then be filled. The major unknown, uncertainties on isotopes concentrations in the reactor 

core can be estimated by decorrelating sources of uncertainties. In the present paper, we will focus 

on nuclear data exclusively, but some of the methods developed and used in this article can be 

applied to other kind of data like manufacturing process (technological) data. A future publication 

will describe their particular treatment in the process of propagating uncertainties during the cycle. 

Up to now, different ways to calculate uncertainties are used worldwide [6,7,16]. Some studies are 

based on Total nuclear data sampling Monte-Carlo methods [8,10,15,17]. These methods still 

require important computation time. For this reason, they are often applied on simplified 

geometries, such as fuel pins or limited assemblies [18]. The increasing HPC capabilities let envisage 

2D to 3D full core calculations in reasonable computing time, but probably not within the next 

decade. However, because of the statistical convergence of Monte-Carlo calculations tools, UQ 

methods allow only to have information about important isotopes. Moreover, the MC nuclear data 

sampling methods do not allow accessing the sensitivity coefficients, but only the individual 

propagated uncertainties. Perturbation Theory has been developed to calculate uncertainty in 

depletion problems, but without actual coupling [19]. Other methods for time-dependent 

computations were settled but are not implemented in the calculation codes 

 

In a previous paper [34], time coupling was revisited in a more rigorous way, and implemented in 

the code chaining, with a particular application on reactivity, and its total uncertainty propagated 

from nuclear data during cycle. In this document, we will assess the impact of nuclear data 

uncertainties during depletion on local reaction rates such as power factors. 
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The first part of the paper will resume the elements of theory and the general background used for 

nuclear data uncertainty propagation through the depletion calculation, for both direct (ie 

Boltzmann part) and transmutation (i.e. Bateman depletion) terms. For local quantities, the hybrid 

method is not efficient and an alternative methodology is used. The second part reproduces the 

main characteristics of the modelled Material Testing Reactor (MTR) benchmark, as well as the 

codes and the associated nuclear data used to calculate integral quantities and propagate 

uncertainties. The third part details the main results obtained the various methods, and in particular 

the spatial correlation terms that appear through the chained calculation. 

 

2 THEORY OF UNCERTAINTY PROPAGATION IN COUPLED DEPLETION/FLUX CALCULATIONS 

2.1 General considerations 

Depletion calculations are iterated coupled equations between Boltzmann time-dependent flux 

calculation and Bateman nuclei evolution calculation using the flux of the previous Boltzmann step, 

as shown on. 

 

Figure 1: Calculation steps to get total sensitivity 

 

The flux )(tϕ  at iteration t  is used in the iiC  and ifC coefficients of the Bateman equations: they 

represent respectively the disappearance reaction rate of isotope i  and the transmutation rate of 

isotope f  in i . These reaction rates are linked to the nuclear data σ  and flux value )(tϕ . The 

Bateman equations allow to calculate the concentrations )1( +tN i  of isotope i  at 1+t , knowing 

the isotopic concentrations )(tNi ,. 

 

The numerical methods for solving the equations are often complex, a functional f of the calculation 

code will be used throughout the paper, such that: 

 



5 







==→=
ℜ→ℜ

)(),..(),..(
:

11 XfYYY
f

pn

pn

σσσ
  

 

σ  represents the nuclear data space and Y  represents the code output,  which can be either 

reaction rates, reactivity or isotopic concentrations. 

 

A first order Taylor development is made in the neighbourhood of mathematical nuclear data 

expectancies ( )nµµµσ ,...,)( 1==Ε , leading to: 
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In the following, indices k  and j  represent respectively the projection of sensitivities in a vector 

space Π  which is the direct sum of restricted spaces by isotopes ( ) { }isotopesssI ∈ , reactions by isotope 

( ) { }reactionsrrsR
∈,  and energy groups by reaction and by isotope ( ) { }groupsenergeticsggrsG

_,, ∈
. The other 

indices i  and m  represent the different studied isotopes. This decomposition will form the 

canonical base of sensitivities space Π .  
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The considered hypotheses in the following development are: 

A. The variations of the functional f are linear in the neighbourhood of nuclear data expectancies 

B. The nuclear data can be modelled by Gaussian functions 

C. The uncertainties coming from self-shielding effect are negligible but can be calculated [38,40] 

D. The covariances between isotopes are equal to zero for nuclear data. 

E. The uncertainties coming from the (radioactive) decay process are negligible in the Bateman 

equations [32] 
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f∂ can be written as a term coming from Boltzmann equation due to the variation of nuclear data 

directly in disappearance and production operators D  and P , and a term coming from Bateman 

equations due to the variation of nuclear data in iiC  and ifC . These terms will be denoted in the 

next “direct” and “transmutation” terms. We can further write:  

( ) ( ) ( )[ ]∑
⊂

+=
si

i tNhthtf )( oδδδ  

where h  represents results coming from the direct effect (variation of cross-section in the flux 

calculation) and iNh o  represents the transmutation effect, i.e. the effect of concentration variation 

in the flux calculation. The h  function implicitly contains all flux variations as it can be expressed 

as ( ) ))(( tYth ϕo=  where Y is the output data. So, direct and transmutations terms are flux-

dependent., and are correlated. 

 

The power factor is given by the following expression  
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κ��E� is the average energy produced by fission for the i  nuclide and A  is a mesh of the geometry. 

 

The possibility of building sensitivity with combined method is studied. Those methods will be 

further used for assessing uncertainties, sensitivities and correlations. 
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The coefficients jkjk r ,εε  represent covariance terms between nuclear data. They are (or should be) 

available in ND covariance files. The covariance matrix will be denoted M in the following. 

 

Eqn.2 is the starting relation to develop and test UQ methodologies. In particular, the different 

methodologies used in the followings are derived to evaluate sensitivity indices represented by 
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2.2 Uncertainty evaluation for local reaction rate in depletion calculation 

As mentioned in the introduction, uncertainties propagations are often done with MC sampling. The 

major drawback of this methodology is in the impossibility to perform sensitivity analysis. To 

circumvent this problem, three methods are developed and intercompared in the followings:  

• OAT (One At a Time) method, which will be considered here as the reference method,  

• A hybrid method based on two different MC calculations, 

• A hybrid method based on two different OAT calculations, 

• MC (Monte-Carlo) method, based on sampling input parameter will also be implemented, to be 

compared with the 3 previous methodologies. As ND correlations are not taken into account 

explicitly in this paper through MC calculation, one will show that the method underestimates 

the total propagated uncertainty. 

2.2.1 Monte Carlo Sampling methodology 

In Monte-Carlo sampling methodology, the calculations consist in creating a certain number l of 

code input data (l corresponds to the number of performed calculation), where all perturbations on 

nuclear data are made at the same time. The variances from the corresponding datafiles are used 

and the nuclear data are perturbed, following a Gaussian centered on nuclear data expectancies. 

Then, samples ),..( ,1, nlll σσσ =  - of nuclear data from the JEFF3.1.1.[26] evaluation are built: σ is 

taken in a normal law of the nuclear data evaluation ( )evaluationεµσ ,~ Ν  , ( )εµ,Ν  being a normal 

law with mean µ  and standard deviationε . 

 

In this paper, MC sampling is made without taking COMAC nuclear data correlations into account. 

Eqn.2 then becomes: 
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From Eqn.3, ),(2 tr
r

τε  is evaluated while building the following power factor MC estimators at each 

irradiation step: 
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where ),( trref

rτ  is the power factor of a reference calculation in a space element r
r

at time t , 

),(ˆ tr
rτ  is the MC-estimator of ),( tr

rτ  containing average and standard deviation of the power 

factors for all the l calculations, and r
r

,τε  is the standard deviation. This estimator is converging 

without bias. 

2.2.2 One At a Time methodology  

The One At a Time (OAT) method consists in perturbating each input parameter independently and 

calculating their impact on the output parameters. In this study, perturbation of 10% have been 

introduced, in order to ensure a linear relation between input and output quantities, as well as local 

power factor effects high enough vs convergence criteria. 

Eqn.2 can be rewritten under a matrix general form: 
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The determination of its components is made by performing n  calculations corresponding to 

orthogonal projections on Π . The results of each calculation, ),(, trkpert
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Then uncertainty is obtained by combining this reconstituted vector )(tS total
r
r  with the covariance 

matrix M  (Eqn.5). 

2.2.3 Hybridation of the methods 

Different mixes of the methods can be use to get expressions of uncertainties in the both effects 

independently. 

The direct effect can be determined through the sensitivity coefficients. This can be done while using 

the Generalized Perturbation Theory, presented in §2.2.3.1 or using a relation between ),( tr
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where 
†Γ  is the generalized importance function, solution of source problem 
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This method will not be used because it requires the same number of calculations as fuel elements 

present in the geometry. However, a very good review of the methodology and its potentialities 

applied to a depletion problem can be found in [39]. For example, the benchmark used in this study 

is composed of 49 assemblies with 22 plates each divided in 8 pieces of plate. The number of 

calculations to be performed is then 49x22x8=8624 if reaction rate sensitivities for each piece of 

plate has to be evaluated. 

In other words, GPT in coupling problems only gives direct (and spectral) uncertainty, but does not 

give access to the transmutation effect. 

2.2.3.2 Relation between sensitivities 

A relative perturbation on isotopic concentration has the same result on macroscopic cross section 

than the same perturbation on microscopic cross-section. One can then express the reaction rate 

sensitivity to the average core concentration as follows: 
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Then, sensitivity of reaction rate to the concentration can be easily obtained by determining the 
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N
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∂

 sensitivity profiles during OAT or MC calculation and build the good uncertainty 

estimator in the transmutation effect. This estimator is expressed with Eqn.4 or Eqn.5 for MC and 

OAT respectively, and applied to ),( trNi

r
 instead of ),( trh

r
τ . 

2.2.4 Doubling calculations 

Knowledge of direct and transmutation effects can be assessed by performing twice more 

calculations with OAT and MC methodologies. The first batch of calculations are done based on the 

scheme given on Figure 2. A second run of calculations is realized following the scheme of Figure 1. 

For each step, Boltzmann equation is solved taking into account the input perturbations. The 

resulting reaction rates (power factors) are obtained afterward. Then, Boltzmann and Bateman 
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equations are solved again with unperturbed input data, to get a depletion calculation with nominal 

values, giving direct terms as output. From direct (Figure 2) and total (Figure 1) terms, transmutation 

terms can be built, as explained in the followings. 

 

Figure 2: Calculation steps to get Boltzmann sensitivity without Bateman sensitivity 

2.2.4.1 Doubling Calculations for One At a Time 
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Direct effect sensitivity is obtained following the process depicted in Figure 2. The total effect 

sentivitiy is obtained following the process of Figure 1.  

The transmutation effect can be built afterward through Eqn.9. 

The )(tS total
sensitivity vector of reactivity can be further decomposed as: 

)()()()()()( ,,,,, tStFtStStStS ionconcentrat
r

iontransmutat
r

iontransmutat
r

direct
r

total
r

rrrrr τττττ =+=   
 
 
 

w
i
t
h

 
 
 
 
 

  (9) 

The determination of ),( tr
N

k

i r

σ∂
∂

 can be done by simply extracting the core concentration of each 

isotope at each burnup step and for each element r
r

or using Eqn.7. 

 

The )(, tS iontransmutat
r
rτ vector is a vector having fictively the same space-discretization as )(, tS direct

r
rτ here, 

• the time dependent sensitivity  vector of the power factor to the nuclear data coming from direct 

terms : 
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• the time dependent sensitivity vector of the power factor to the isotopic concentration : 
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


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• and the time dependent n×q sensitivity matrix of each isotopic concentration to each cross section 

),( trF
r

: 



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Using Eqn.9 and Eqn.5, the following equation, solved to calculate uncertainty by OAT doubling 

calculations method, can be written: 

[ ] [ ]

[ ] [ ]

[ ] [ ]
444444 8444444 76

r

44444444 844444444 76
rr

444 8444 76
r

rr

rr

rr

iancesCo

ionconcentrat
r

Tdirect
r

ionTransmutat

ionconcentrat
r

Tionconcentrat
r

Direct

direct
r

Tdirect
r

tStrFMtS

tStrFMtStrF

tSMtStr

var

,,

,,

,,
2

)(),()(2

)(),()(),(

)()(),(

ττ

ττ

τττε

+

+

=

     (10) 

 

Here, three sources of uncertainties can be identified: 

• uncertainties coming from direct effect [ ] [ ])()( ,, tSMtS direct
r

Tdirect
r

rr ττ , 

• uncertainties coming from transmutation effect [ ] [ ])(),()(),( ,, tStrFMtStrF ionconcentrat
r

Tionconcentrat
r

rr
rr

ττ , 

• covariances between direct and transmutation effects [ ] [ ])(),()( ,, tStrFMtS ionconcentrat
r

Tdirect
r

rr
r

ττ . 

 

Those terms will be detailed in the following paragraphs. 
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2.2.4.2 Doubling calculations for Monte-Carlo Sampling 

MC sampling, even with doubling calculations (Figure 2) does not allow to obtain sources of 

uncertainty independently. The total uncertainty ),(2 tr
r

τε .1 can be derived from §2.2.1, as the direct 

uncertainty directtr ),(2 r
τε  is extracted from the scheme of from Figure 2 The isotopic concentrations 

),( trN i

r
 give the local concentration uncertainties, building the MC estimator just like Eqn.3, by 

replacing τ  by iN .  

A  ),( trM
F

r
 matrix can then be built (but not ),( trF

r
, as it is explained in Appendix),  neglecting 

correlations between isotopic concentrations uncertainties as we will see in Appendix . 

 

2.2.5 Correlation factors and their physical interpretation 

Sensitivity and uncertainty analyses are usually focused on sensitivity parameters. The correlations 

give some interesting information that is often omitted in the studies found in the literature. The 

following paragraph will focus on the correlation coefficients that appear in Eqn.2 and Eqn.8, 

through the use of Bravais–Pearson coefficients. A Bravais-Pearson coefficient describes how two 

parameters are linearly linked to each other. It ranges between -1 and 1. If there is a linear relation 

between two quantities, then they are dependent. In general, two usages are made for these 

correlations coefficients: 

• It is possible to predict the value of a parameter knowing the other one. References [35] [36] 

use Bravais-Pearson correlation factors to describe the representativity of an experiment A 

versus the reactor concept B, based on a cross product of sensitivity profiles and adequate 

covariance matrices, within the so-called transposition process (i.e. how an integral 

information from an experiment can be translated to a design parameter). This is by far the 

most often use of Bravais Pearson coefficient in the reactor engineering/physics literature.  

• In the present uncertainty propagation methods, correlations coefficients between direct 

and transmutation operators appear in Eqn.2 and 8. They have an important effect on the 

estimation of total propagated uncertainties and need to be taken into account in the 

complete analysis. If parameters are strongly correlated in the coupled problem (r 1≈ ), the 

total propagated uncertainty will rise. On the contrary, if they are strongly anticorrelated (r

1−≈ ), the total uncertainty will be reduced. 

 

The determination of the sensitivity vectors allows to easily get correlations coefficients using the 

well-known formulation: 
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[ ] [ ]
[ ] [ ] [ ] [ ])()()()()()(

)()()(
,

tStFMtStFtSMtS

tStFMtS
r

ionconcentratTionconcentratdirectTdirect

ionconcentratTdirect

iontransmutatdirect =     (13)  

 

Eqn.13 can be generalized for different kinds of Bravais-Pearson coefficients. It can cover 

correlations between depletion steps, between core configurations …etc, giving the possibility to 

establish valuable relations between different kinds of uncertainties. In the present study, we will 

concentrate on correlations between direct and transmutation effects only. Correlations between 

different positions in space or evolution steps for example are calculated with: 

[ ] [ ]
[ ] [ ] [ ] [ ])()()()(

)()(
/

atSMatStSMtS

atSMtS
r

totalTtotaltotalTtotal

totalTtotal

att

++

+
=+

    (14)  

 

3 BENCHMARK CALCULATION RESULTS FOR POWER FACTORS 

3.1 Benchmark description 

The benchmark used in the present study is a Material Testing Reactor based on AlSiU 23 fuel 

plates with 19.95% enriched 
235

U. A 2D view is reproduced on Figure 3. For the sake of simplicity, 

one kind of assembly has been modelled to build the whole core. No absorbing assembly has been 

included in the benchmark, as the goal is only to compare the different methods. 

 

Figure 3: Geometric representation of the benchmark 

 

Each fuel assembly is made of 22 Zircalloy 13mm-thick plates (in green). Each plate contains a fuel 

blade of 50 microns. The blue elements represent the surrounding boronless light water. The 2D 

geometry is slightly subcritical at the last burnup step. 
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3.2 Calculations tools 

The application is made in 15 energy groups with the APOLLO2.8.3 [22] deterministic lattice code on 

a quarter of core using a 2 level MoC (method of characteristics) scheme, described in [23]. The UQ 

analysis will concentrate on 7 main isotopes (
235

U, 
238

U, H2O, 
27

Al, 
135

Xe, 
147

Pm, 
239

Pu) and 4 nuclear 

reactions (radiative capture, fission, nu, scattering), corresponding to the most important ones for 

this study. 

 

Perturbation of ND at the beginning of the calculation will give the total sensitivities of power 

factors to all isotopes and associated nuclear reactions. As it will be shown in the paper, the 

assembly being a small geometry, it will lead to strong spatial correlations between all the 

parameters.  

3.3 Nuclear data library and covariance data 

These data are very important for uncertainty propagation and are currently the subject of a large 

effort in the international community [24]. 

To obtain reliable covariances associated with JEFF3.1.1 evaluations [26], a nuclear data re-

estimation of the major isotopes was performed thanks to selected targeted integral experiments 

[27] and marginalization technique [25] using the CONRAD code. This work led to the emission of a 

new set of covariance matrices linked to JEFF3.1.1: the COMAC file (COvariance MAtrices Cadarache) 

[28]. In this covariance file, a particular attention was paid to the re-evaluation of important isotopes 

235
U [29], 

56
Fe [30], 

238
U and 

239
Pu [31], meanwhile other evaluations are mainly based on ENDF/B-VII 

covariance file.  
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4 RESULTS 

In order to point out the change in the different sensitivity profiles and associated correlations 

during depletion, we concentrated our analysis on 3 burnup steps: 2500 MWd/t, 40 000 MWd/t and 

100 000 MWd/t – ie max BU discharge).  Figure 4 reproduces the power shape for those burn-up. 

The power is principally localised in the core centre and, during irradiation, it is extended on the 

periphery. 

 

Figure 4: Power distribution in the core during irradiation normalized at full core average value 

4.1 Results obtained with the OAT reference method 

The results presented in this part are made using deterministic OAT with the process of doubling 

calculations. We further explain direct and transmutation sensitivities and construct the total 

uncertainty from them. 

4.1.1 Direct terms 

The uncertainty map for the direct effect will be built by extracting the sensitivities of each power 

factor to cross-sections. We observe on Figure 5 that most of the relative uncertainty is situated on 

the core edges, where the power factor is low, close to the reflector. Scattering effect is the most 

important contributor to uncertainty in the direct effect. Moreover, an area around the center of the 

core has a really weak uncertainty. This behavior has already been observed in [37], where it is 

shown that values depend on fuel type and dimensions of the core. The propagated uncertainties 

are here much lower (1.6% max at 1σ and 0.6 % at 1σ in the center). The lower extend obtained for 

the present benchmark can be explained by a smaller core and UOx fuel, less sensitive to long-range 

spatial correlations from scattering. Then the weaker contribution of ND to the power factors is 

justified, and the uncertainty decreases at depletion increases.  
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Figure 5: Direct uncertainties [% of power factor] from OAT 

 

4.1.2 Transmutation terms 

The transmutation terms are coming from depletion and isotopic productions in the core. A good 

example illustrating this impact is the 
235

U evolution during time. Globally, 
235

U is disappearing, but 

due to the cross-sections uncertainties in Bateman equations and in flux calculation, the quantity of 

this consumed isotope is not perfectly known. Then the isotopic concentration is not well known, as 

it will be shown in §4.1.2.1. The uncertainty of 
235

U concentration produces an uncertainty on the 

power factors due to both isotopic concentration itself but also because flux calculation is modified 

by this concentration. This last phenomenon is taken into account with sensibility of power factor to 

isotopic concentration. 

 
Table 1: Concentrations uncertainties coming from nuclear data vs burnup 

  

Burnup (MW.d/t) 20 40 000 100 000 20 40 000 100 000

Sm149 0,5 3 4 1,5 1,5 2

U235 0 0,3 0,8 0 0,4 0,8

Pu239 1 1,2 1,5 1,4 1,2 1,1

Center of the core Edges of the core

Maximum uncertainties of concentrations (% at 1σ)
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4.1.2.1 Local isotopic concentrations uncertainties 

Let’s focus on what happens for three major isotopes in the core. The first one is 
149

Sm, a poison 

created during irradiation. The propagated evolution of its uncertainty during burnup is reproduced 

on Figure 6. As we can see on, at the beginning of irradiation, the value of this isotope is null. During 

irradiation, it is created everywhere in the core. Finally it disappears on the center of core because 

of radiative capture. The observed trends on 
149

Sm uncertainty are slightly different: a first 

equilibrium (going to 20 GW.d/t) is established, creating a homogeneous uncertainty of 1.2% at 1σ. 

During irradiation, uncertainty growths, coming from the center, and reaching 4% at 1 σ. 

 
Figure 6: Concentrations and Concentrations uncertainties of 

149
Sm (bottom-left quarters of core) 

 

The second isotope of interest is 
239

Pu, produced during 
235

U depletion (Figure 7): at the beginning of 

irradiation we have no 
239

Pu in UOx fuel. The quantity of this isotope grows where the level of 

thermal flux is high, i.e. in the center of the core. This isotope is both produced and consumed so 

there are areas where it is more produced and area where it is more consumed. It is why we can 

observe at 100 GW.d/t, an area around the core where the quantity is the most important. This area 

is not the area of max uncertainty. In fact, during irradiation, at the beginning, the max uncertainty 

corresponds to the fuel near the reflectors because quantity of 
239

Pu produced here is weak so 

relative uncertainty is important. During irradiation, the uncertainty follows the production place, 

i.e. the center of the core. 
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Figure 7: Concentrations and Concentrations uncertainties of 

239
Pu (bottom-left quarters of core) 

 

The last isotope is 
235

U, depleted during burnup (Figure 8). Its consumption follows the flux during 

irradiation. Because the quantity of 
235

U becomes weak, the relative uncertainties of concentrations 

are growing. 

 
Figure 8: Concentrations and Concentrations uncertainties of 

235
U (bottom-left quarters of core) 
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Determining all the uncertainty to all the isotopes, the ),( trM
F

r
matrix of Eqn.11 can be built for 

each ),( tr
r

. Knowing the sensitivity of power factor to isotopic concentrations, the transmutation 

uncertainty is then easily obtained by a matrix product. 

4.1.2.2 Total transmutation uncertainty 

The previous ),( trM
F

r
 are now combined to )(, tS ionconcentrat

r
rτ  which represents the power factor 

sensitivity maps to isotope concentrations. Because of the nature of transmutation uncertainty, it 

increases during depletion as it acts as a cumulative uncertainty. However, there is equilibrium 

between produced and consumed isotopes. In fact, the quantities produced and consumed are less 

and less uncertain because they depend on the previous step. 

We observe that the uncertainty coming from direct effect becomes important at the end of 

irradiation, compared to the direct uncertainty from §4.1.1. There is a change in the predominant 

effect. The impacted areas are still the same than direct effect: the center and the fuel near 

reflectors is the most uncertain and can reach 0.8% at 1σ near the reflectors. 

 
Figure 9: Transmutation uncertainties [% of power factor] from OAT 

4.1.3 Direct/Transmutation correlations 

At the beginning, as we could postulate, direct and transmutation terms are not strongly correlated: 

the average correlation coefficient is around  -0.15 (but already negative). The reason is that the 

uncertainty on concentrations does not influence the total uncertainty during the first depletion 

steps. As burnup increases, negative correlations appear and form a spatial ring where maximum 

correlations can be observed. The ring of maximum value is moving away from the core centre and 
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decays as the burnup increases. More interesting, the ring shape exactly corresponds to the 

minimum of uncertainty. The negative correlations modify the quadratic sum of direct and 

transmutation effects, hence reducing the total uncertainty.  

At the end of irradiation, a second circle of anticorrelations slightly appear in the core center, as 

transmutation terms become approximately identical to direct terms in amplitude. 

 

Figure 10: Correlations Bateman/Boltzmann during irradiation from OAT 

4.1.4 Total uncertainty from DNB 

 

Using uncertainty maps coming from §4.1.1 and §4.1.2, and calculating correlation coefficients 

between transmutation and direct terms in §4.1.3, we can constitute the map of total power factors 

uncertainties coming from nuclear data. The figure 15 (schemes of top) show the uncertainties 

calculated by OAT method. 

The discretization for isotopes, reactions, even energetic groups is still possible with OAT methods 

(not MC). The next figure shows an example of uncertainties on power factors in 3D representation 

for different discretization of interest. The relative uncertainties are increasing principally in the 

center and the corners of the core and we find again the cardinal sinus shape with minimal 

uncertainty forming a ring. 

 

This means this effect cannot be explained by isotopes or reactions decomposition of variance. 
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Figure 11: Total uncertainties at 100 GW.j/T for some reactions and isotopes [% of power factor] 

from OAT 

 
Table 2: Total uncertainties (in %, 1SD) for different burnup and different isotopes 

 

4.1.5 Sensitivity coming from DNB 

With OAT methods, we can observe shape of sensitivities as presented below. The figure 16 shows, 

for 3 energy groups (fast, epithermal and thermal), the sensitivities issued from Bateman, Boltzmann 

and Total perturbations in % of power factor for 1% of variation of the nuclear data (Fission in 

Uranium 235). The following equation can be written: 

( ) )()()(,,,, tStStStgrsk direct
k

iontransmutat
k

total
k +=∀⊂∀ . 

 

Sensitivity profiles can have negative values, and their study can give information on the power 

factor variation induced by  perturbations on nuclear data.  

 

We can see in the fast energy group that sensitivities values remainvery low. This observation 

explains the “noise” appearing for fast energy group on Boltzmann, Bateman and Total sensitivities. 

Indeed, the studied benchmark being a thermal reactor, the perturbations in fast groups do not 

affecte the sensitivity profile. However, the shape form is the same than this of epithermal groups. 

 

Burnup (MW.d/t) 20 40 000 100 000 20 40 000 100 000

H2O 0,3 0,3 0,28 1,2 1,2 0,3

Al27 0,5 0,4 0,23 1,2 1,1 0,25

U235 0,04 0,02 0,16 0,15 0,14 0,14

Pu239 0 0,005 0,08 0 0,007 0,2

Xe135 0,02 0,02 0,014 0,035 0,05 0,006

Total 0,5 0,5 0,45 1,6 1,6 0,5

Maximum uncertainties in the total effect (% at 1σ)

Center of the core Edges of the core
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In the thermal groups, the sensitivity profile is widely different for the shape form and the values of 

sensitivities which are much higher. The points of low uncertainty observed on the previous figure 

are the same than the point where sensitivity is null. We can then conclude that this effect is not 

produced by a balance between thermal and fast neutrons. 

 

Figure 12: Sensitivities in [% power factor / % variation of nuclear data] for fission 235U at 100 

GWd/t in 3 energy groups 
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4.2 Inter-step correlation coefficients 

The possibility of calculating correlation coefficient of uncertainty between irradiation steps let us 

provide that it is maybe possible to develop methodologies targeting to calculate uncertainties at 

each step using only the first steps (need to be studied and put in a representativity method), 

especially when the correlations or anticorrelations are strong. In another way, it gives the possibility 

to build Bayesian inferences methods to integrate results of experiments on integral parameters 

such as power factors, to compute and re-estimate nuclear data values (extended multi-experience 

representativity approach, not developed in this paper).  

 

We observe strong correlations between step 0 and other steps (until 64 GWd /t on this case), 

whereas step 0 does not include Bateman uncertainties (as they are equal to zero). However, at high 

burnups, the correlations are becoming really weak, i.e. near zero for a lot of spaces areas. 

 

Figure 13: Correlations between time 0 and other burnups for total uncertainties from OAT 

 

4.3 Discussion about results quality 

We compare here the two main methods for calculating uncertainties, ie OAT and MC methods. 

Figure 14 below reproduces propagated uncertainties for 3 depletion steps: OAT (upper part) and 

MC (lower part). The figure shows that at each step, the MC method slightly underestimates – by 

about 0.2% -the total propagated uncertainty on power factor. The maximum differences between 

the two methods are positioned on the highest uncertainty values.  

During the irradiation, the relative uncertainties are concentrating in the core center and at the 

corners. A cardinal sinus shape appears with an area of minimal uncertainty. 



25 

 

Figure 14: Evolution of total uncertainties on power factors during irradiation for both 

methodologies [% of power factor] 
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5 CONCLUSIONS 

In this paper, a hybrid method for nuclear data uncertainty propagation in depletion problems is 

applied to local reaction rates, such as power factors. The basic equations developed in the frame of 

a previous work are slightly modified in order to take into account a more refined space 

discretisation that is required for precise estimate of local quantities. The built method enables, 

using a deterministicOAT (One-at-A-Time) perturbation method, to build a complete set of 

Boltzmann/Bateman sensitivity coefficients, together with their associated Bravais-Pearson 

correlation coefficients. One shows that those correlation coefficients between the so called direct 

and transmutation effects, are negative, and hence induce a total propagated uncertainty that is 

lower than traditional MC or GPT methodologies developed so far. 

 

We show that it is possible to build covariances of nuclides concentrations for each elements of the 

reactor core. Using these covariances and computing with sensitivity of power factor to the 

concentration, we create the transmutation term of the total uncertainty. We also produce the 

direct term and, knowing the total sensitivities, we can compute the correlations between direct and 

transmutation terms. 

The total uncertainty is then the quadratic sum of these different values. 

Using the OAT method, it is possible to practice a local sensitivity analysis which gives information on 

the physical phenomenon happening in the core. 

The known of concentration uncertainty lets have information on local burnup (directly proportional 

to 
235

U concentration uncertainty). But it allows also to get information of quantities produce in the 

reactor core and where. It can be for example neutronics poison but it can also be specific material 

used for medical applications. 

We show that OAT and MC methods produce some differences in the uncertainty calculation. These 

differences can be explained by the MC-sample which does not conserve the correlation between 

input perturbed data. This sample could have been done using a multidimensional Gaussian and 

would give the same results than OAT method (already observed on other calculation). This will be 

done in a next paper and applied to fission yIeld uncertainty propagation on core parameters. 

The number of calculation depends on the method applied. For GPT, the number of calculations is 

linked to the number of output neutronics quantities of interest. The space discretisation used in this 

paper is important and explains why GPT has been excluded for this application. The OAT method 

requires as many calculations as input parameters to be perturbed. Finally the MC sampling method 

shows good results with only hundreds of calculations but does not allow a local sensitivity analysis.  



27 

5.1 Appendix: Additional Remarks about the ),( trF
r

Matrix 

In the equation , the time dependent ),( trF
r

 matrix has been introduced. It formally represents the 

sensitivity matrix of isotopic concentrations to cross-sections. It describes how an isotopic 

concentration is modified by a cross-section perturbation. Bateman/Boltzmann coupling term is 

contained in F . 

This is expressed in percentage of concentration for 1 percent perturbation on nuclear data. 

For power factors, this matrix deals with concentrations depending on position in core. 

This F  matrix can only be created with OAT printing isotopic concentrations of each isotope 

because, for MC methods we cannot split direct and transmutation terms. Then, in transmutation 

terms, we cannot split concentration uncertainty from reaction rate sensitivity to the concentration.  

 

Its combination with the COMAC nuclear data covariance matrix allows building the isotopic 

concentration covariance matrix 
F

M  as:  

),(),(),( trFMtrFtrM T
F

rrr =          (11) 

 

),( trF
r

and ),( trM
F

r
 matrices, integrated on all the core are presented in [34]. 

 

One particularity of 
F

M  is to allow to easily get isotopic concentration uncertainty. 
F

M  being a 

covariance matrix, it can be decomposed as ZZ T Ω , where Z  is the diagonal matrix of isotopic 

concentrations uncertainties and Ω  is the correlation matrix between isotopic concentrations. Then 

we have: 

),(),(),(),(),(),( trZtrtrZtrFMtrFtrM TT
F

rrrrrr Ω==      

  (12) 

Remembering that Ω  contains only 1 on the diagonal, we can identify the individual values of Z as: 
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These values correspond to uncertainties on concentrations of each isotope i . 
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In MC method, an estimation of the diagonal of the isotopic concentration matrix can be built with: 
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An estimator of iiZ ,  can be calculated with MC methods printing isotopic concentrations depending 

on ),( tr
r

 and building the MC estimator of it. 
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