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Abstract 

The precise estimation of Pearsons correlation coefficients between core configurations is a 

fundamental parameter to properly propagate uncertainties, in the so-called re-assimilation and 

transposition process, froma priori known integral experimental data to a posteriori  uncertainty on 

a target design. In this paper, a traditional adjoint method is used to propagate nuclear data 

uncertainty on reactivity and reactivity coefficients and estimate their correlations. We show that the 

estimation of correlation coefficients enables to correctly propagate the whole ND uncertainties on 

extrapolated configurations. This calculation is made for reactivity at the beginning of life but could 

be easily extended to other parameters during depletion. 

 

Key-words: uncertainty propagation, nuclear data, transport, reactivity, reactivity coefficients, 

Pearsons, correlations. 

 

1 INTRODUCTION 

Sensitivity analysis plays an important role in the field of core physics, as nuclear data Uncertainty 

propagation and Quantification (UQ) is more and more required in safety calculations of large NPP 

cores, as well as innovative design relevant of Gen-IV systems. An emerging need also rises for the 

new generation of very versatile and efficient MTRs, where performances and safety concern both 

lifetime, and isotope production. A good understanding of biases and uncertainties on reactor core 
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calculations is essential for assessing safety features and design margins in current and future NPPs, 

as well as in experimental reactors such as MTRs. In recent years there has been an increasing 

demand from nuclear industry, safety and regulation for best estimate predictions to be provided 

with their confidence bounds.  

 

For almost 30 years, nuclear data uncertainty propagation and nuclear data statistical adjustment in 

fast reactor applications have been widely used to produce “adjusted” sets of multigroup cross 

sections and to assess the uncertainty on neutronics design parameters. As a consequence, these 

methods are naturally implemented in calculation tools dedicated to GEN-IV neutron calculations, 

such as the ERANOS2 code [1] in France.  

 

In this document, we will assess the impact of nuclear data uncertainties on reactivity coefficients at 

the beginning of life to simplify the problem. The method can be easily extended to depletion 

calculations and to other local parameters. 

  

To illustrate the performances of the methodology, a Material Testing Reactor benchmark (MTR 

type) 2D core benchmark has been designed, based on AlSiU 23  fuel plate assemblies. The 

calculation schemes and nuclear data library, as well as nuclear data covariance matrices will be 

described. A benchmark description will be given, followed by the detailed theoretical analysis of 

the methods. The last part will detail the results obtained and will give some elements of physical 

analysis, as well as awaited development perspectives. 

 

2 THEORY OF UNCERTAINTY PROPAGATION FOR REACTIVITY COEFFICIENTS 

The propagation law of uncertainty comes from a limited development of the calculation 

code functional, and is known as the sandwich rule. Under a matrix form, it can be written 

as, for reactivity �: 

��(�) = ��	
����	
 (2.1) 

Where �(�) is the standard deviation of � coming from the nuclear data covariance 

matrix	�	. ��	
	is the sensitivity vector of � to the nuclear data. Knowing	� from the ND 

evaluation files, only ��	
 needs to be evaluated.  
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2.1 Sensitivity evaluation 

The evaluation of 	��	
 is made using Standard Perturbation Theory [2]. Sensitivities are 

given by adequate procedures implemented in the APOLLO2 lattice code [3]. The most usual 

sensitivity value calculated by SPT is the following: 

����� = −�� 〈� † , � ����� − � ������ �〉〈� † , ��〉  

(2.2) 

 

where †ϕ is the adjoint flux, �� is the k-th cross-section in the order of the � matrix, �,	� 

and � are respectively disappearance, production and eigenvalue of the Boltzmann 

equation and .,.  represents the dot product on the phase space, defined as follows: 

〈��, ��〉 = � ���� � !
" � ��#$% ��(�,  , #)��(�,  , #)&  

to the calculation of  sensitivities to reactivity coefficients is made using the Equivalent 

Perturbation Theory [4][5]. These reactivity coefficients may be insertion of soluble boron 

or absorbing material, as well as temperature variation. The derivative of a reactivity 

coefficient can be expressed as a sum of reactivity derivatives. The sensitivity to a reactivity 

coefficient is then given by: �∆���� = ��� − �����%  (2.3) 

The ��	(
 − ��	)
 = ��∆	
 vector is then built. 

2.2 Evaluation of the Pearsons correlation coefficients 

The Pearson correlation coefficient gives a formal information about the linear relation 

between two variables *� and	*�. Its variation domain is the interval	+−1,1-. When *� 

and	*� are strongly positively correlated, the Pearson 	�	.)	.( ≈ 1. When they are strongly 

negatively correlated, �	.)	.( ≈ −1. This value is close to 0 when the variables are 

uncorrelated (ie there is no linear relation between *� and	*�.). 

The Pearson coefficient can be expressed through the following relations: 
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�	.).( = 123	.).(�(	*�)�(	*�) = ��.)
��	��.(

4��.)
��	��.)
. ��.(
��	��.(


= ∑ ((*�,7 − *�7 )(*�,7 − *�))4∑ (*�,7 − *�)�7 . ∑ (*�,7 − *�)�7
 

(2.4) 

where �.)  is the sensitivity of a parameter to *�, *�,7 is a realization of *�, *� is the average 

of this realization and 123	.).( represents the covariance between *� and *�. 

All the Pearson expressions are equivalent. We understand that the knowledge of �	.).( will 

be essential to express the covariance, knowing the uncertainties �(	*�) and	�(	*�). 
 

Remarks:  

• The Pearson coefficient allows to analyze sample of bivariate data and not 

multivariate data, 

• There is no transitivity relation for the Pearsons, except particular cases [6] 

• The independence between two variables implies that these variables are not 

correlated but the reciprocal is wrong. Two variables can have null Pearsons while 

being dependent. 

2.3 General theory of uncertainty accumulation 

Let’s extend the propagation law to a series of perturbations which are changing the core 

configuration. Consider the following relation for the reactivity. In the following paragraph, we will 

use the configuration transformation resumed on Figure 1 as an applicative example. 
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Figure 1: Steps of uncertainties accumulations 

 

We would like to determine the final reactivity � after having added soluble boron in the moderator, 

followed by a temperature increase, starting from a known reference reactivity state	�". 

 

We can express the final reactivity state as: 

� = �" + (�� − �")9::;::<=>?>@	ABB7C7>@ + (�� − ��)9::;::<CDEFD?ACG?D	7@H?DAID = �" + ∆�=>?>@ + ∆�CDEF (2.5) 

 

The global propagated uncertainty corresponding to this sum (�) cannot be associated to the 

quadratic sum of the different uncertainties only, as correlations exist between the three terms of 

Eqn.2.4. Let’s write the uncertainty to � as : 

��(�) = ���(�") + ��(∆�=>?>@) + ��J∆�CDEFK
+ �2�(�")�(∆�=>?>@)�(�", ∆�=>?D) + 2�(�")�J∆�CDEFK�J�", ∆�CDEFK
+ �2�(∆�=>?>@)�J∆�CDEFK�J∆�=>?>@, ∆�CDEFK
 
 

(2.6) 

The first line corresponds to the quadratic sum only. The second line represents the covariances 

between the initial state �" and the different reactivity coefficients leading to the final state ρ2. The 

latest line is the covariance between those reactivity coefficients.  

 

Eqn. 2.6 can be written in a more convenient manner in a matrix form: 

 

	��(�) = M�#M (2.7) 

Where  M = ��(�") �(∆�=>?>@) �J∆�CDEFK
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And  # = N 1 �(�", ∆�=>?>@) �J�", ∆�CDEFK�(�", ∆�=>?>@) 1 �J∆�=>?>@, ∆�CDEFK�J�", ∆�CDEFK �J∆�=>?>@ , ∆�CDEFK 1 O 
 

3 RESULTS FOR A “SCHOOL CASE” 

3.1 Benchmark description 

The 2D benchmark used in the present study is a Material Testing Reactor based on AlSiU 23 at 

19.95% of 
235

U fuel. A radial view is reproduced on Figure 2. A single type of assembly has been 

modelled to build the whole core. For the sake of simplicity, no absorbing material or control 

element has been included in the benchmark, the goal being only to study the propagation of ND 

uncertainties as one operating parameter is changed at a time: temperature, or soluble boron. 

 

Figure 2: Geometric representation of the benchmark 

 

Each fuel assembly is made of 22 Zircalloy plates (in green) with a thickness of 0.13 cm. Each plate 

contains a fuel blade of 50 microns thickness. The blue elements represent the surrounding light 

water (boronless at initial reactivity stage). The 2D geometry is slightly subcritical at last step. 

3.2 Calculations tools 

The application is made in 15 energy groups with the APOLLO2.8.3 [3] deterministic lattice 

calculation code on a 2D quarter of core using TDT-MOC (method of characteristics) scheme, 

described in [7]and ad hoc symmetries.  
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3.3 Nuclear data library and covariance data 

Global uncertainties on core parameters are assessed with the propagation of nuclear data 

uncertainties only. To obtain reliable covariances associated with JEFF3.1.1 evaluations [8] a nuclear 

data re-estimation of the major isotopes was performed thanks to selected targeted integral 

experiments [9].The CONRAD code is used to produce covariance matrices from marginalization 

technique [10]. This work led to the emission of a new set of covariance matrices linked to JEFF3.1.1, 

called the COMAC file (COvariance MAtrices Cadarache) [11]. In this covariance file, a particular 

attention was paid to the re-evaluation of important isotopes 
235

U [12], 
56

Fe [13], 
238

U and 
239

Pu [14] 

meanwhile other evaluations are mainly based on ENDF/B-VII covariance file.  

4 RESULTS 

In this paragraph, we will first study what happens to reactivity uncertainty when boron is 

added, or when the core temperature increases. In a second part, the uncertainty on each 

corresponding reactivity coefficient is calculated, as well as the Pearsons between these 

different configurations. Finally, we present an example of results obtained with and 

without taking into account the Pearsons and we give some arguments about the possibility 

of tabulating these coefficients in the calculation form. 

4.1 Uncertainties on reactivity  

In this part, the uncertainties are calculated using the SPT (Eqn.(2.2)). 

The calculated uncertainties on initial state reactivity (largely supercritical) give a result of 

350 pcm at 1σ (first column of Tab.1 and Tab.2). The main contributors are fission of 
235

U, 

and scattering of H2O and 
27

Al. In Tab.1, the soluble boron concentrations increased 

stepwisefrom 0 to 2800 ppm (parts per million 10
-6

). We observe an increase of the whole 

uncertainties except for 
27

Al which remains almost constant on the whole boron range. The 

uncertainty increase is a linear function of the boron concentration, essentially due to the 

spectrum hardening caused by thermal absorption. The sensitivity profiles moves to higher 

energies, where associated uncertainties in both 
235

U fission, and 
238

U resonant capture, are 

also higher. At 2800 ppm, the reactivity uncertainty gets the value of 460 pcm at 1σ. For H2O 

(in fact bounded hydrogen in H2O), we see, in the interval [0-600] ppmslight decrease of the 

uncertainties, followed by an increase after 600 ppm. However, the trend remains non-

significant. 
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Table 1: Reactivity uncertainty as a function of the soluble boron concentration (pcm at 1σ) 

 

Tab.2 shows the variations of reactivity uncertainties when the core temperature is 

modified. No particular crystalline effect is taken into account for the Doppler resonant 

treatment. Moreover, all materials are increased to the same temperature, and no 

additional temperature gradient is modeled in the fuel.  Uncertainty modifications are much 

lower compared to the boron effect. Going from 20°C to 250°C, the reactivity uncertainty 

grows from 350 to 363 pcm at 1σ, which is totally negligible. For the uranium isotopes, we 

observe a decrease of their propagated uncertainties between 20 and 200 °C as for the 

other isotopes, the uncertainties are increased as the temperature rises.. 

 

 

Table 2: Reactivity uncertainty as a function of the core temperature (pcm at 1σ) 

 

Tab.3 presents results for simultaneous boron and temperature modifications. We 

concentrated on 2 temperatures. At 150°C, the boron produces a slightly more important 

uncertainty on the reactivity than at 220°C.  

 

ppmB 0 300 600 2000 2500 2800

U235 268 280 291 344 363 374

U238 60 62 65 78 83 86

H2O 180 177 177 182 185 186

Al27 121 121 121 121 121 121

B10 0 14 28 90 112 124

Tot. Unc. 350 358 368 425 447 460

Temp. 20°C

T °C 20 100 150 180 220 250

U235 268 260 262 264 267 270

U238 60 58 61 63 66 69

H2O 180 190 190 190 191 192

Al27 121 124 126 127 130 132

B10 0 0 0 0 0 0

Tot. Unc. 350 350 353 355 359 363

Boron 0 ppm
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Table 3: Reactivity uncertainty for simultaneous variations of boron concentration and core temperature 

(pcm at 1σ) 

 

To resume, when the temperature decreases with an increase of the boron amount, the 

reactivity uncertainty coming from boron increases but the reactivity uncertainty coming 

from other isotopes decreases. It follows a light decrease of the total reactivity uncertainty. 

It is light because, temperature impact on reactivity uncertainty is light, according to the 

Tab.3. 

4.2 Uncertainties on reactivity coefficients 

Uncertainties of reactivity coefficients are calculated using EPT (Eqn.(2.3)). In Tab.4, we fixed 

the temperature and made boron variations. The Δρ line is the value of the reactivity 

coefficient and the Tot. Unc. Line corresponds to its uncertainty. We see that the reactivity 

coefficient uncertainty, for low boron adds, is more important at high temperature but is 

almost the same for the highest boron concentration (2500 ppm). The propagated value 

rises to 177pcmat 220°C for 169 pcm at 20°C. For both temperatures, the total uncertainty 

value is a linear function of Δρ (Pearson > 0.999). But the function coefficients are not the 

same for both temperatures. This mean it is possible to predict the value of the uncertainty, 

knowing the Δρ for boron amount in the interval [0-2500] ppm. Moreover, we remark that 

the relative uncertainty of this reactivity coefficient is constant. 

 

ppmB 100 600 2500 ppmB 100 600 2500

U235 283 300 363 U235 277 295 363

U238 73 78 96 U238 67 72 90

H2O 177 177 187 H2O 177 176 185

Al27 127 127 129 Al27 123 124 124

B10 4 26 99 B10 5 27 106

Tot. Unc. 365 380 450 Tot. Unc. 357 373 448

T 150°CT 220°C
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Table 4: Reactivity coefficients uncertainties, on the left, at 20°C, on the right at 220°C for boron amount 

variations (pcm at 1σ) 

 

For the temperature coefficients, the trend is different. It seems the relative uncertainty of 

the reactivity coefficient is constant for low boron amount but not when there is a lot of 

boron in the moderator. The uncertainties remain weak for temperature coefficients 

despite the important Δρ when the boron amount is weak. We remark than for all the cases, 

the uncertainties coming from the different isotopes remain close. But the uncertainties 

coming from boron, obviously, change. 

 

 

Table 5: Reactivity coefficients uncertainties, on the left, at 100 ppm of boron, on the right at 2500 ppm of 

boron for core temperature variations (pcm at 1σ) 

 

These reactivity coefficients uncertainties will be use in the following to calculate the 

uncertainty of the core with different configurations. 

4.3 Pearsons calculation 

The Pearson correlation coefficients are the last parameters to be calculated in order to 

properly propagate uncertainties for a particular configuration. This coefficient, describing 

the linear relation between two parameters is calculated from the second equality of 

Eqn.(2.4). The obtained values are tabulated for some configurations in Tab.6. The symbol 

Δρboron Δρboron

ppmB 0->100 0->600 0->2500 ppmB 0->100 0->600 0->2500

U235 4 29 116 U235 36 52 125

U238 1 6 28 U238 25 29 47

H2O 2 13 38 H2O 25 34 57

Al27 0 3 13 Al27 11 14 24

B10 5 28 112 B10 4 26 99

Tot. Unc. 7 43 169 Tot. Unc. 52 75 177

Δρ -1141 -6658 -26493 Δρ -1008 -6012 -23877

T 20°C T 220°C

Δρtemp Δρtemp

ppmB 20->150 20->220 ppmB 20->150 20->220

U235 5 11 U235 4 10

U238 6 12 U238 7 13

H2O 10 23 H2O 11 24

Al27 5 11 Al27 6 14

B10 0 0 B10 5 12

Unc. Tot 14 30 Unc. Tot 16 34

Δρ -1359 -2866 Δρ -163 -383

B2500ppmB100ppm
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“->” represents the modified value used to calculate the Δρ. Two kinds of information are 

tabulated in the Tab.6. The one mentioned in blue, is the simple correlation between the 

initial reactivity and the reactivity coefficient 	�(�", ∆�). The second information, mentioned 

in red, corresponds to a correlation between two reactivity coefficients	�(∆�1, ∆�2). 
 

For the first one, we observe that the Pearsons correlation follows the same behavior than 

the boron concentration. However the reverse trend is observed for the temperature: the 

Pearson decreases as the temperature rises.  

The red values have completely different trends. The Pearsons increase when the boron 

content increases for a temperature change from 20 to 150°C, and is inverted if the range of 

temperature variation goes from 20°C to 220°C. However, if the correlation coefficients are 

relatively high for the boron concentrations, they remain low to very low for other 

quantities. 

 

 

Table 6: Pearsons calculated between reactivity coefficients or reference reactivity and reactivity 

coefficients  

 

These correlation coefficients will be used in the next part to calculate the final uncertainty 

after changing the temperature and the boron amount in the core. 

0->100 0->600 0->2500

r(Δρtemp,Δρboron)

r(
Δ

ρ
te

m
p

,Δ
ρ

b
o

ro
n

)

r(ρ0,Δρboron)

0,31860 0,36453 0,41094

0,02524 0,03172 0,04740

20->220

r(ρ0,Δρtemp)

20->150

Constant Boron         Constant Temp.

0,01097

0,07628 0,10986 0,09382 0,06187
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4.4 Example of uncertainty accumulation with non-zero correlations 

In this part, we will consider an example and show the importance of the correlations term 

to calculate the uncertainty. We will show that some simplifications can be done in the 

correlation matrix. 

We consider the following simple case: suppose the reactivity uncertainty for a case without 

boron and at 20°C (noted �(�")) to be known, as well as the uncertainty of the boron 

insertion �(∆�=>?>@) , the Pearson correlation between �(�") and �(∆�=>?>@), written �J�", �∆	_=>?DK or the Pearson correlation between �(�") and the final case with boron �(�" + ∆�=>?>@), written	�J�", �1K.  

We want to calculate the uncertainty of the final case	�(��). 
 

Two possibilities can be used, given by the uncertainty propagation law, isolating the 

quantity of interest: �(��) = ±R+�(�")-��(�", ��) − +�(�")- + +�(∆�=>?>@)-� + +�(�")-�(�", ��)
= ±4+�(�")-� + +�(∆�=>?>@)-� + 2+�(�")-+�(∆�=>?>@)-�J�", �∆	_=>?DK 

A numerical application can be performed, considering a boron injection of 2500 ppm., 

then, using the second equation: �(��) = ±R+350-� + +169-� + 2+350-+169- ∗ 0.41094 = 447	Z[\ 

It corresponds to the value calculated in the Tab.1. Performing the application without the 

correlation term would give: �(��) = ±R+350-� + +169-� = 389	Z[\ 

The calculated uncertainty without correlation would be 389 pcm instead of 447 pcm. This 

represents an error of 13% on the reactivity uncertainty estimation. 

 

Let’s try to generalize the process for different reactivity coefficients and different core 

configurations, as presented on Figure 1. 

The final calculated reactivity is given by: � = �" + ∆�=>?D + ∆�CDEF + ∆�H?>7^ = 29264 + (−26493) + (−383) = 2388	Z[\ 

Using the different tables previously presented, the correlation matrix and the uncertainty 

vector can be built from Eqn. 2.7: 
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_ M = +350 169 34-
# = ` 1 0.41094 0.076280.41094 1 0.061870.07628 0.06187 1 a 

Then we get �(�) = 450 pcm which corresponds exactly to the result obtained by the 

uncertainty calculation using SPT (Tab.3). The uncertainty without correlation (replacing	# 

by the identity matrix) would give	�(�) = 390 pcm. So, even if taking into account the 

temperature coefficient does not change the uncertainty, we showed that for reactivity 

coefficients producing important uncertainties, it is necessary to take into account the 

correlations. 

4.5 Tabulation of Pearsons coefficients 

The Pearson correlations have certain stability according to the configurations. We precise 

that: 

• The second order Pearsons coefficients like �J∆�7, ∆�bK present important 

variations. However, their impact on the total uncertainty remains negligible 

because the uncertainties linked to reactivity coefficients are less important than 

uncertainties on a reactivity value. Then, taking the previous example and neglecting 

these coefficients, we get: 

 

_ M = +350 169 34-
# = ` 1 0.41094 0.076280.41094 1 00.07628 0 1 a    Then, �(�) = 450	Z[\ 

The uncertainty is then conserved. 

 

• The first order correlations like �(�", ∆�7), impact more the total uncertainty but 

they can be represented by a model. For example, those coming from the boron 

reactivity coefficient are a power function of the boron concentration. Moreover, 

variations of 25% of these coefficients do not modify a lot the final uncertainty. If we 

take for example the boron correlation of an amount of 100 ppm instead of this 

coming from an amount of 2500 ppm, we have the following system: 
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_ M = +350 169 34-
# = ` 1 0.31860 0.076280.31860 1 00.07628 0 1 aThen, �(�) = 438	pcm 

This gives an error of 2.5% on the final uncertainty. 

• In this particular case, the temperature correlation can be neglected: 

_ M = +350 169 34-
# = ` 1 0.31860 00.31860 1 00 0 1aThen, �(�) = 448	pcm 

 

This way of calculating uncertainty from reactivity coefficients and associated correlations 

can be extended to other modifications in the configuration, such as, for example, the 

introduction of absorbing element. In this case, when new reactivity coefficients are 

introduced, the dimensions of both	# matrix and M vector are increased. 
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5 CONCLUSIONS 

In this paper, we have detailed a particular application of nuclear data uncertainty 

propagation on reactivity coefficients, and used calculated Pearsons correlations 

coefficients to extrapolate reactivity effects and uncertainties to different core 

configurations. These correlations are necessary for rigorous uncertainty propagation. We 

have shown on a very simple case that they cannot be neglected, with the exception of 

some values of low reactivity coefficient uncertainties or for second order correlations. The 

reactivity uncertainty, calculated without taking into account these correlations is 

underestimated by about 13 %. 

Of course, values obtained here should be different for different cores. However, these 

correlation coefficients can be tabulated and models for interpolating reactivity effects and 

associated uncertainties using these correlations can easily be built, as we showed that 

perturbations of these correlations do not induce important errors on the final propagated 

uncertainty. 

The calculation of these correlations can be extended for other core parameters such as 

local power factors or isotopic concentrations in the case of burnup calculations. The 

knowledge of all these uncertainties and correlations could, in the future, feed an 

“uncertainty data base” associated to a cumulating model, dedicated to actual MTR or NPP. 

This would allow an easy and direct access to ND propagated uncertainties of all local and 

global core parameters for any configuration. 
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