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05-400 Otwock-Świerk, Poland

Abstract

Within the framework of lumped parameter models for integral codes, this

paper focus on the modelling of a two-phase Stefan fusion problem with natural

convection in the liquid phase. In particular, this specific Stefan problem is of

interest when studying corium pool behavior in the framework of light water

reactor severe accident analysis. The objective of this research is to analyze the

applicability of different approximations related to the modelling of the solid

phase in terms of boundary heat flux closure relations. Three different ap-

proximations are considered: a quadratic profile based model, a model where a

parameter controls the power partitioning at the interface and the steady state

conduction assumption. These models are compared with an accurate front-

tracking solution of this plane fusion front problem. This “reference” is obtained

by combining the same integral conservation equations as the approximate mod-

els with a mesh-based solution of the 1D heat equation. Numerical results are

discussed for a typical configuration of interest for corium pool analysis. Differ-

ent fusion transients (constructed from nondimensionalization considerations in

terms of Biot and Stefan numbers) are used in order to highlight the potential

and limitations of the different approximations.
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Research highlights:

• Different solid phase approximations for a two-phase Stefan fusion problem
with convection are analyzed.

• A “reference” solution is constructed by combining integral conservation
equations and a mesh-based solution of the 1D heat equation.

• Numerical results are obtained for a typical configuration of interest in light
water reactor severe accident analysis.

• The models performances are highlighted on different fusion transients
constructed in terms of Biot and Stefan numbers.

1. Introduction

Mathematical and numerical description of solidification and melting of ma-

terials is a substantial issue arising in numerous engineering disciplines, includ-

ing power and manufacturing engineering. For instance, in the context of nuclear

power engineering, melting processes are of prime interest during a severe acci-5

dent progression as a consequence of the insufficiency of the nuclear reactor core

cooling. During this kind of event, the residual heat produced in the nuclear

fuel coming from the fission products decay, is transferred depending on the

system state and boundary conditions by convection, conduction or radiation

across internal materials of the reactor pressure vessel.10

For the special case of single pure material phase change, the moving bound-

ary problem reduces to the so-called Stefan problem. In the Stefan problem,

the moving phases interface and the associated conditions are non-linear with

unknown location of the interface changing in time. The source of non-linearity

lies in three aspects: the phase change itself at the interface, the properties of15

the material that are usually temperature dependent and lastly the boundary

conditions of the domain that can be non-linear. This leads to a problem that

is space and time dependent, which numerical solution aims at determining the

interface position in the analysed domain (see, for instance, the review in [1]).

Modelling of the solidification and melting becomes a subject of many studies20
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in which the behaviour of the material under various conditions is predicted.

The problem was investigated in different ways that involved both analytical,

numerical and experimental research.

In this paper, we are interested in the numerical simulation of such problems.

From this computational point of view, the different approaches found in the25

litterature can be classified into two broad categories: mesh-based discretiza-

tions of the local conservation equations (including fixed-grid and moving-grid

methods) and lumped parameter models.

On the one hand, within the framework of mesh-based approaches, fixed-

grid methods have received a lot of attention for their computational efficiency30

when 2D or 3D geometries are involved. The various methods differ in terms

of the formulation for the energy conservation equation (see, for instance, the

review in [2]). When convection in the liquid is to be taken into account, such

methods becomes computationally demanding as the momentum conservation

equation has to be solved; Computational Fluid Dynamics (CFD) tools are then35

used. For instance, in [3], CFD calculations were performed and compared with

experimental results in order to validate the numerical approach based on the

“Volume Of Fluid” method and an enthalpy formulation. In [4], a temperature

transforming model is used in order to model melting with natural convection.

On the other hand, lumped parameter models for phase change problems40

are developed and used in so-called “0D” or integral codes that require fast-

running models, in particular when Monte-Carlo based sensitivity analyses are

performed. In this context, one important case of interest is when the solid

can be treated as one-dimensional. Many different approximations and simpli-

fications have been proposed in this case (see [5] and citations therein). For45

instance, in [6], under the hypothesis that the Stefan number is lower than one,

a quasi-static approximation was discussed and compared in [7] with CFD cal-

culations with and without convection; a good agreement was reported. In [5],

closures for the complete set of integral energy equations (liquid, solid and inter-

face) are obtained based on Hermite approximations for integrals that define the50

average temperatures and boundary heat fluxes. Good agreement was shown
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with respect to both analytical formula for a semi-infinite medium without in-

ternal heat generation and a fixed-grid enthalpy method for internally heated

slab configurations.

In this paper, the specific Stefan problem we are interested in is a two-55

phase problem where convection in the liquid is taken into account through

correlation-based closures and conduction in the solid can be approximated by

the heat equation in a 1D slab. This specific Stefan problem is of interest when

studying corium pool behavior in the framework of light water reactor severe

accident analyses. In this context, integral models are used and the liquid60

phase modelling heavily relies on correlations obtained for natural convection in

different configurations and for different regimes [8]. To the authors knowledge,

a comprehensive analysis of the possible approximations of this Stefan problem

from the point of view of solid conduction treatment is missing. This is the

object of this paper where different approximations for the solid phase in such65

a lumped parameter modelling are compared in detail. We have considered

different approximations that are in use in severe accident analysis comprising

a quadratic profile based model (that is shown to be equivalent to the approach

in [5]), a parametric model reported in [9] and the steady state conduction

assumption (similar to [6]). The important feature of this comparison is that70

it is carried out with respect to a “reference” model that combines the same

integral formulation of the conservation equations as the approximate models

with a mesh-based solution of the 1D heat equation in the solid. In this way, an

accurate front-tracking solution of this Stefan problem is obtained. It has the

exact same modelling features as the approximate models under consideration75

except only for the solid boundary heat flux closure relations that are the object

of our analysis.

The paper is structured as follows. Section 2 gives a brief presentation of

the mathematical settings for the rest of the paper, both in terms of local and

macroscopic conservation equations. From there, the different models to be com-80

pared are discussed in Section 3. The “reference” model is given in Section 3.1

while Section 3.2 details the different approximate models under consideration.
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Numerical results and associated discussion are reported in Section 4 where a

typical configuration of interest for light water reactor severe accident analysis

is used along with nondimensionalization considerations (see Section 4.1) for85

constructing fusion transient cases. Finally, concluding remarks are given in

Section 5.

2. Mathematical settings

This section briefly presents the mathematical settings of the physical model

that represents a liquid domain Ωl and a solid domain Ωs separated by a sharp90

interface Γls associated with a plane fusion or solidification front. For the sake

of clarity, the macroscopic balance equations are obtained from the local con-

servation equations and, then, they are simplified under the approximation of

of a 1D slab solid.

2.1. Local conservation equations95

The set of equations describing the system is composed of local conservation

equations with the Stefan condition related to the moving interface.

For the liquid domain Ωl(t), the mass, momentum and energy conservation

equations are written under the Boussinesq approximation in terms of the liquid

velocity ~vl and the liquid temperature Tl as:100

~∇ · ~vl(~r, t) = 0 for ~r ∈ Ωl(t) (1)

∂~vl

∂t
(~r, t) + ~vl · ~∇~vl(~r, t) =

−1

ρrefl

~∇p(~r, t) + νl∆~vl(~r, t)− βl
(

Tl(~r, t)− T ref
l

)

~g

for ~r ∈ Ωl(t) (2)

ρrefl Cp,l

(

∂Tl
∂t

(~r, t) + ~vl · ~∇Tl(~r, t)

)

= λl∆Tl(~r, t) for ~r ∈ Ωl(t) (3)

~vl(~r, t) · ~n = 0 for ~r ∈ ∂Ωl (4)

conditions in Tl(~r, t) and/or − λl
~∇Tl(~r, t) · ~n for ~r ∈ ∂Ωl(t) \ Γls(t) (5)

Tl(~r, t) = T fus. for ~r ∈ Γls(t) (6)

with appropriate initial conditions (in particular, in terms of temperature Tl(~r, 0) =

T 0
l (~r)). The liquid properties are: ρrefl the mass density at a reference tem-
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perature T ref
l , νl the kinematic viscosity, βl the volumetric thermal expansion

coefficient, Cp,l the specific heat capacity and λl the thermal conductivity.

In the solid domain Ωs(t), the temperature Ts is governed by the heat con-105

duction equation:

ρsCp,s

∂Ts
∂t

(~r, t) = λs∆Ts(~r, t) for ~r ∈ Ωs(t) (7)

conditions in Ts(~r, t) and/or − λs
~∇Ts(~r, t) for ~r ∈ ∂Ωs \ Γls(t) (8)

Ts(~r, t) = T fus. for ~r ∈ Γls(t) (9)

with the initial condition Ts(~r, 0) = T 0
s (~r). The solid properties are: ρs the

mass density, Cp,s the specific heat capacity and λs the thermal conductivity.

Finally, the liquid-solid interface Γls velocity is described by a plane fusion

front equation:110

~vls(~r, t) =
1

ρs∆H
fus.

(

−λl~∇Tl(~r, t) · ~n
ls + λs

~∇Ts(~r, t) · ~n
ls
)

~nls

for ~r ∈ Γls(t) (10)

with ~nls is oriented from the liquid to the solid. The fusion properties are: T fus.

the fusion temperature, ∆H fus. the specific latent heat of fusion.

Note, that for the sake of conciseness and because of the selected applications

in the numerical results section, no volumetric heat source has been introduced

in these equations but the models presented hereafter are not restrictive with115

respect to this simplification.

2.2. Lumped parameter formulation

From there, letting aside the momentum equation in the liquid, the prob-

lem in both phases can be cast into an integral form in terms of macroscopic

conservation equations for mass and energy. This approach leads to a so-called120

lumped parameter formulation (also called “0D” formulation).

In order to do so, the boundary ∂Ωl(t) is assumed to be partitioned under

the form ∂Ωl(t) =

(

⋃

i

∂Ωl,i

)

⋃

Γls(t) and the following integral quantities are
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defined:

ml(t) =̂ ρlVl(t) (11)

T̄l(t) =̂
1

Vl(t)

∫

Ωl(t)

Tl(~r, t)dV (12)

ṁls(t) =̂ ρs

∫

Γls

~vls(~r, t) · ~nlsdS (13)

φ̄il(t) =̂ −
1

Si
l

∫

∂Ωl,i

λl
~∇Tl(~r, t) · ~ndS (14)

φ̄lsl (t) =̂ −
1

Sls(t)

∫

Γls(t)

λl
~∇Tl(~r, t) · ~n

lsdS (15)

where Sls (resp. Si
l ) is the area of Γls (resp. ∂Ωl,i).125

In this way, using Reynolds transport and Gauss theorem, the integral for-

mulation of Eqs. 1 and 4 is obtained as:

dml(t)

dt
= ṁls(t) (16)

Cp,l

(

ml(t)
dT̄l
dt

(t) + ṁls(t)
(

T̄l(t)− T fus.
)

)

= −
∑

i

φ̄il(t)S
i
l (17)

−φ̄lsl (t)Sls(t)

The same integration process can be carried out for the solid domain to

obtain an integral formulation as:

dms(t)

dt
= −ṁls(t) (18)

Cp,s

(

ms(t)
dT̄s
dt

(t) + ṁls(t)
(

T fus. − T̄s(t)
)

)

= −
∑

i

φ̄is(t)S
i
s (19)

+φ̄lss (t)Sls(t)

with similar notations as for the liquid phase and the conductive heat flux

defined as:

φ̄lss (t)=̂−
1

Sls(t)

∫

Γls(t)

λs
~∇Ts(~r, t) · ~n

lsdS (20)

Finally, the interface Eq. 10 is written as:

ṁls(t) =
Sls(t)

∆H fus.

(

φ̄lsl (t)− φ̄lss (t)
)

(21)
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Obviously, the practical use of such 0D equations requires associated closure130

relations or Neumann boundary conditions associated with the average heat

fluxes φ̄il(t) and φ̄
i
s(t).

In the remainder, we will consider that adequate closure laws (i.e., in the

form of Nusselt-Rayleigh correlations for natural convection) are available for the

liquid phase 0D formulation associated with such a natural convection problem135

and we will focus our attention on the treatment of the solid phase.

2.3. 1D slab solid approximation

In this study, the problem is further simplified under the hypothesis of a

1D slab fusion front as depicted in Figure 1. Note that the liquid shape is

not specified except for its interface with the solid. The solid thickness es(t) is140

given by es =
ms

Slsρs
. The x-axis origin is chosen on the external boundary of

the liquid, the coordinate of the solid-liquid interface is given by el(t) while the

external boundary of the solid is at xs(t) = el(t) + es(t)

liquid

solid

x

es(t)

Ssl
el(t)

Figure 1: 1D front case and notations

In this case, the set of equations for the solid Eqs. 7, 8 and 9 can be simplified
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as:145

ρsCp,s

∂Ts
∂t

(x, t) = λs
∂2Ts
∂x2

(x, t) for x ∈ [el(t), x
s(t)] (22)

conditions in Ts(x, t) and/or − λs
∂Ts
∂x

(x, t) for x = xs(t) (23)

Ts(x, t) = T fus. for x = el(t) (24)

In the same way, the lumped solid conservation equations Eq. 20 is:

Cp,s

(

ms

dT̄s
dt

+ ṁls
(

T fus. − T̄s
)

)

=
(

−φ̄bcs + φ̄lss
)

S (25)

with S = Sls = Sbc
s and the average heat fluxes are:

φ̄lss (t) = −λs
∂Ts
∂x

(el(t), t) (26)

φ̄bcs (t) = −λs
∂Ts
∂x

(xs(t), t) (27)

In the remainder, the system of equations to be solved will consist in the set

of ordinary differential equations (ODE) composed of:

• the mass conservation equations for both liquid and solid phases Eqs. 17

and 19 coupled by the mass flow rate associated with the plane fusion150

front equation Eq. 21;

• the lumped liquid energy equation Eq. 18 with appropriate boundary con-

ditions and/or closure laws on ∂Ωl(t);

• the lumped solid energy equation Eq. 25 with heat fluxes φ̄lss (t) and φ̄
bc
s (t)

that are given by model-dependent equations discussed in the next section.155

Note that these equations are valid only when both liquid and solid phases are

present but, actually, the modelling presented here (and numerical results) also

encompasses the cases when the system is completely liquid or solid. For the

sake of conciseness, the equation modifications associated with these system

states are not given as they are straightforward. The only additional difficulty160

is related to the transitions from one state to the other (appearance or dis-

appearance of one phase) and its treatment in the numerical time integration;

some explanations are given in Appendix A.
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3. Front propagation models

This section presents the different models pertaining to the closure of the165

ODE system of equations with solid boundary heat fluxes φ̄lss (t) and φ̄
bc
s (t).

3.1. Reference model

In order to compare different approximate models, a reference model has

been constructed. A reference solution is obtained by solving explictly the 1D

heat equation of Eq. 22 (with boundary conditions given by Eqs. 23 and 24) in170

order to calculate the average heat fluxes φ̄lss (t) and φ̄
bc
s (t). More precisely, the

numerical scheme to treat the moving interface proceeds from time tn to time

tn+1 = tn +∆t as follows:

• Eq. 22 is integrated from tn to tn+1 based on an Euler implicit scheme i.e.

ρsCp,s

T̃s(x, t
n+1)− Ts(x, t

n)

∆t
= λs

∂2T̃s
∂x2

(x, tn+1)

for x ∈ [el(t
n), xs(tn)] (28)

conditions in T̃s(x, t
n+1) and/or − λs

∂Ts
∂x

(x, tn+1) for x = xs(tn) (29)

T̃s(x, t
n+1) = T fus. for x = el(t

n) (30)

and a mesh-based discretization of this Laplacian equation.175

• the ODE system is integrated from tn to tn+1 considering that ∀t ∈

[tn, tn+1],

φ̄lss (t) = −λs
∂Ts
∂x

(el(t
n), tn+1) (31)

φ̄bcs (t) = −λs
∂Ts
∂x

(xs(tn), tn+1) (32)

• from the previous integration, one obtains el(t
n+1) that is used to update

the mesh associated with the solid slab and calculate Ts(x, t
n+1) by projec-

tion of T̃s(x, t
n+1) onto this new mesh over [el(t

n+1), xs(tn+1)] and renor-180

malization to ensure that

∫ xs(tn+1)

el(tn+1)

Ts(x, t
n+1)dx = es(t

n+1)T̄s(t
n+1).
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In practice, Eqs. 28, 29 and 30 are discretized using linear finite elements over

a uniform mesh. Following [10], special care was simply taken in the evaluation

of the heat fluxes at the boundary from this finite element solution in order to

obtain superconvergent estimates for essential boundary conditions.185

3.2. Approximate models

In this paper, the previous reference model is used to assess the behavior of

different approximations of φ̄lss (t) and φ̄bcs (t) that are used in integral models.

In any case, these models give analytical closures for the ODE system.

3.2.1. Quadratic profile based model190

A first approximate solution is constructed by replacing the direct discretiza-

tion of Eq. 22 by a prescribed temperature profile T̃s(x, t) that satisfies the

boundary conditions Eqs. 23 and 24 and preserve the average temperature T̄s(t)

i.e.
1

es

∫ xs

el

T̃s(x, t)dx = T̄s(t) (33)

A simple adequate choice, completely defined by these three constraints, is to

use a second-order polynomial as it is solution of the stationary 1D slab heat

conduction equation with an internal source. Such an approximation is used in

the MAAP source term code [11] or the PROCOR software platform [9] in the

framework of light water reactor severe accident analysis. In this case, T̃s(x, t)

is written as:

T̃s(x, t) = a

(

xs − x

es

)2

+ b

(

xs − x

es

)

+ c (34)

with

c = Ts(x
s, t) (35)

b = 6T̄s(t)− 2T fus. − 4c (36)

a = 3

(

T̄s(t)−
b

2
− c

)

(37)
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The boundary heat fluxes are then given by

φ̄lss (t) = λs
2a+ b

es
= −λs

6T̄s(t)− 2Ts(x
s, t)− 4T fus.

es
(38)

φ̄bcs (t) = λs
b

es
= λs

6T̄s(t)− 2T fus. − 4Ts(x
s, t)

es
(39)

Obviously if T̄s(t) =
T fus. + Ts(x

s, t)

2
, a linear temperature profile is obtained

i.e. a = 0 in such a way that the steady state of the system without an internal

source is correctly represented.195

Actually, this approximation is equivalent to the one used in [5] and based on

two-point Hermite-type approximations [12] for Ts(x, t) and
∂Ts

∂x
(x, t) integrals.

More precisely, H1,1 (Ts) and H0,0
(

∂Ts

∂x

)

(trapezoidal- rule) interpolation are

used where, for any function f defined over [el, x
s], Hν,µ (f) denotes the Hermite

interpolation based on values
(

dif
dxi (el)

)

0≤i≤ν
and

(

dif
dxi (x

s)
)

0≤i≤µ
. In this way,200

the integral approximations are given by:

T̄s(t) ≈
1

2

(

T fus. + Ts(x
s, t)

)

+
es

12

(

∂Ts
∂x

(el, t)−
∂Ts
∂x

(xs, t)

)

(40)

∫ xs

el

∂Ts
∂x

dx = Ts(x
s, t)− T fus. ≈

es

2

(

∂Ts
∂x

(el, t) +
∂Ts
∂x

(xs, t)

)

(41)

that are equivalent to Eqs. 38 and 39.

3.2.2. Parametric model

In a second class approximation, when the steady-state of the system is

known, inequalities relating the different heat fluxes can be obtained and may205

be used to construct a parametric approximation. For instance, let us consider

a system in liquid-solid state under fusion for which it is known that, at fi-

nal steady-state, the fusion is complete. Then, assuming that the fusion front

monotonously propagates with a monotous evolution of the solid average tem-

perature, while T̄s < T fus., the two following inequalities hold during all the210

fusion transient:

dml

dt
≥ 0 (42)

dT̄s
dt

≥ 0 (43)
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Introducing these inequalities in Eqs. 25 and 21, the following inequalities on

the heat fluxes are obtained:

φ̄lss ≤ φ̄lsl (44)

φ̄lss ≥
φ̄lsl Sts + φ̄bcs

1 + Sts
(45)

where Sts =
Cp,s

(

T fus. − T̄s(t)
)

∆H fus.
.

N.B. similar relations can be obtained in the opposite case when it is assumed215

that a solidification front monotonously propagates with
dml

dt
≤ 0 and

dT̄
l

dt
≤ 0.

These relations give bounds corresponding to the two extreme cases of power

partitioning at the liquid-solid interface between the front propagation and the

solid heating:

• if φ̄lss = φ̄lsl , all the power goes to the solid heating until it reaches T̄s =220

T fus.; afterwards, the fusion front propagates with φ̄lss = φ̄bcs (i.e. T̄s is

constant);

• if φ̄lss =
φ̄ls
l Sts+φ̄bc

s

1+Sts
, T̄s is constant while the fusion front propagates. Note

that this approximation is handy for analytical calculations and is often

used in “order of magnitude” evaluations such as in [13].225

Based on these relations, a parametric approximation of φ̄lss may be used under

the form:

φ̄lss =











min
(

φ̄lsl , ωφ̄
ls
l + (1− ω)

φ̄ls
l Sts+φ̄bc

s

1+Sts

)

while T̄s < T fus.

φ̄bcs when T̄s = T fus.
(46)

where ω is a dimensionless parameter ∈ [0, 1]. For Neumann or Robin boundary

conditions applied on the solid surface at xs, this approximation of φ̄lss can be

supplemented by an approximation of φ̄bcs or Ts(x
s, t) in order to close the ODE

system of equations for specific configurations. For the results presented in

Section 4, a linear profile approximation was used for Ts(x
s, t) i.e. Ts(x

s, t) =230

2T̄s(t)− T fus..

Such a parametric model may be useful in Monte-Carlo based sensitivity

analyses considering that the treatment of the ω parameter as a random variable
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is a sound choice for capturing the overall model uncertainty. It was developed

in the PROCOR platform for this purpose [9].235

3.2.3. Steady-state conduction assumption

As a last approximation, it is a common practice in “order of magnitude”

evaluations such as in [13] to assume that the temperature profile in the solid

is, at any time, the steady-state one i.e. a linear profile in such a way that

φ̄lss (t) = φ̄bcs (t) = −λs
Ts(x

s, t)− T fus.

es
(47)

In this approximation, the solution of the lumped solid energy equation Eq. 25 is

no longer calculated as it is not needed. Note that with such an approximation,

this equation would reduce to

Cp,s

(

ms

dT̄s
dt

+ ṁls
(

T fus. − T̄s
)

)

= 0 (48)

In the general case, the inconsistency between this energy balance and the

steady-state linear profile approximation gives rather poor results (this discrep-

ancy will be illustrated by numerical results in the next section). It is only

when the Stefan number is sufficiently small [6] (i.e. the second term in Eq. 48240

is small) that this approximation is of interest.

4. Numerical results

In this section, the different approximations detailed in the previous sections

will be compared with the reference model in order to discuss their shortcom-

ings. This discussion on the models validity is not exhaustive and should not245

be taken as a general conclusion on the model performances. However, for the

sake of genericity, the cases of study are selected with respect to a nondimen-

sionalization of the equations presented hereafter.

4.1. Nondimensionalization of the equations

This nondimensionalization is limited to the front propagation (Eq. 21) and250

solid-related equations (Eqs. 22 and 25) as the treatment of the conduction in

the solid in such a fusion problem is the focus of this work.
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The following notations are first introduced:

• scaling quantities: time t⋆, length x⋆, temperature T⋆, heat flux φ⋆;

• dimensionless variables: τ = t
t⋆
, χ = x

x⋆
, χs = xs

x⋆
, ǫs = es

x⋆
, ǫl = el

x⋆
,255

ν = t⋆
x⋆

ṁls

ρsS
, θ =

Ts−T fus.

T⋆
, ψ =

φ

φ⋆
;

• dimensionless numbers: Fourier number Fo =
λst⋆

ρsCp,sx
2
⋆
, Biot number Bi =

φ⋆x⋆

λsT⋆
, Stefan number St =

Cp,sT⋆

∆Hfus. .

In this way, the front equation Eq. 21 is written as:

ν = FoBiSt
(

ψ̄ls
l − ψ̄ls

s

)

(49)

The heat equation and associated boundary conditions Eqs. 22, 23 and 24 take

the form:260

∂θ

∂τ
= Fo

∂2θ

∂χ2
for χ ∈ [ǫl, χ

s] (50)

conditions in θ(χ, τ) and/or −
1

Bi

∂θ

∂χ
(χ, τ) for χ = χs (51)

θ(χ, τ) = 0 for χ = ǫl(t) (52)

Finally, the lumped solid energy conservation equation Eq. 25 is rewritten as:
(

ǫs
dθ̄

dτ
− νθ̄

)

= FoBi
(

ψ̄ls
s − ψ̄bc

s

)

(53)

along with ψ̄ls
s =

−1

Bi

∂θ

∂χ
(ǫl, τ) and ψ̄

bc
s =

−1

Bi

∂θ

∂χ
(χs, τ).

Then, the dimensionless time is taken as the heat conduction characteristic

time in such a way that Fo = 1 and the nondimensionalized equations only

depends on Bi and St numbers.

As mentioned earlier, this nondimensionalization is incomplete as the cou-265

pling with the liquid equations (through ψ̄ls
l ) is not treated but it is still useful

in a qualitative manner. Indeed, one can notice that the dimensionless front

velocity ν is directly proportional to the product BiSt while the dimension-

less heat fluxes are inversely proportional to Bi; as a consequence, in the next

section, the two following sensitivity analyses are considered: varying Bi while270

maintaining BiSt constant and varying St while maintaining Bi constant.
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4.2. Cases of study

The numerical results presented here are all based on the cylindrical geom-

etry depicted in Figure 2 with a small aspect ratio (height over diameter). The

system is heated from below with an imposed power φ̄inl S; Rayleigh-Benard275

convection in the liquid controls the power partitioning between the lateral

boundary (heat flux φ̄latl and surface Slat
l ) and the solid/liquid interface. For

these convective heat exchanges at the liquid boundaries, Nusselt-Rayleigh cor-

relations are used: the Churchill & Chu and Globe & Dropkin correlations for

the lateral and axial heat transfers respectively (see for instance [14] for more280

details on such closures for corium pool lumped models).

solid

liquid

φ̄lat
l

Slat
l

Sin
l

= S
φ̄in
l

Figure 2: Geometrical configuration for the different cases and associated nota-

tions

A nominal test case was constructed on a typical configuration of interest

for light water reactor severe accident analysis: within a vessel (the reactor

vessel made of steel) a conductive material (steel coming from internal structures

melting) is heated from below by a large volumetrically heated fluid pool (molten285

corium from the core meltdown) and cooled from above. The upper boundary

condition associated with cooling is related to the availability of water to be

injected on the system. While water is injected, the cooling provided by nucleate

boiling at the surface is very efficient; when water is no longer available or if

dryout occurs, the cooling is limited and the heat removal is mainly provided290

by radiative heat transfer.

16



The simplified boundary conditions considered for this liquid/solid steel sys-

tem are the following:

on ∂Ωin
l : imposed φ̄inl (54)

on ∂Ωlat
l : Tl = T fus (55)

on ∂Ωbc
s :











φ̄bcs = h0
(

T bc
s − T0

)

for convective bc

φ̄bcs = ǫσ
(

(

T bc
s

)4
− (T0)

4
)

for radiative bc
(56)

with T fus the material liquidus temperature, h0 a heat transfer coefficient rep-

resentative of the heat exchange with water (nucleate boiling), T0 the water295

saturation temperature and ǫ the emissivity of the solid surface. In order to

consider the conditions on ∂Ωbc
s in the reference model, the radiative condition

has been linearized in such a way that Eq. 29 is written in any case as a Robin

condition:

−λs
∂Ts
∂x

(x, tn+1) = h
(

Ts(x, t
n+1)− T0

)

for x = xs(tn) (57)

with

h =











h0 for convective bc

ǫσ (Ts(x, t
n) + T0)

(

(Ts(x, t
n))

2
+ (T0)

2
)

for radiative bc
(58)

For the sake of simplicity, pure iron has been considered for the steel material.300

For the physical properties of solid and liquid phases, temperature-independent

values were obtained from the PROCOR code [9] data (based on TOLBIAC-ICB

code [15] subroutines) evaluated at T fus = 1811K.

Then, the test case conditions are defined by the following:

• the cylinder radius is 1.4m and the total mass of steel is fixed so that when305

the system is completely solid, its height is emax
s = 0.3m;

• at t = 0−, the system is at steady-state for a given φ̄
in,0
l = 0.4MW/m2

and convective cooling on top with h0 = 104W/m2/K, T0 = 372.78K in

such a way that the system is composed of a solid phase on top of a liquid

phase;310
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• at t = 0+, the boundary conditions are modified as follows: φ̄inl = 3× φ̄in,0l

and convective heat transfer on the top boundary is replaced by radiative

heat transfer.

The transient that follows leads to the complete fusion of the solid. In the

context of severe accident analysis, the complete fusion of the solid is an impor-315

tant event because when the steel layer is completely liquid, the heat flux on

its lateral boundary largely increases and becomes a major threat for the ves-

sel integrity. This so-called “focusing effect” phenomenon (related to the high

conductivity of this steel layer and its small aspect ratio) is of major concern

in the evaluation of the in-vessel retention strategy where the aim is to contain320

the corium materials within the reactor pressure vessel (see, for instance, [16]).

Based on Section 4.1, the dimensionless numbers Bi and St were evaluated

with x⋆ = emax
s , T⋆ = T fus − 1000 (1000K being an estimate of T̄s(t = 0)) and

φ⋆ = φ̄
in,0
l . From there, in addition to this nominal case, four additional tests

have been defined by modifying the solid physical properties:325

• in two of these tests (denoted γBi = 0.5 and γBi = 5.0), both λs and ∆H fus.

have been modified in order to decrease or increase Bi (multiplicative

factor γBi) while maintaining BiSt constant. Note that the Bi value

cannot be decreased much otherwise, the initial state (as given by the

steady-state of the system for the conditions at t = 0−) and steady-state330

correspond to a completely solid steel layer.

• in the two other tests (denoted γSt = 0.1 and γSt = 5.0), ∆H fus. has been

modified in order to decrease or increase St (multiplicative factor γSt)

while maintaining Bi constant.

These test cases and associated Bi, St values are given in Table 1 along with the335

initial solid thickness es(0) and the time tf at which the solid fusion is completed.
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case Bi St es(0) (m) tf (s)
†

nominal 4.115 2.105 0.158 1371

γBi = 0.5 2.057 4.209 0.267 1721

γBi = 5.0 20.573 0.421 0.037 907

γSt = 0.1 4.115 0.201 0.158 6053

γSt = 5.0 4.115 10.523 0.158 974

†
as calculated with R(10−4) model.

Table 1: Test cases description

The different models and associated parameters that are compared are sum-

marized in Table 2. For the parametric model, while the ω parameter was

varied from 0 to 1 with 0.1 increment, the results reported hereafter are limited

to ω = 0, ω = 1 and the ω value giving the closest values to the R(10−4) model.340

notation model

R(∆x) reference model with target mesh size ∆x ∈
{

10−4, 10−3
}

(in m)

Q quadratic profile-based approximate model

P(ω) parametric approximate model with parameter ω ∈ {0, . . . 1}

L steady-state linear profile-based approximate model

Table 2: Notations for the different models considered in the numerical tests.

For all models and all cases, the ODE system of equations is solved with an

Euler explicit scheme with a prescribed timestep of δt = 0.1s. For the reference

model, the timestep ∆t in the coupling scheme between the ODE system and

the 1D conduction equation (see Section 3.1) is set to ∆t = 5.0s (except in the
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γBi = 0.5 case, ∆t = 2.5s). These values of δt and ∆t are sufficiently small345

in order to ensure a proper model comparison (for the sake of conciness, the

convergence with respect to these time discretizations is not shown here).

4.3. Results and discussion

For all cases, taking R(10−4) result as the reference, for any other model

M, the comparison is presented in terms of:350

• the absolute error on the fusion time ∆tf = tf (M)− tf
(

R(10−4)
)

;

• the relative error in L1-norm for any quantity q ∈
{

φ̄lss , φ̄
bc
s , T̄s, φ̄

ls
l , es

}

defined as:

ε
q
L1

=

∥

∥q (M)− q
(

R(10−4)
)
∥

∥

1

‖q (R(10−4))‖1
(59)

with ‖·‖1 calculated over the time interval [0,max
(

tf (M) , tf
(

R(10−4)
))

].

These results for the nominal case are given in Table 3 where it can be seen

that R(10−3) results are very close to R(10−4) demonstrating the convergence

of this reference solution in terms of the spatial mesh size.355

This nominal case gives a general view on the performances of the different

approximate models for this typical configuration of interest in light water re-

actor severe accident analysis. The discrepancies of the Q model are limited,

especially for the most important quantities tf and es. Regarding the parametric

model P , while as expected the performances largely depend on the ω parameter,360

for the “optimal” ω value of 0.3, the agreement on tf and es is comparable with

the Q model but the error on the heat fluxes at the solid boundaries are larger.

Finally, the steady-state conduction approximation appears, as expected, as a

very poor approximation with tf underestimated by about 50%.
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∆tf (s)
εL1

(%)

φ̄ls
s φ̄bc

s T̄s φ̄ls
l es

R(10−3) 0.0 0.10 0.37 0.09 0.02 0.17

Q -5.1 4.36 9.24 1.91 0.58 2.74

P (0.0) -173.1 20.66 79.95 29.62 5.80 17.12

P (0.3) -5.1 6.46 30.62 2.59 0.86 3.39

P (1.0) 473.4 65.82 311.19 62.82 15.43 75.71

L -698.1 80.44 175.67 206.02 20.42 56.47

Table 3: Relative differences – nominal case – reference is R(10−4).

For the sake of clarity, further discussion of the results in terms of model365

comparison is splitted into two parts: a comparative analysis between γBi =

0.5 and γBi = 5.0 cases in Section 4.3.1, γSt = 0.1 and γSt = 5.0 cases in

Section 4.3.2. Finally, Section 4.3.3 provides additional results obtained on

these transients in order to clearly highlight the shortcomings of the different

approximate models.370

4.3.1. Varying Bi (maintaining BiSt constant)

The results for γBi = 0.5 and γBi = 5.0 cases are presented in Tables 4 and 5

respectively in order to discuss the effect of increasing Bi (while maintaining

BiSt constant).

Regarding the reference model, the discrepancy betweenR(10−3) andR(10−4)375

increases when Bi is increased: indeed, when the conductivity decreases, the

transient thermal gradients within the solid are more pronounced and localized

in such a way that a finer mesh at the boundary is needed.

Then, when Bi is increased, the “optimal” value of ω for the parametric

model P decreases (from 0.4 to 0.1 when going from γBi = 0.5 to γBi = 5.0),

while the L model results are largely improved. For both models, this trends

can be related to the modification in the power partitioning between the solid

heating and the fusion front propagation when Bi is varied. This variation of

the power partitioning can be clearly illustrated by considering the following
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normalized quantity ∈ [0, 1]:

Γls
φ =

φ̄lsl − φ̄lss
φ̄lsl − φ̄bcs

(60)

that represents, for a given power input from the liquid at the interface and

a given top boundary heat exchange, the fraction that is “used” for the front380

propagation.
(

1− Γls
φ

)

is then the fraction that goes into the solid heat balance

(right hand side of Eq. 25). This quantity is depicted in Figure 3 for both

γBi = 0.5 and γBi = 5.0 cases as calculated by the R(10−4) model (note that, at

t = 0+, due to the continuity of φ̄lsl and φ̄lss , Γ
ls
φ is zero). It can be seen that, in

average, Γls
φ becomes greater during the fusion transient when Bi is increased.385

This is consistent with the performance trends for the parametric and steady-

state conduction models; indeed, with the parametric model, Γls
φ is maximum

for ω = 0 while the steady-state conduction assumption gives Γls
φ = 1.

Finally, the Q model results are only slightly affected by Bi modification

and there is no specific trends (see Tables 3, 4 and 5).390

∆tf (s)
εL1

(%)

φ̄ls
s φ̄bc

s T̄s φ̄ls
l es

R(10−3) 0.0 0.06 0.26 0.07 0.03 0.12

Q -0.3 2.68 7.46 1.75 0.86 3.07

P (0.0) -182.0 17.60 79.74 27.51 6.84 18.24

P (0.4) -5.4 5.79 25.55 5.09 1.83 5.33

P (1.0) 241.9 46.77 220.86 36.87 17.19 62.68

L -1115.4 87.68 169.55 214.66 29.10 70.44

Table 4: Relative differences – γBi = 0.5 case – reference is R(10−4).
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∆tf (s)
εL1

(%)

φ̄ls
s φ̄bc

s T̄s φ̄ls
l es

R(10−3) -5.0 1.01 2.11 0.77 0.20 0.18

Q 0.1 4.41 2.82 0.64 0.04 0.77

P (0.0) -163.1 48.32 86.55 38.65 6.52 18.96

P (0.1) -76.4 31.82 57.72 17.85 3.28 13.18

P (1.0) 651.9 193.88 416.76 102.70 15.86 86.18

L -163.1 52.75 93.27 151.53 6.66 22.66

Table 5: Relative differences – γBi = 5.0 case – reference is R(10−4).
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Figure 3: Γls
φ(t) – γBi = 0.5 and γBi = 5.0 cases – R(10−4) model

4.3.2. Varying St (maintaining Bi constant)

The results for γSt = 0.1 and γSt = 5.0 cases are presented in Tables 6 and 7

respectively in order to discuss the effect of increasing St (while maintaining Bi

constant).

First of all, one can notice that the effect of refining the spatial mesh size395

from 10−3 to 10−4 is very limited and almost insensitive to the St value.
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Then, when St is increased, the “optimal” value of ω for the parametric

model P increases (from 0.1 to 0.5 when going from γSt = 0.1 to γSt = 5.0),

while the L model results are deteriorated. Alike previous cases where Bi was

varied, this trend is related to the power partitioning between the solid heating400

and the fusion front propagation illustrated in Figure 4 in terms of Γls
φ(t): when

St increases, Γls
φ(t) is decreased. In addition, when St becomes small (i.e. for

long fusion transient), the sensitivity of the parametric model results to the ω

value becomes more important as can be seen from the error amplitude between

ω = 0 and ω = 1 cases. While ω can still be adjusted to get results close to the405

reference (in the γSt = 0.1 case, with ω = 0.08, the discrepancy on the fusion

time is reduced to 39.7s), the constant power partitioning hypothesis of this

model becomes inappropriate. This is further illustrated in Figure 5 where the

T̄s(t) evolution as calculated by R(10−4) and P(0.1) is given. The evolution

of T̄s(t) can be separated around 1500s into two time regions exhibiting very410

different slopes; as a consequence, in such a case, an “optimal” ω value is bound

to underestimate (resp. overestimate) the slope of T̄s(t) at the beginning (resp.

end) of the fusion transient.

Finally, the Q model results are slightly deteriorated when St increases;

the behavior of the Q model in the γSt = 5.0 case is further discussed in Sec-415

tion 4.3.3.

∆tf (s)
εL1

(%)

φ̄ls
s φ̄bc

s T̄s φ̄ls
l es

R(10−3) 0.0 0.03 0.04 0.01 0.00 0.02

Q 5.1 2.72 1.60 0.48 0.08 0.52

P (0.0) -1382.1 65.90 80.57 45.34 7.65 19.49

P (0.1) 545.7 46.75 71.57 17.02 3.10 8.62

P (1.0) 3835.2 116.46 177.31 35.59 10.11 64.48

L -601.8 37.97 48.72 279.75 4.07 14.90

Table 6: Relative differences – γSt = 0.1 case – reference is R(10−4).
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∆tf (s)
εL1

(%)

φ̄ls
s φ̄bc

s T̄s φ̄ls
l es

R(10−3) 0.0 0.07 0.64 0.15 0.04 0.30

Q -5.1 2.99 15.99 3.55 1.23 5.59

P (0.0) -81.6 12.30 87.56 22.48 5.12 15.95

P (0.5) 5.1 3.90 35.69 8.26 2.15 13.26

P (1.0) 127.4 34.08 236.54 35.80 14.83 74.45

L -749.6 92.75 159.52 146.72 29.77 80.11

Table 7: Relative differences – γSt = 5.0 case – reference is R(10−4).
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Figure 4: Γls
φ(t) – γSt = 0.1 and γSt = 5.0 cases – R(10−4) model.
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Figure 5: T̄s(t) and T̄l(t) – γSt = 0.1 – R(10−4) and P(0.1) models.

4.3.3. Approximate models limitations

To complete this analysis, the shortcomings of the different approximate

models are illustrated in more detail by additional results.

First, an important feature of the Q model can be observed at the beginning420

of the transient: because of the quadratic profile asumption fitted on the average

temperature T̄s and both boundary conditions, the discontinuity at t = 0 of the

boundary condition on ∂Ωbc
s leads to a non-physical discontinuity of the heat

flux φ̄lss at the solid-liquid interface as depicted in Figure 6 for the γSt = 5.0

case. This discontinuity can induce a spurious behavior of the front propagation425

at the beginning of the transient. Indeed, as shown on Figure 7 for the γSt = 5.0

case, for the first 16.6s, Q model predicts solidification at the interface instead

of fusion: the Q model cannot ensure the correct direction of the front at all

time.

Then, as explained in Section 3.2.3, an inherent feature of the L model is430

that the solid average temperature T̄s decreases during a fusion transient. As
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shown in Figure 8 in the γBi = 0.5, this decreasing trend can be very pronounced

and leads to negative temperature that completely invalidate the transient solid

heat balance with such a model.

Finally, as mentioned before, the parametric model performance is limited435

by the fixed value of ω that imposes a constant power partition at the interface.

In addition, it is also inherently limited by the hypothesis
dT̄s

dt
≥ 0 that may not

be always verified: as illustrated in Figure 9 in the γSt = 5.0 case, the average

temperature of the solid can slightly decreases at the beginning of a fast fusion

transient.440
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Figure 6: φ̄lsl (t) and φ̄
ls
s (t) – γSt = 5.0 – R(10−4) and Q models.
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Figure 7: el(t) and es(t) – γSt = 5.0 – R(10−4) and Q models.
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Figure 8: T̄l(t) and T̄s(t) – γBi = 0.5 – R(10−4) and L models.
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Figure 9: T̄l(t) and T̄s(t) – γSt = 5.0 – R(10−4) and P(0.1) models.

5. Conclusion

In this paper, the integral modelling of a two-phase Stefan problem with con-

vection has been discussed from the point of view of solid boundary heat flux

closure relations. The comparison of different approximate models has been

carried out with respect to a “reference” model that combines the same inte-445

gral formulation of the conservation equations as the approximate ones with a

mesh-based solution of the 1D heat equation in the solid. Numerical results were

discussed for fusion transients based on a typical configuration of interest for

light water reactor severe accident analysis. A short parametric study based on

nondimensionalization considerations in terms of Biot and Stefan numbers was450

presented in order to highlight the limitations of the different approximations.

On the overall, the quadratic profile based model (equivalent to two-point Her-

mite approximations for the integrals that define the average temperatures and

boundary heat fluxes) appears as a good approximation while the applicability

of the parametric model and the steady state conduction assumption is shown455
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to be limited to certain fusion transients depending on the power partitioning at

the liquid-solid interface between the front propagation and the solid heating.
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Appendix A. ODE system numerical integration

The ODE systems are solved using the Apache Commons Math library[17]

in the JAVA language. A set of additional top-level classes have been added in

the PROCOR platform (kernel package) in order to facilitate the description

of such ODE systems in the context of lumped mass and energy conservation465

equations. In particular, based on the discrete event handling tools of this li-

brary (see Apache Commons Math ode package), a model can explicitly declare

the different states of its underlying ODEs in such a way that the detection and

treatment of the associated transitions can be taken care of properly during the

integration process. The state transitions are described through “switching”470

functions (see Section 6.3 in [18] for instance) and, through a root-finding algo-

rithm, these functions are used within the time integration process iin order to

refine the time step (independently of the time integration scheme) in order to

adequately capture the state transitions. Using this library and this formalism,

many different integration methods can be used in a transparent way (in this475

study, an explicit Euler scheme was used).

For our fusion/solidification front ODE model, five different states and as-

sociated transitions have been distinguished as shown in Figure A.10 that also

depicts the transition conditions in terms of mass and temperature thresholds.

In addition to the three states “liquid only”, “liquid-solid” and “solid only”, two480

additional intermediate states have been introduced as transitional states in or-

der to stabilize the front propagation and avoid numerical problems: when a

phase appears (surface temperature reaches T fus), in these intermediate states,
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the appearing phase is supposed to remain constant at T fus in such a way that

only the mass conservation equation is integrated for this appearing phase.485
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P
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Notations (in addition to the ones already defined in Section 2):
a(t) = b

transition with associated condition a(t) = b;

ma (resp. md) mass threshold associated to a phase appearance (resp. disappearance);

P
up
out power exchanged by the system at its upper boundary;

P dwn
in power received by the system at its lower boundary.

Figure A.10: ODE system states and transitions.
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