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Abstract 

 

Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive 

effluents. After use, they are usually stabilized and solidified by encapsulation in cementitious 

materials. However, for certain combinations of cement and resins, the solidified waste forms can 

exhibit strong expansion, possibly leading to cracking of the matrix.  

In this work, the behaviour of cationic resins in the Na
+
 form is investigated in Portland cement (CEM 

I) or blast furnace slag cement (CEM III/C) pastes at early age in order to have a better understanding 

of the swelling process. The results show that during the hydration of the CEM I paste, the resins 

exhibit a transient expansion of small magnitude due to the decrease in the osmotic pressure of the 

pore solution. This expansion, also observed with C3S pastes containing similar IERs, occurs just after 

setting and is sufficient to damage the material which is poorly consolidated. In the CEM III/C paste, 

expansion of the resins occurs before the end of setting and only induces limited stress in the matrix 

which is still plastic.  
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1. Introduction 1 

Ion exchange resins (IERs) are commonly used by the nuclear industry in the decontamination 2 

process of radioactive effluents. The spent resins become a low-level or intermediate-level radioactive 3 

waste and have to be stabilized and solidified, i.e. placed under a solid, stable, monolithic and 4 

confining form, before being sent to disposal. Calcium silicate cements offer many advantages for 5 

resins encapsulation: easy supply, simple process, good mechanical strength, compatibility with 6 

aqueous wastes, good self-shielding, and high alkalinity which allows many radionuclides to be 7 

precipitated and thus confined. However, for certain combinations of cement and resins, the solidified 8 

waste forms can exhibit strong dimensional variation, possibly leading to cracking of the matrix.  9 

Several specificities of IERs have to be taken into account to design a robust cement-based matrix, 10 

such as low intrinsic mechanical strength and possible ionic exchanges with the pore solution [1, 2]. It 11 

is also well known that in aqueous medium, the volume of IERs beads strongly depends on the 12 

composition of the solution. Expansion or shrinkage can be caused by ionic exchanges and/or 13 

variations in osmotic pressure. These volume changes can also occur in a cementitious matrix, the 14 

pore solution chemistry of which evolves with ongoing hydration and, under severe conditions, they 15 

can induce cracking of the matrix [3-5]. Knowledge about the chemical evolution of IERs in a 16 

cementitious environment is limited. For example, it is often mentioned in the literature that the 17 

encapsulation of IERs with Portland cement (CEM I) leads to strong expansion during the early stages 18 

of cement hydration, whereas no swelling is observed when Portland cement is blended with high 19 

amounts of blast furnace slag [6,7]. However, the reasons for these different behaviours are not 20 

understood.  21 

To simplify the system under investigation, Portland cement was replaced in a previous study by its 22 

main component, tricalcium silicate [8]. The C3S-waste form also exhibited a strong expansion and 23 

two main stages were observed during hydration at early age. In the first one, due to ionic exchange 24 

(fixation of calcium, release of sodium), the resins shrank. Then, in a second stage, as hydration 25 

accelerated, the sodium concentration in the pore solution rapidly decreased due to the precipitation of 26 

sodium-bearing C-S-H, whereas the resins continued to fix calcium ions. Swelling of the resins 27 

occurred during the second stage, and resulted from the decrease in the osmotic pressure of the pore 28 
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solution due to the consumption of sodium ions. Despite its small magnitude, swelling seemed to be 29 

enough to deteriorate the hardened matrix during the second stage, just after setting, while the degree 30 

of hydration was still low and the matrix poorly consolidated. 31 

To provide deeper understanding of real systems, this work aims at comparing the hydration of 32 

Portland cement and blast furnace slag cement (CEM III/C) pastes with cationic resins initially in the 33 

Na
+
 form. The objective is to explain why cements containing high amounts of blast furnace slag are 34 

more appropriate than Portland cement to solidify and stabilize this waste. 35 

 36 

2. Experimental  37 

 38 

2.1 Materials 39 

 40 

The two cements used in this study were referred as CEM III/C (32.5 N from Calcia Rombas) and 41 

CEM I (52.5 N from Calcia Couvrot). According to European standard EN 197-1:2000, CEM I 42 

comprises 95-100% Portland Cement clinker whereas CEM III/C corresponds to a Blast Furnace 43 

Cement consisting of 5-19% Portland cement clinker and 81-95% blast furnace slag. The 44 

compositions of the cements and clinker are reported in Tables 1 and 2. The two cements comprised 45 

the same Portland clinker, but in different amounts. 46 

IERs were supplied by Rohm&Haas under the trade name Amberlite IR120H in the physical form of 47 

spherical beads or ground grains. The IER beads had a diameter comprised between 620 and 830 µm, 48 

and the ground IERs had a particle size ranging from 0.4 µm to 300 µm (d10 = 15 µm, d50 = 65 µm, d90 49 

= 155 µm). The exchange sites of the resins, shipped in the H
+
 form, were saturated with Na

+
 ions by 50 

percolating a solution of sodium hydroxide. The pH of the eluted solution was continuously 51 

monitored, and the percolation was stopped as soon as the pH exceeded 7. The resins were then rinsed 52 

with water to eliminate the excess of base and to recover a neutral pH. Finally, the suspension of 53 

water and resins was filtered under humid atmosphere and slight vacuum on a Buchner funnel to 54 

remove the free intergranular water (water between the resin grains). The dry extract of the wet resins 55 

was measured by gentle heating at 55°C (to avoid any damage of the functional groups) until constant 56 
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weight. Values of 54.3 ± 0.2 % and 45.3 ± 0.2 %. were achieved for beads and ground grains 57 

respectively. This difference was explained by the fact that ground resins developed a larger surface 58 

area than bead resins. The volume of water adsorbed onto the surface of resin was thus more 59 

important. The wet resins were kept in tightly closed containers. The resins were used in their ground 60 

form, except for SEM observations where beads were preferred. 61 

 62 

2.2 Preparation of samples 63 

 64 

Experiments were conducted on pure cement pastes, consisting of CEM III/C or CEM I cement and 65 

water, as well as on cement pastes mixed with IERs. 66 

To prepare pure cement pastes, CEM III/C or CEM I cements were introduced in a standardized 67 

laboratory mixer (European Standard EN 196-1) with water, mixed at low speed for 30 s and at high 68 

speed for 3 min. The water-to-cement ratio was fixed to 0.55, which corresponded to the effective 69 

water-to-cement ratio of the pastes with IERs, calculated by correcting the total amount of water from 70 

that retained in the IERs to solvate the ionic groups. This latter was assessed by measuring their dry 71 

extract after the saturation step with Na
+
 ions, as previously explained in section 2.1. The pure cement 72 

pastes exhibited transient bleeding which disappeared after setting. 73 

Mixing of cement/IERs systems was performed in two steps: IERs and water were first stirred during 74 

30 s at low speed in a standardized laboratory mixer. Then, cement (CEM I or CEM III/C) was 75 

introduced in the mixer, mixed at low speed for 30 s and at high speed for 3 min. Samples contained 76 

11 wt. % of dry resins, and a total water-to-cement ratio of 0.8. The high water content enabled to get 77 

workable grouts and ensured that the system remained saturated, at least at early age. 78 

The fresh grout samples were cast into hermetically sealed 50 mL-polypropylene containers and 79 

stored in a climatic chamber at 20°C with 95% relative humidity until characterization.  80 

 81 

2.3 Characterization of hydration 82 

 83 
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The Vicat setting time was measured using an automatic Vicat needle apparatus according to EN 196-84 

3 standard. In addition, to point out the different stages of hydration, calorimetric measurements were 85 

carried out using isothermal microcalorimetry at 25°C (SETARAM, C80 type). Hydration was also 86 

stopped after fixed periods of time (from 1 hour to 10 days) by successively immersing the crushed 87 

pastes into isopropanol and drying them in a controlled humidity chamber (with 20% relative 88 

humidity at 22 ± 2°C). After grinding to a particle size below 80 µm, the mineralogy of the cement 89 

pastes was characterized by X-ray diffraction (Siemens D8, copper anode, λKα1=1.54056 Ǻ,). A semi-90 

quantitative analysis was performed to assess the evolution of the amounts of reactants and products 91 

with time using EVA analysis software (© 2005 Bruker AXS). The method consisted in introducing an 92 

internal standard (10 wt% silicon, correction made to take into account the increasing amount of 93 

bound water with ongoing hydration) into the sample to be analysed by XRD, and then in calculating 94 

the ratio between the area of the most intense diffraction peak of the phase to quantify and that of 95 

silicon. The microstructure evolution was observed by Scanning Electron Microscopy (FEI Inspect 96 

S50, high vacuum mode, acceleration voltage of 15 kV, current intensity of 50 nA) on sample 97 

fractures and polished section at different ages. The Na/S, Ca/S, Na/Si and Ca/Si ratios in the hydrates 98 

and IER grains were determined by X-ray microanalysis on polished cross sections (high vacuum 99 

mode, Bruker SDD detector calibrated on jadeite, FeS2 and wollastonite). 100 

The pore solutions of cement pastes were extracted using pressure (34 MPa) from 1 hour to 10 days. 101 

The Na
+
, K

+
, Ca

2+
, and SO4

2-
 concentrations were determined using ionic chromatography (Dionex 102 

DX500 equipped with IonPac CS12A analytical column and IonPac CG12A guard column). The 103 

analytical error was ± 5%. 104 

 105 

2.4 Characterisation of volumetric change 106 

 107 

The shrinkage cone method was used to follow the apparent volumetric change of cement-waste 108 

forms with ongoing hydration. It was initially developed by the German Cement Works Association 109 

for measuring the autogenous shrinkage of concrete [9]. The setup (from Schleibinger Geräte) 110 

consisted of a laser vertically pointed at the surface of a cone-shaped sample in a cylindrical jar 111 
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connected to a thermostatic bath at 25°C. The sample was poured into the jar and slightly vibrated. 112 

The surface of the sample was covered with a plastic sheet equipped with a reflector to avoid 113 

desiccation. The jar was then placed underneath the laser, and the distance variation between the 114 

reflector and the laser was recorded every 10 minutes. The measurement range was 5 mm, with a 115 

resolution of 0.1 µm. The cone geometry ensured that the change in height corresponded to the linear 116 

length change of the material as long as it was fluid and also after solidification since deformation was 117 

considered as uniform. 118 

Based on the work of Matsuda [4], an oedometric cell was developed to measure the swelling pressure 119 

induced by cemented resins under constrained environment. 20 g of paste samples were introduced in 120 

a cylindrical cell containing a metallic fritted disc at the bottom (Figure 1). A second fritted disc was 121 

placed on the upper surface sample and the cell was tightly closed with a piston connected to force 122 

sensor. An initial pressure of 0.1 MPa was applied. Measuring the increase in the axial stress enabled 123 

to follow the swelling pressure of samples with time. 124 

 125 

3. Results 126 

 127 

3.1 Volumetric change with ongoing hydration 128 

 129 

Figure 2 shows the evolution of the swelling pressure of cement-IERs forms under constant strain. As 130 

expected, the pressure increased only for the CEM I sample. Tests with the shrinkage cone showed 131 

that, under unconfined conditions, this sample also exhibited a strong apparent volume increase which 132 

began 8 h after mixing and exceeded 7% after 220 h.  133 

 134 

3.2 Characterization of hydration 135 

 136 

The Vicat setting time of the CEM I and CEM III/C cement pastes was measured with or without 137 

IERs in Na
+
 form. The results are presented in Table 3. The presence of IERs tended to accelerate the 138 

setting of both cements. Setting started 30 min earlier, and ended from 1 h (CEM III/C) to 2.75 h 139 
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(CEM I) earlier than in the corresponding pure cement pastes. These results were consistent with the 140 

heat flow measurements (Figure 3), showing a slight acceleration of the heat production in the 141 

samples containing resins. The setting of the CEM III/C samples remained however much slower than 142 

that of the CEM I samples because of the low reactivity of blast furnace slag as indicated by the 143 

reduced heat production (Figure 3).  144 

 145 

3.3 Pore solution evolution 146 

 147 

Figures 4 and 5 show the evolution of the pore solution composition and corresponding osmotic 148 

pressure (from 1 h to 10 d) for CEM I and CEM III/C paste samples with and without resins.  149 

The osmotic pressure of the pore solution was calculated using Van’t Hoff equation (1). 150 


i

icRT  (1) 151 

where  is the osmotic pressure of the solution (Pa),  the osmotic coefficient, R the constant of ideal 152 

gases (8.314 J.mol
-1

.K
-1

), T the temperature (K) and ci the concentration of ion i in solution (mol.L
-1

). 153 

The osmotic coefficient is a corrective factor taking into account the non-ideal behavior of the 154 

solution. It was calculated using PhreeQC [10] and Pitzer’s thermodynamic database [11]. 155 

In both materials, the sodium concentration rapidly increased during the first 8 h and reached a 156 

maximum which corresponded to about 1/3 of the sodium initially fixed by the resins (35% for CEM I 157 

sample, 30% for CEM III/C sample). The potassium concentration was much lower than in the pure 158 

cement pastes. It was also the case for the calcium concentration, but to a lesser extent. 159 

These results showed a partial exchange of Na
+
 ions from the resins with Ca

2+
 and K

+
 ions released by 160 

the dissolution of the cement anhydrous phases. In the same time, the sulphate concentration 161 

increased due to the dissolution of gypsum. As a result, the osmotic pressure of the pore solution also 162 

increased. From previous studies devoted to the volume change of IERs depending on their chemical 163 

environment [8, 12], it could be concluded that the 2Na
+
 ↔ Ca

2+
 and Na

+
 ↔ K

+  
exchanges as well as 164 

the increase in the osmotic pressure should cause a shrinkage of the IERs during this period. K
+
 ions 165 

have indeed a smaller solvated ionic radius (~3.2 Å) than Na
+
 ions (~4.0 Å) [13]. As for calcium, its 166 
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solvation ionic radius is close to that of Na
+
, but since it is a divalent cation, its concentration in the 167 

resins is divided by a factor 2. Besides, when the osmotic pressure of the solution external to the 168 

resins increases, water tends to get out of the resins to reduce the external concentration and 169 

equilibrate the chemical potentials between the external and internal solutions. 170 

 171 

Then, a second stage occurred. Sulphate ions were depleted from the interstitial solution due to the 172 

precipitation of ettringite (the exhaustion of gypsum was also observed by XRD at the same time, 173 

Figures 6 and 7). The sodium concentration in solution also decreased. As a consequence, the osmotic 174 

pressure of the external solution diminished, which produced a swelling of the IERs [8, 12]. Its 175 

magnitude was assessed using previously established calibration curves plotting the volume of Na
+
-, 176 

K
+
-, and Ca

2+
-IER beads versus the osmotic pressure of the external solution [8, 12, 14]. It was close 177 

to 0.1 % for the IERs-CEM I sample, and 0.19 % for IERs-CEM III/C sample. 178 

 179 

3.4 IERs analysis 180 

 181 

X-ray microanalyses were performed on polished cross-sections of pastes with IER beads after 2 and 182 

24 hours of hydration. For each hydration time, 10 IER grains were selected and more than 10 183 

analyses were performed on each grain. The average Na/S, Ca/S and K/S ratios measured on samples 184 

aged of 2 h and 24 h are given in Table 4. The results confirmed the fixation of Ca
2+

 and K
+
 ions by 185 

the resins during the early stages of hydration. The Na/S ratio continuously diminished with time. 186 

Thus, the decrease in the sodium concentration observed in the pore solution after 8 h (CEM I) or 3 h 187 

(CEM III/C) was not due to re-fixation of Na
+
 ions on the resins, with simultaneous release of K

+
 or 188 

Ca
2+

 ions in solution. 189 

 190 

3.5 Mineralogy evolution 191 

 192 

The mineralogy of the different investigated systems was characterized by XRD and SEM. The CEM 193 

I-based materials comprised C-S-H, portlandite, ettringite as well as residual anhydrous cement 194 
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phases (Figure 6). In the CEM III/C-based materials, the same hydrates were detected with the 195 

exception of portlandite (Figure 7). For a given type of cement, the resins did not change the nature of 196 

the precipitated hydrates, but only influenced their rate of formation (Figure 8). 197 

In both cement-IERs systems, X-ray microanalysis performed on polished cross-sections of 24h-old 198 

samples showed that C-S-H sometimes comprised significant amounts of sodium. This sodium-199 

bearing C-S-H was very heterogeneously distributed in the matrix, with an average Na/Si ratio close 200 

to 0.2 after 24 h. Its precipitation could explain the second decrease in the sodium concentration of the 201 

pore solution. The formation of both C-S-H and C-N-S-H has also been reported when resins in the 202 

Na
+
 form are encapsulated in a C3S paste [8], or during the hydration of blast-furnace slag activated 203 

by a concentrated NaOH solution [15]. 204 

SEM observations of fractures also confirmed the precipitation of portlandite in the IERs-CEM I 205 

sample, as big crystals of a few 100 µm (Figure 9-a) at the interface between IER grains and paste. 206 

This localized precipitation seemed consistent with the results presented in sections 3.3 and 3.4. The 207 

shrinkage of the resins in the first stage of hydration would create voids at the resin/paste interface 208 

where portlandite could precipitate. Besides, the strong affinity of the resins for calcium ions would 209 

induce a calcium flux from the paste to the resins, possibly leading to a local supersaturation with 210 

respect to portlandite near the resin beads. By contrast, in the IERs-CEM III/C samples, no portlandite 211 

precipitation was observed (Figure 9-b). 212 

 213 

4. On the swelling of IERs-CEM I samples 214 

 215 

The CEM I- and CEM III/C-based materials differed by their consolidation rate. When resins were 216 

encapsulated in the CEM III/C matrix, expansion occurred between the beginning and the end of Vicat 217 

setting, when the material was still plastic. The CEM I cement exhibited a higher rate of hydration, 218 

and swelling of the IERs occurred just a few hours after the Vicat end of setting, in a hardened matrix, 219 

but with:  220 

- (i) low mechanical strength. As a fact, when calcium ions are progressively replaced by 221 

monovalent cations such as sodium ions, the cohesion decreases, and repulsion between C-S-H 222 
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particles can even be observed if the negative surface charge density is balanced by monovalent 223 

cations only [16, 17]. Precipitation of C-N-S-H in the pastes with Na
+
-IERs could thus contribute 224 

to reduce the strength of the matrix.  225 

- (ii) heterogeneous microstructure. Highly porous transition zones were observed between IER 226 

grains and the cement paste with precipitation of large crystals of portlandite. 227 

Despite its small magnitude, the swelling of IERs due to the decrease in the osmotic pressure of the 228 

pore solution could be sufficient to induce cracking of the poorly consolidated matrix. 229 

To check this assumption, complementary experiments were carried out on IERs-CEM I samples by 230 

retarding the setting without notable change in the chemical evolution. To this end, the fresh grout was 231 

divided in two samples which were cured at two different temperatures, 5 and 20 °C. The damage of 232 

the cement-resin forms was assessed qualitatively by visual observation (Table 5, Figure 10). 233 

Extractions of solutions were performed at 1 h, 5 h, 7 h, 24 h, 48 h and 7 d. The Vicat setting time was 234 

also measured at both temperatures. Results are reported in Figure 11.  235 

The ionic concentrations showed very similar evolutions with time at both temperatures; the decrease 236 

in temperature thus did not affect significantly the chemical evolution of the systems at early age, 237 

showing that ionic exchanges on the resin grains, which are very fast, played a key role during this 238 

period. Decreasing the temperature however delayed the beginning and end of setting by 8.5 h. As 239 

observed before, at 20 °C, the end of setting occurred when the sodium concentration was at its 240 

maximum, corresponding to resins under their most contracted form. The slight expansion of the 241 

resins caused by the decrease in the osmotic pressure of the interstitial solution (exhibiting the same 242 

trend as the sodium concentration) took place just after setting, leading to cracking and disintegration 243 

of the sample. At 5°C, setting occurred once the resins had started to swell, and the damages were 244 

much less important. The consolidation rate thus seemed to be a key parameter to explain expansion 245 

and damage of IERs-CEM I materials.  246 

 247 

5. Conclusions 248 

 249 
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The results show that during the hydration of CEM I and CEM III/C cement pastes, the resins exhibit 250 

a transient expansion of small magnitude due to the decrease in the osmotic pressure of the interstitial 251 

solution. This expansion occurs just after setting for IERs-CEM I forms. It is sufficient to damage the 252 

material which is poorly consolidated with heterogeneous microstructure. Expansion of the IERs-253 

CEM III/C forms is not observed because CEM III/C cement exhibits a slower rate of hydration than 254 

CEM I cement. Transient expansion of the resins takes place before the end of setting and only 255 

induces limited stress in the material which is still plastic. 256 

 257 
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Table 1: Composition of CEM I cement (oxide composition determined by X-ray fluorescence, phase 304 

composition determined by Rietveld analysis). 305 

 CaO SiO2 Al2O3 Fe2O3 SO3 K2O Na2O MgO MnO 

Chemical composition 

of cement (wt.%) 

64.44 20.42 5.21 2.33 3.68 1.14 0.89 1.07 0.04 

Phase composition of 

clinker (wt.%) 

C3S: 66 

C2S: 13 

C3A: 11 

C4AF: 7 

Cement composition 

(wt.%) 

Clinker: 94% 

Gypsum: 6% 

 306 

  307 
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 Table 2: Composition of CEM III/C cement (oxide composition determined by X ray fluorescence, 308 

phase composition determined by Rietveld analysis). 309 

 CaO SiO2 Al2O3 Fe2O3 SO3 K2O Na2O MgO MnO TiO2 P2O5 

Chemical 

composition of 

cement (wt. %) 

45.1 32.0 10.3 0.8 2.9 0.55 0.18 6.1 0.4 0.5 0.1 

Phase 

composition of 

clinker (wt.%) 

C3S: 66 

C2S: 13 

C3A: 11 

C4AF: 7 

Cement composition 

(wt.%) 

Blast furnace slag: 80.5 

Clinker: 14.2 

Anhydrite: 5.2 

 310 

  311 
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Table 3: Vicat setting times of CEM I and CEM III/C cement pastes with and without IERs (± 0.3 h). 312 

Sample Beginning of setting (h) End of setting (h) 

CEM I 4.0 11.3 

CEM I + IERs 3.5 8.5 

CEM III/C 6.5 31.0 

CEM III/C + IERs 6.0 30.0 

 313 

  314 
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Table 4: Na/S, Ca/S and K/S molar ratios of resin beads encapsulated in a CEM I or CEM III/C 315 

cement paste. 316 

Type of 

cement 

Age of 

sample (h) 

Na/S Ca/S K/S 

Average 

Standard 

deviation 

Average 

Standard 

deviation 

Average 

Standard 

deviation 

CEM I 

2 0.86 0.06 0.03 0.03 0.14 0.02 

24 0.78 0.05 0.07 0.02 0.19 0.01 

CEM III/C 

2 0.85 0.07 0.08 0.06 0.03 0.01 

24 0.79 0.07 0.10 0.06 0.04 0.01 

 317 

  318 
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Table 5: Visual observations of IERs-CEM I and IERs-CEM III/C samples cured at 25°C and 5°C. 319 

Hydration time 25°C 5°C 

3 days 

Apparition of the first 

cracks 

No cracks 

6 days 

Destruction of the 

container 

Slight cracks on the 

container 

10 days 

Destruction of the 

sample 

Slight cracks on the 

container 

 320 

  321 
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Figure 1: Experimental device to measure swelling pressure under constrained environment. 322 
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Figure 2: Evolution with time of the pressure induced by IERs-CEM I and IERs-CEM III/C samples 325 

under confined environment; comparison with their volumetric change under unconfined 326 

environment. 327 

 328 
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 331 

Figure 3: Cumulative heat flow versus time for CEM I and CEM III/C cement pastes with and without 332 

IERs. 333 
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Figure 4: Evolution of the composition (Na
+
, K

+
, Ca

2+
, SO4

2-
) and osmotic pressure of the interstitial 336 

solution of CEM I cement paste samples with (a) and without resins (b).  337 
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Figure 5: Evolution of the composition (Na
+
, K

+
, Ca

2+
, SO4

2-
) and osmotic pressure of the interstitial 343 

solution of CEM III/C cement pastes with (a) or without IERs (b). 344 
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Figure 6: X-ray diffraction patterns of IERs-CEM I samples. 351 
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Figure 7: X-ray diffraction patterns of IERs-CEM III/C samples. 354 

 355 

  356 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

6 10 20 30 40 50 60

}
C

3
S

 -
C

2
S

-
C

3
A

 -
E

C3S: Ca3SiO5

C2S: Ca2SiO4

C3A: Ca3Al2O6

A: Anhydrite (CaSO4)

Si: Silicium (internal standard)

E: Ettringite (Ca6(Al(OH)6)2(SO4)3(H2O)26

M: Merwinite (Ca3Mg(SiO4)2)

D: Dolomite (CaMg(CO3)2)

C
3
S

75 h

Si

C
3
S

 -
C

2
S

-
C

3
A

 

E

10 j

C
o

u
n

ts

Position [°2Theta] (Copper (Cu))

30 h

17 h

7 h

3 h

1 h

Si

Si

E

E

E
E

E
 -

M
E

 -
D

D
E A

 –
M

-
E

E
 -

M
E

C
3
S A

D

}
C

3
S

 -
C

2
S

-
C

3
A

 -
E

C
3
S

 -
C

3
A

 –
M

 -
D

E

D

A
-

C
3
S

}
E

 -
M

C
3
S

 -
C

2
S

E
A

A
-

C
3
S

A

E

C
3
S

DD

A



26 

 

Figure 8: Influence of the resins on the phase content of CEM I (a) and CEM III/C (b) cement pastes 357 

during hydration. 358 

 359 
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Figure 9: SEM observation of IERs-cement forms aged of 2 months: cavity previously occupied by a 362 

resin bead. (a) CEM I sample; (b) CEM III/C sample. 363 
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Figure 10: IERs-CEM I samples cured for 6 days at 25°C (left) or 5°C (right). 366 
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Figure 11 : Evolution of the interstitial solution composition (Na
+
, K

+
, Ca

2+
, SO4

2-
) and Vicat needle 370 

penetration versus time for IERs-CEM I samples cured at 5 and 20 °C.. 371 
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