Sequestration of Radionuclides Radium-226 and Strontium-90 by Cyanobacteria Forming Intracellular Calcium Carbonates
Neha Mehta, Karim Benzerara, Benjamin Kocar, Virginie Chapon

To cite this version:

HAL Id: cea-02374665
https://cea.hal.science/cea-02374665
Submitted on 11 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sequestration of radionuclides Radium-226 and Strontium-90 by cyanobacteria forming intracellular calcium carbonates

Neha Mehta¹, Karim Benzerara²*, Benjamin D. Kocar¹,³*, Virginie Chapon⁴

¹,³ Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
² Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
³ Exponent, Inc. 1055 E. Colorado Blvd, Suite 500. Pasadena, California 91106, United States.
⁴ CEA, CNRS, Aix-Marseille Université, UMR 7265 Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint-Paul-lez-Durance, France.

*Corresponding Authors
Email: bkocar@exponent.com; karim.benzerara@sorbonne-universite.fr

ABSTRACT: ¹²²⁶Ra is a naturally occurring radionuclide with a half-life of 1600 y. In contrast, ⁹⁰Sr is a radionuclide of sole anthropogenic origin, produced by nuclear fission reactions and has a half-life of 29 y; each of these radionuclides poses potential threats to human and ecosystem health. Here, the cyanobacterium G. lithophora, capable of forming intracellular amorphous calcium carbonate inclusions, was investigated for its ability to uptake ¹²²⁶Ra and ⁹⁰Sr. In BG-11 medium, G. lithophora accumulated 3.9 µg g⁻¹ ¹²²⁶Ra within 144 h and 47.9 ng g⁻¹ ⁹⁰Sr within 1 h, corresponding to ~99% removal of trace radionuclides. The presence of high concentration Ca²⁺ in the background media solution did not inhibit ⁹⁰Sr and ¹²²⁶Ra uptake by G. lithophora. In contrast, dead biomass of G. lithophora accumulated 0.8 µg g⁻¹ ¹²²⁶Ra and 8.87 ng g⁻¹ ⁹⁰Sr. Moreover, Synechocystis, a non-biomineralizing cyanobacteria removed only 14% and 25% of ¹²²⁶Ra and ⁹⁰Sr, respectively. This suggested that sequestration of ⁹⁰Sr and ¹²²⁶Ra was not intrinsic to all cyanobacteria but was likely a specific biological trait of G. lithophora related to the formation of intracellular amorphous Ca-carbonates. The unique ability of G. lithophora to uptake ⁹⁰Sr and ¹²²⁶Ra at
high rates makes it an attractive candidate for further studies involving bioremediation of these radionuclides.

1. Introduction

Cyanobacteria are a phylogenetically and ecologically diverse group of photosynthetic bacteria, playing a vital role in the global cycling of numerous elements such as carbon (C), calcium (Ca) and phosphorus (P). In particular, their impact on the global carbon cycle is of significant interest as they sequester atmospheric CO$_2$ into organic carbon and biogenic calcium carbonates (CaCO$_3$) through calcification. In cyanobacteria, this process has long been considered as extracellular and non-biologically controlled. However, this paradigm was challenged by the recent discovery of several species of cyanobacteria forming intracellular amorphous calcium carbonate (ACC) inclusions in very diverse environments. Couradeau et al. first described this intracellular calcification in the cyanobacterium *Gloeomargarita lithophora*, isolated from an alkaline freshwater lake Alchichica microbialite, Mexico. These ACC inclusions measured several hundreds of nanometers in diameter, were poorly crystalline and were composed of CO$_3$ and Ca-Mg-Sr-
Ba, with Ba/Ca and Sr/Ca atomic ratios in inclusions higher by factors of 1370 and 90 respectively relative to the solutions in which cells grew. Recently, it was confirmed that cyanobacteria capable of forming intracellular ACC contained a much higher content of alkaline earth elements (AEE) than all other cyanobacteria. In addition to intracellular ACC inclusions, *G. lithophora* also forms intracellular polyphosphate inclusions (PolyP), polymers of orthophosphate which may serve as reserves of P and/or energy for cells.

Using stable isotopes, Cam et al. showed that *G. lithophora* preferentially accumulated Ba over Sr and finally Ca within intracellular PolyP and ACC. Currently, the origin of such a surprising selectivity remains unclear. The proven ability of *G. lithophora* to selectively sequester Sr over Ca within intracellular inclusions provides an intriguing microbial framework to examine if this ability extends to radioactive AEE such as radium (226Ra) and radio-strontium (90Sr). In the environment, 90Sr and 226Ra are present at trace concentrations, along with excess dissolved Ca. Whether the observed selective accumulation of AEE is extended to 90Sr and 226Ra at such low concentrations and in the presence of high concentrations of Ca remains to be explored.

Radium-226 is a naturally occurring radioactive alkaline earth element (AEE) with a half-life of 1600 y. It is one of the dominant soluble radionuclides present in groundwater. In the United States, 226Ra activity in drinking water is regulated at 0.2 Bq L⁻¹. Potential exposure to Ra could originate from the disposal and management of large volumes of Ra-bearing waste streams associated with uranium mining, phosphate mining and milling operations, coal mining and power plants, and conventional and unconventional oil and gas extraction. The Ra content of these waste streams can range from 100-1200 Bq L⁻¹, which far exceeds the regulatory limit of 2.2 Bq L⁻¹ Ra in effluent waste stream.
and storage of relatively large volumes of these streams, leaching of Ra (and other toxic elements) could result in contamination of terrestrial and subsurface aquatic environments11,12.

In contrast, radio-Strontium (90Sr) is a radionuclide of sole anthropogenic origin produced by nuclear fission reactions. With its long half-life of 29 years, 90Sr persists sufficiently long in the environment to warrant health concerns. The main sources of 90Sr in the environment are the atmospheric tests of nuclear weapons conducted from 1945 to 1980’s and nuclear accidents, such as Fukushima and Chernobyl13,14. Measured 90Sr specific activity in the surface waters adjacent to the Fukushima Daiichi Nuclear Power Plant varied between 0.2 - 400 kBq m-3, which were about 4 orders of magnitude greater than the pre-accident level (1 Bq m-3)15. Strontium is very soluble, highly mobile and is bioavailable in the environment. Its soluble form, Sr2+ can be transferred from contaminated soils and water into living organisms through the food chain. A chemical analog of Ca2+, 90Sr2+ concentrates in bone tissues in the human body, increasing the probability of bone cancer after accumulation and prolonged exposure 16.

Several physiochemical strategies have been developed for decontamination of 226Ra and 90Sr from effluent waste streams. However, in many cases their application is limited due to economic constraints17. In addition, the presence of high concentrations of Ca and other co-contaminants often present within waste streams limits the selective removal of 226Ra and 90Sr using the traditional schemes18,19. On the other hand, bioremediation strategies are gaining significant interest owing to their relative cost-effectiveness and eco-friendliness20–22. Various types of organisms including fungi, algae, cyanobacteria, and phytoplankton have been reported to retain 226Ra and 90Sr20,23. Different pathways of
sequestration can be involved. 226Ra and 90Sr can adhere to the surface of living and dead cells. Ligands (carboxyl, amine, hydroxyl, phosphate, and sulfhydryl groups) present in the cell membrane of both Gram-positive and Gram-negative bacteria can bind positively charged metals through adsorption24. Some examples of such microorganisms adsorbing 226Ra include dead microbial biomass of *Pseudomonas aeruginosa, Nostoc carneum, Nostoc insulare, Oscillatoria geminatant, Spirulina laxissima, Pseudomonas fluorescens, Streptomyces nives*, and mixed bacterial cultures from activated wastewater sludges23,25. The dead biomass of bacterial strains isolated from areas with a high level of natural radiation, such as *Citrobacter freundii, Chromobacterium, Chryseobacterium*, and *Corynebacterium* also have been shown to adsorb 226Ra26. In the case of 90Sr, studies have often been performed using stable Sr isotopes to examine the 90Sr remediation potential of an organism. Some organisms such as the algae *Scenedesmus spinosus* and *Oedogonium* sp. *Nak 1001*, the cyanobacteria *Oscillatoria homogenea* and *Stigonema ocellatum* NIES-2131, and the aquatic plant *Egeria densa* We2 have been reported to show high stable-Sr adsorption27,28. In addition to adsorption, many types of microorganisms may accumulate 226Ra and 90Sr within extracellularly or intracellularly precipitated biogenic minerals. The formation of biominerals occurs in response to localized changes in cellular or extracellular microenvironments. To our knowledge, there is no known micro-organism which has been reported to biomineralize 226Ra. Several organisms have been screened for their ability to (co)-precipitate Sr. For example, the microalga *Chlorella vulgaris*, soil bacterium *Sporosarcina pasteurii* and the bacterium *Halomonas* sp. induce co-precipitation of strontianite (SrCO$_3$) within extracellularly precipitated CaCO$_3$ mineral phase; the desmid *Closterium moniliferum* forms celestite (SrSO$_4$) within its vacuole by concentrating
preferentially Sr and Ba over Ca29–32. More recently, Cam et al. showed stable-Sr is selectively accumulated within intracellular ACC and PolyP inclusions in the cyanobacterium \textit{G. lithophora}33. Owing to selectivity for Sr compared to Ca, \textit{G. lithophora} forms carbonate with higher Sr content in comparison to other bacteria forming extracellular carbonates. This means that the mass of the decontamination by products will therefore be lower which may offer a cost advantage. Some of the non-photosynthetic bacteria which are known to precipitate CaCO\textsubscript{3} efficiently, exhibit lower Sr removal efficiency in comparison to \textit{G. lithophora}. For example, \textit{S. pasteurii} removes up to 59\% of Sr from the solution whereas \textit{G. lithophora} removes 100\% of Sr from the solution32,33.

Despite screening of several organisms for removal of 90Sr and 226Ra, these studies have not demonstrated their potential for use in bioremediation. Indeed, research on 90Sr bioremediation has mostly utilized stable-Sr isotope as an analog of 90Sr and at relatively high concentrations. Owing to the radiotoxicity of 90Sr, it is unclear whether the results demonstrated using stable Sr isotopes would be replicated to the same extent in presence of 90Sr. Further, 226Ra and 90Sr removed from solution through adsorption to biomass is prone to rapid desorption upon changes in aqueous chemistry. Moreover, biomass is not selective and other divalent cations (e.g. Ca, Ba), which are often present at relatively high concentrations in 226Ra and/or 90Sr contaminated aqueous environments, may outcompete 226Ra and/or 90Sr for binding sites, resulting in low removal efficiency22,24. Thus, effectiveness of 226Ra and 90Sr bioremediation strategies will be dictated by (micro)-organisms capability to selectively remove the radionuclide at trace concentration in the presence of competing elements while also tolerating ionizing radiation.
Here, the role of the cyanobacterium *G. lithophora* forming intracellular biominerals on sequestration of 226Ra and 90Sr at trace concentrations is evaluated. We selected *G. lithophora* to evaluate as a potential bioremediation tool for removing 90Sr and 226Ra from solution for several reasons. Because of the photoautotrophic lifestyle of cyanobacteria, *G. lithophora* may exhibit tolerance to substantial levels of ionizing radiation. Moreover, unlike other (micro)organisms, *G. lithophora* has been shown to preferentially sequester Sr over Ca within intracellular ACC and PolyP inclusions, despite their chemical similarity. These characteristics make *G. lithophora* a promising candidate for bioremediation of 226Ra and 90Sr. Proving the ability of *G. lithophora* to sequester 226Ra and 90Sr through a novel (co)-precipitation pathway will illustrate its promise for use in bioremediation efforts; also, owing to its widespread ecological distribution, its cultivability and the availability of its genome sequence, *G. lithophora* serves as an ideal model organism for examining underlying biochemical processes responsible for bioaccumulation of radioactive AEE in microbes. Accordingly, the goals of the current study are 1) to investigate and quantify 226Ra and 90Sr uptake by *G. lithophora* using laboratory batch incubations, and 2) to identify retention mechanism of 226Ra and 90Sr by *G. lithophora*.

2. EXPERIMENTAL SECTION:

Incubations and Culture Conditions

The cyanobacterial strain *G. lithophora* was obtained from Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France and cultured in the BG-11 medium at 30°C under continuous light (5-10 µmol m$^{-2}$ s$^{-1}$) as described by Moreira et al. The BG-11 medium contained 17.6x10$^{-3}$ M NaNO$_3$, 0.23x10$^{-3}$ M K$_2$HPO$_4$, 0.3x10$^{-3}$ M MgSO$_4$, 2.5x10$^{-4}$ M CaCl$_2$, 3.1x10$^{-5}$ M citric acid, 2x10$^{-5}$ M ferric ammonium citrate, 3x10$^{-6}$ M ethylenediaminetetraacetic acid (EDTA), 5x10$^{-4}$ M NaHCO$_3$, and trace metals. The
optical density (OD) of the suspensions was measured at 730 nm; based on the previous work by Cam et al.33, the relationships between OD, cell density and cell dry mass of *G. lithophora*, were estimated as 9×10^7 cells. mL$^{-1}$ OD unit$^{-1}$ and 3.65×10^{-4} g of dry mass. OD unit$^{-1}$. mL$^{-1}$.

\textbf{226Ra uptake by *G. lithophora*}

226Ra uptake was measured during the growth stage of *G. lithophora* cultures, which were started at low cell density (OD$_{t=0}=0.039 \pm 0.01$). Pre-cultures used for inoculation were centrifuged at 5000 g for 15 min and the cell pellets were re-suspended in BG-11 amended with 226Ra and total Ca as chloride salts at concentrations of 7.5×10^{-10} M (\textit{i.e.} 6153 Bq L$^{-1}$ 226Ra) and 6.32×10^{-4} M, respectively and buffered at pH 8 using HEPES buffer. Triplicate incubations were performed. Three types of controls were included in the experimental design: 1) an abiotic control consisting of BG-11 medium amended with 7.5×10^{-10} M of 226Ra and 6.32×10^{-4} M of Ca$^{2+}$. 2) Inactivated cells control consisted of *G. lithophora* cells cultured in BG-11, killed by gamma irradiation (60Co source, 55 h) and re-suspended at an OD of 1 in fresh BG-11 medium with 5.2×10^{-10} M (\textit{i.e.} 5600 Bq L$^{-1}$) of 226Ra and 2.5×10^{-4} M of Ca$^{2+}$. This control was used to quantify 226Ra uptake by dead *G. lithophora* biomass and adsorption of 226Ra to walls of the culture vessel. 3) Living cells of *Synechocystis* sp. PCC 6803 (obtained from Pasteur Collection of Cyanobacteria) cultured in BG-11 and amended with 5.2×10^{-10} M (\textit{i.e.} 5600 Bq L$^{-1}$) of 226Ra and 2.5×10^{-4} M of Ca$^{2+}$. This species has been shown to be unable to biomineralize intracellular ACC3. The OD of *Synechocystis* sp. PCC 6803 cultures at the start of experiment was equal to 0.02 ± 0.002.

Dissolved Ca$^{2+}$ concentration and residual 226Ra activity in solution were measured in all solutions as a function of time. For dissolved Ca$^{2+}$ measurements, 100 µl of the culture
were mixed with 2 ml of standard BG-11 medium and were filtered on 0.22 µm PES syringe filters. Filtrates were acidified with 3 mL of 3 % HNO₃. Dissolved Ca²⁺ concentrations were measured using an Agilent Inductively Coupled Optical Emission Spectrometer (ICP-OES). Concentration of Ca²⁺ was also measured in the reagent blank (2 mL BG-11 + 3 mL 3 % HNO₃) to eliminate background signal.

For measurement of residual ²²⁶Ra in solution, 500 µl of the culture were mixed with 2 ml of standard BG-11 medium and were filtered on 0.22 µm PES syringe filters. Filtrates were acidified with 3% HNO₃ and counted using a Canberra High Purity Germanium Detector (HPGe) Gamma Spectrometer. Energy and efficiency calibration of gamma spectroscopy was performed using a mixed multi-nuclide Eckert & Ziegler™ aqueous gamma standard. ²²⁶Ra was directly measured from its gamma peak at 186.5 keV.

⁹⁰Sr uptake by G. lithophora

⁹⁰Sr uptake by G. lithophora was studied following a different strategy. In this case, cell suspensions of G. lithophora at high cell density were used. The high cell density of the culture is expected to provide a faster uptake of ⁹⁰Sr. Cells previously grown in standard BG-11 to an OD of 1 were centrifuged at 8500 g for 10 min and the cell pellets were re-suspended in standard BG-11 at an OD of 0.5 (i.e. 0.1825 g L⁻¹). The suspensions were then amended with 8.8 x 10⁻¹¹ M of ⁹⁰Sr (i.e. 4 x 10⁴ Bq L⁻¹). Three types of controls were included in the experiment: 1) an abiotic control consisting of BG-11 medium amended with 8.8 x 10⁻¹¹ M of ⁹⁰Sr. 2) Inactivated cells control consisting in G. lithophora cells grown in BG-11 medium, freeze-dried and killed by autoclaving (121 °C in 20 min). Dried biomass was suspended at 0.2 g L⁻¹ in BG-11 amended with 8.8 x 10⁻¹¹ M of ⁹⁰Sr. The protocol of cell inactivation was different in this case than for experiments with ²²⁶Ra. However, both
approaches were similarly efficient at providing dead cell controls which eventually show low sorption capabilities of 226Ra and 90Sr as detailed later in the manuscript. 3) Living cells of *Synechocystis* sp. PCC 6803 grown in BG-11, collected by centrifugation at 8500 g for 10 min, re-suspended in fresh BG-11 at an OD of 0.5 and amended with 8.8 x 10^{-11} M of 90Sr. Triplicate incubations were performed for all experimental treatments. Total 90Sr and residual 90Sr in solution were measured in all solutions after 0.5, 24 and 48 h incubation in the light. Temperature was maintained at 30°C within a MINITRON incubator (INFORS) with shaking at 100 rpm. For residual 90Sr quantification, 1 mL of cell suspension was centrifuged at 8500 g for 10 min and the supernatant was filtered on a 0.22 µm PVDF syringe filter. The volume of the filtered supernatant was measured as 930 ± 2 µL. Two milliliters of scintillating solution (Ultima Gold™, PerkinElmer) were added to the filtrates before counting on a Tri-Carb® 3100TR low activity liquid scintillation analyzer (PerkinElmer). For total 90Sr content quantification, 930 µL of cell suspension were mixed with 2 mL scintillating solution and counted. 90Sr standard solutions were prepared with the 90Sr stock solution (LEA, Pierrelatte, France), diluted in BG-11 medium and counted as described for the other samples. The counts per second (CPS) values were corrected from the background activity, measured with a control made of 930 µL of BG-11 medium and 2 mL scintillation solution. The concentration of 90Sr (Bq L$^{-1}$) in the samples was derived from the standards.

Calculation of bioaccumulation of 90Sr and 226Ra

The mass of 90Sr and 226Ra accumulated by the cells at a time t and normalized by the cell mass was determined as follows:
For ^{226}Ra:

\[
\frac{(X_0 - X_t)\alpha}{\text{cell mass accumulated between } 0 \text{ and } t}
\]

and for ^{90}Sr:

\[
\frac{(X_0 - X_t)\alpha}{\text{cell mass at } t}
\]

where X denotes radionuclide activity (Bq L$^{-1}$), α is the factor to convert activity of a radionuclide to mass units and t is the sampling time. The value of α for ^{226}Ra and ^{90}Sr is equal to 1.2×10^{-13} (mol Bq$^{-1}$) and 2.2×10^{-15} (mol Bq$^{-1}$).

3. RESULTS AND DISCUSSION

Figure 1: Time evolution of residual ^{90}Sr activity in the solution during exposure of $G. \text{lithophora}$ cells to 8.8×10^{-11} M ^{90}Sr (▲) and in the abiotic control (Δ), both in BG-11. The dash lines denote the initial total activity of ^{90}Sr added to the cultures. When not visible, error bars are smaller than the symbols.

Kinetics of ^{90}Sr uptake by $G. \text{lithophora}$

In order to demonstrate the uptake of radionuclides by $G. \text{lithophora}$, we first monitored uptake of ^{90}Sr at high cell density to avoid any potential toxic effects on its growth by ^{90}Sr. The residual ^{90}Sr activity in solution during exposure of $G. \text{lithophora}$ cells
to 8.8 x 10^{-11} M \(^{90}\)Sr is shown in Figure 1. \(^{90}\)Sr was rapidly removed from the solution in the presence of \(G. \text{lithophora}\): the residual \(^{90}\)Sr activity in the solution decreased from 46.243 ± 0.604 kBq L\(^{-1}\) to 0.753 ± 0.129 kBq L\(^{-1}\) within 1 h, corresponding to the sequestration of 98% of the radionuclide by the cells. The presence of divalent ions (e.g. Ca\(^{2+}\), Mg\(^{2+}\)) in solution did not inhibit \(^{90}\)Sr uptake by \(G. \text{lithophora}\) cells, consistent with results obtained with stable Sr\(^{33}\). Following the observed rapid decline of the residual \(^{90}\)Sr activity in the solution, the rate of \(^{90}\)Sr uptake by \(G. \text{lithophora}\) decreased. At the end of incubation (48 h), the residual \(^{90}\)Sr activity reached 0.608 kBq L\(^{-1}\), corresponding to 99% of radionuclide removal by the cells. Here, removal of \(^{90}\)Sr by \(G. \text{lithophora}\) occurred from solutions containing a high concentration of Ca, with an initial Ca/\(^{90}\)Sr molar ratio of 2.7x10\(^6\). Thus \(G. \text{lithophora}\) can efficiently sequester \(^{90}\)Sr at trace concentrations despite the presence of a large excess of competing cations. Within abiotic controls, only 12% of \(^{90}\)Sr was removed from solution within 5 hours, and \(^{90}\)Sr activity remained constant thereafter for the duration of the experiment.

Kinetics of \(^{226}\)Ra uptake by \(G. \text{lithophora}\)
Based on the promising uptake of 90Sr exhibited by $G. \text{lithophora}$ cells, the next step was to investigate whether the uptake of radiotoxic AEE could also occur during the growth stage of $G. \text{lithophora}$. For this purpose, we measured 226Ra uptake upon the growth of $G. \text{lithophora}$ cells starting at a low cell density. The uptake of 226Ra by $G. \text{lithophora}$ was examined within low-cell density cultures for reasons described above, and occurred in two stages (Figure 2, left). In the first stage, 226Ra was rapidly removed from solution, with 226Ra activity decreasing from 5964 ± 192.2 Bq L$^{-1}$ to 1227.68 ± 85.5 Bq L$^{-1}$ in 144 h. This removal was accompanied by a slight decrease in dissolved Ca$^{2+}$ (Figure 2, right). In the second stage, the rate of removal of 226Ra from the solution slowed down and residual 226Ra activity in the solution further decreased to 82 Bq L$^{-1}$ in 1392 h. The initial period of this 2$^{\text{nd}}$ stage was marked with an appreciable

![Figure 2: (Left) Time evolution of residual 226Ra activity in the solution during growth of $G. \text{lithophora}$ with 8×10^{-10} M 226Ra (●) and in abiotic control (○), both in BG-11. Error bars denote the standard deviations of triplicate measurements. The horizontal dash line indicates the activity of 226Ra added to the BG-11 media used for growing $G. \text{lithophora}$. (Right) Time evolution of dissolved Ca$^{2+}$ (●) concentration and OD (⊙) of cell suspension during growth of $G. \text{lithophora}$ in BG-11 amended with 8×10^{-10} M 226Ra. When not visible, error bars are smaller than the symbols, except for the abiotic control, for which triplicate measurements were not performed. The vertical dash line indicates the beginning of the second stage of 226Ra uptake.](image-url)
decrease in dissolved Ca\(^{2+}\) in comparison to the 1\(^{st}\) stage. After this marked decrease, dissolved Ca\(^{2+}\) remained constant.

\(G.\) lithophora showed active growth during 792 h as shown by OD measurements (Figure 2, right). During this period, OD reached a value of \(\sim 0.3\), then a sharp decline in OD was observed. Concomitantly, extracellular Ca\(^{2+}\) concentration remained constant and \(^{226}\)Ra in the soluble fraction decreased. The cause of this sharp decline in OD is unclear, but possible reasons are presented later in the discussion (See Maximum uptake of \(^{226}\)Ra and \(^{90}\)Sr in \(G.\) lithophora). At the end of incubation (1392 h), 99 ± 5 % of initial \(^{226}\)Ra was removed from the solution.

Retention mechanisms of \(^{226}\)Ra and \(^{90}\)Sr in \(G.\) lithophora
Here, we systematically tested different microbial processes to explain mechanism of 226Ra and 90Sr sequestration by *G. lithophora*. First, to distinguish adsorption to dead cells from other mechanisms, we compared uptake of 226Ra and 90Sr between living and dead cells of *G. lithophora*. The average uptake of 226Ra in inactivated cell control, composed of dead cells of *G. lithophora*, was equal to 0.8 ± 0.1 µg (g of dry mass)$^{-1}$; in contrast the average 226Ra uptake by active *G. lithophora* cells reached 3.9 ± 0.9 µg (g of dry mass)$^{-1}$ (Table 1). Likewise, the average uptake of 90Sr by dead *G. lithophora* cells was equal to 8.87 ± 0.2 ng (g of dry mass)$^{-1}$; in contrast the average 90Sr uptake rate by active cells of *G. lithophora* measured 47.97 ± 1.5 ng (g of dry mass)$^{-1}$ (Table 1). Second, the relationship between biomineralization and sequestration of 226Ra and 90Sr was tested by comparing uptake of 226Ra and 90Sr by living cells of the non-biomineralizing *Synechocystis* and living cells of *G. lithophora*. The OD of *Synechocystis* during the incubation period is shown in Figure S1. Living cells of the non-biomineralizing *Synechocystis* retained 14 ± 2 % of 226Ra in 336 h, while *G. lithophora* retained...
83 ± 14 % of 226Ra over the same duration (Figure 3). Similarly, incubation over 24 h of the non-biomineralizing Synechocystis at relatively high cell density (OD=0.5) retained 26 ± 1 % of 90Sr, while *G. lithophora* retained 99.5 ± 10 % of the initial 90Sr (Figure 3). While there could be differences in the cell surface composition between both strains, we argue that these differences are likely not substantial enough to induce 6 times more 226Ra and 4 times more 90Sr retention in *G. lithophora* than in Synechocystis PCC 6803. Altogether, these results suggest specific cellular processes are responsible for 226Ra and 90Sr retention by *G. lithophora*.

Table 1: Comparison of 226Ra and 90Sr uptake per unit biomass in different incubations

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>226Ra Retained* µg (g of dry mass)$^{-1}$</th>
<th>90Sr retained** ng (g of dry mass)$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live G. lithophora cells</td>
<td>3.9 ± 0.9</td>
<td>47.9 ± 1.5</td>
</tr>
<tr>
<td>Dead G. lithophora cells</td>
<td>0.8 ± 0.1</td>
<td>8.87 ± 0.2</td>
</tr>
</tbody>
</table>

* mass uptake is average uptake during the first stage of Ra retention. The error bar shows ±σ
** mass uptake is average uptake when cells were exposed to 8.8 x 10$^{-11}$ M of 90Sr for 1 h.

Microbial processes of 226Ra and 90Sr sequestration can broadly be categorized into three groups: extracellular biomineralization, adsorption, and intracellular biomineralization24. Microbially induced extracellular biomineralization requires localized supersaturation of the solution with respect to Ca-carbonate phases. This results in precipitation of carbonate solids and 226Ra and 90Sr may co-precipitate within these.
extracellular solids and be removed from the solution. Using Visual Minteq38, we calculated the saturation state of the solution with respect to Ca-carbonate phases to verify if this mechanism was operational. Visual MINTEQ predicts that the experimental culture media amended with 226Ra and 90Sr remained undersaturated with respect to Ca-carbonate phase(s) (Figure S2- S3). Moreover, the state of solution undersaturation with respect to Ca-carbonate solids is consistent with the observation that dissolved 226Ra and 90Sr activity remained close to their initial activities in the abiotic control (Figure 1-2). Therefore, extracellular precipitates of Ca-carbonate phases could not be a plausible sink of 226Ra and 90Sr in our study.

One of the physicochemical processes that has been used widely for sequestering low levels of contaminants from aqueous solutions is adsorption. Here, based on Figure 3 and Table 1, adsorption of 226Ra and 90Sr at walls of culture flasks, at the cell surface and dead \textit{G. lithophora} biomass, removed 22\% 226Ra and 18\% 90Sr from solution, suggesting that adsorption alone cannot reproduce the degree of 226Ra and 90Sr retained by \textit{G. lithophora}.

The dissolved concentration of Ca$^{2+}$ in 226Ra uptake experiments by active cells of \textit{G. lithophora} was higher than the concentration of dissolved Ca$^{2+}$ in the inactivated cell control and the \textit{Synechocystis} cultures. Because of competing effects for adsorption between Ca and Ra, this implies that the degree of 226Ra adsorption measured in the inactivated cell and by \textit{Synechocystis} controls was relatively overestimated compared to that in the presence of active \textit{G. lithophora} cells will likely be less in presence of excess Ca$^{2+}$ furnished in 226Ra uptake experiments (Figure 2). Moreover, the cell normalized rate of uptake measured for 90Sr is consistent with those measured by Cam et al. for stable Sr isotope and shown to be associated with intracellular uptake rather than adsorption33. These observations taken
altogether suggests that mechanism(s) other than adsorption are involved in 226Ra and 90Sr uptake in *G. lithophora*.

Previously, TEM analyses of *G. lithophora* cells cultured in BG-11, amended with high initial concentrations of stable Ba and Sr isotopes showed that most of the Sr and Ba were sequestered within intracellular carbonates and to a lesser extent in intracellular polyphosphates. Unfortunately, TEM analysis was not possible here to assess 226Ra and 90Sr distribution within the cell because their concentrations were below the detection limits of EDXS. Nevertheless, considering 226Ra and 90Sr chemical affinities and similarity to Ca and Ba, we propose that incorporation of 226Ra and 90Sr into intracellular carbonate (and polyphosphate) inclusions is likely the primary mechanisms for their sequestration in *G. lithophora*. It remains a mystery why *G. lithophora* would sequester radiotoxic 226Ra and 90Sr elements within the cell. Unlike Ca, which is essential as a co-factor for cyanobacteria in the photosystem II complex, there is no documented biological function of 226Ra, 90Sr or Ba. Some studies have argued that trace amounts of non-essential elements can be assimilated together with their corresponding essential analogues. In fact, non-selective transport of Sr$^{2+}$ through cation channels have already been acknowledged by other studies. Hence, 226Ra and 90Sr could be “mistaken” for its chemical analog Ca, an essential element, thereby resulting in their favorable uptake in *G. lithophora*. Alternatively, while this is not ascertained by the present experiments, selective uptake of 226Ra and 90Sr by *G. lithophora* should may also be considered because of two reasons: (1) Cam *et al.* showed that *G. lithophora* selectively uptakes stable Sr over Ca; (2) Uptake of 226Ra and 90Sr by *G. lithophora* was not inhibited by Ca$^{2+}$, present at approximately 6 orders of magnitude higher concentration than 226Ra and 90Sr. These observations favor involvement of another
biochemical process at play in *G. lithophora*. Typically, ion selectivity between similar ions such Sr, Ra, Ba, Ca requires an ion transport pathway to have some specific binding sites over at least part of its length. Future studies characterizing the affinity and specificity of various transporters involved in uptake of AEE in *G. lithophora* along with measurement of \(^{90}\text{Sr}\) and \(^{226}\text{Ra}\) uptake by *G. lithophora* at varying Ca: \(^{90}\text{Sr}/^{226}\text{Ra}\) ratio may shed some light on molecular processes involved in uptake of \(^{90}\text{Sr}\) and \(^{226}\text{Ra}\) by *G. lithophora*.

Maximum uptake of \(^{226}\text{Ra}\) and \(^{90}\text{Sr}\) by *G. lithophora*

Understanding the maximum uptake capacity of \(^{226}\text{Ra}\) and \(^{90}\text{Sr}\) by *G. lithophora* is an important criterion for its assessment as a potential bioremediation strategy. The maximum radionuclide uptake capacity by a microorganism is an elusive concept as a zero net uptake rate doesn’t always signal maximum uptake capacity. For example, net uptake may appear to cease when the amount of radionuclide added to the solution is exhausted before the cells reach their maximum uptake capacity. In the case of \(^{226}\text{Ra}\), the total \(^{226}\text{Ra}\) accumulated in *G. lithophora* over the total duration of incubation equals to 133 kBq (g of dry mass)\(^{-1}\) (Figure 2 and Table 1). The OD decline after 792 h may possibly indicate cell lysis and/or cell aggregation, settling and/or attachment of cells to the flasks. Visual inspection of the cultures after 792 h did reveal some aggregation and settling of the cells (data not shown). The decrease in the uptake of \(^{226}\text{Ra}\) during the 2\(^{nd}\) stage may signal that the cells have reached maximum \(^{226}\text{Ra}\) uptake capacity. To test whether this is the case, cultures of *G. lithophora* were grown in BG-11 containing \(^{226}\text{Ra}\) at a concentration 25 times higher than the experiment here. The high \(^{226}\text{Ra}\) concentration experiments showed that over 30 days 70% of \(^{226}\text{Ra}\) was removed and 962 kBq (g of biomass)\(^{-1}\) \(^{226}\text{Ra}\) sequestered by *G. lithophora* (Figure S4). This implies that the decrease in \(^{226}\text{Ra}\) uptake rate during 2\(^{nd}\) stage is not
because cells reached maximum uptake capacity but for some other reasons yet to be
discovered. Similar to ^{226}Ra, total ^{90}Sr accumulated by $G. \text{lithophora}$ in 24 h was equal to
250 kBq (g of biomass)$^{-1}$ (Figure 1 and Table 1). To test whether this amount of ^{90}Sr
sequestered was equal to maximum uptake capacity, culture of $G. \text{lithophora}$ at high cell
density were successively spiked with ^{90}Sr and uptake of ^{90}Sr measured in the supernatant.
The multiple spike experiments showed that 924 kBq (g of biomass)$^{-1}$ was incorporated
within $G. \text{lithophora}$ over 24 hr (Figure S5). After 24 h, no further ^{90}Sr accumulation was
measured as the cells exhausted the amount of ^{90}Sr provided. Together, these observations
suggest that in the present study, measured ^{226}Ra and ^{90}Sr accumulation by $G. \text{lithophora}$ is
a lower estimate of its maximum uptake capacity.

Environmental Implications and Bioremediation

Both uptake capacity and selectivity play an important feature for assessment of an
organism’s effectiveness for ^{90}Sr and ^{226}Ra remediation. Tables 2 and 3 compare ^{90}Sr and
^{226}Ra uptake capacity of $G. \text{lithophora}$ with other organisms known to uptake ^{90}Sr or ^{226}Ra.
For the screened bioremediation candidates, uptake capacities of ^{90}Sr and ^{226}Ra are reported
assuming ideal conditions, *i.e.* in absence of Ca and other divalent ions. Such conditions are
not representative of environments contaminated with ^{90}Sr and ^{226}Ra, which contain excess
Ca and/or other divalent ions. Presence of Ca and other divalent ions in the solution may
compromise the uptake of ^{226}Ra and ^{90}Sr. For example, 40% of ^{90}Sr was removed by
$\text{Vetiveria zizanioides}$ from solution containing Ca/^{90}Sr molar ratio of 3.6×10^6, while 94% removal was achieved in absence of Ca42. In another example, $\text{Calotropis gigantea}$
exhibited high accumulation of ^{90}Sr (104 ng g$^{-1}$) but from a solution containing only ^{90}Sr43.
Whether the high ^{90}Sr removal efficiency of $C.\ gigantea$ is maintained within an environmentally relevant matrix remains unknown. In the case of ^{226}Ra, the uptake exhibited by dead biomass was achieved under conditions where ^{226}Ra was the only AEE present and therefore unlikely to be replicated in the environment to the same extent. Therefore, the current bioremediation strategies listed in Table 2-3 are inadequate in efficiently achieving selective removal of ^{226}Ra and ^{90}Sr in the presence of Ca.

Table 2: Comparison of ^{226}Ra uptake by $G.\ lithophora$ with previously reported experimental data on ^{226}Ra uptake by organisms.

<table>
<thead>
<tr>
<th>Dead Biomass</th>
<th>Radium Uptake (µg g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P.\ fluorescens^{44}$</td>
<td>0.02</td>
</tr>
<tr>
<td>Streptomyces nives44</td>
<td>0.58</td>
</tr>
<tr>
<td>Activated sludge44</td>
<td>0.075</td>
</tr>
<tr>
<td>Activated sludge45</td>
<td>0.04</td>
</tr>
<tr>
<td>$N.\ carneum^{25}$</td>
<td>1.3</td>
</tr>
<tr>
<td>$N.\ insulare^{25}$</td>
<td>1.2</td>
</tr>
<tr>
<td>O. geminata25</td>
<td>1.35</td>
</tr>
<tr>
<td>S. laxissima25</td>
<td>1.3</td>
</tr>
<tr>
<td>Serratia sp. ZF0345</td>
<td>1.03</td>
</tr>
<tr>
<td>$P.\ chrysogenum^{46}$</td>
<td>0.076</td>
</tr>
<tr>
<td>G. emersonii47</td>
<td>1.86</td>
</tr>
<tr>
<td>Live Biomass</td>
<td></td>
</tr>
<tr>
<td>$D.\ linearis^{48}$</td>
<td>4.5</td>
</tr>
<tr>
<td>$G.\ lithophora$ (this study)*</td>
<td>26.1</td>
</tr>
</tbody>
</table>

* based on $G.\ lithophora$ grown in elevated ^{226}Ra activity in a preliminary experiment (Figure S4)

On the other hand, $G.\ lithophora$ exhibits highest uptake of ^{90}Sr and ^{226}Ra among all the active and dead microorganisms. Since OD values in experiments using ^{90}Sr were measured under the same conditions and setup as in Cam et al36, their conversion to cell numbers and cell mass are expected to be correct. Alternatively, we note that quantity of ^{226}Ra sequestered per unit biomass of $G.\ lithophora$ cells might be approximate estimations...
only because presence of 226Ra during growth of $G.$ lithophora may induce physiological changes and alter the previously reported relationship between OD, cell density, and cell mass 36. Unlike previously reported uptake studies, $G.$ lithophora uptakes 90Sr and 226Ra in presence of excess Ca- initial molar ratio of Ca/90Sr and Ca/226Ra of the cultures equal 2.3$x 10^6$ and 1.2$x 10^6$ respectively. Interestingly, 226Ra accumulation by $G.$ lithophora’s overwhelmingly exceeds 226Ra uptake capacity of $Dicranopteris$ linearis, identified as a 226Ra hyper-accumulator 48. The remarkable ability of $G.$ lithophora to retain high activities of 226Ra and 90Sr in comparison with other organisms makes it an attractive candidate for bioremediation applications in decontamination of low salinity radioactive wastewater streams. Such a strategy could be envisioned as an ex-situ treatment, integrated (e.g. as a bioreactor) within an existing wastewater treatment plant. Compared to $G.$ lithophora, other 90Sr/226Ra bioremediation candidates are mostly plants (Table 2-3). There are practical considerations of using cyanobacterium $G.$ lithophora vs. plants for bioremediation, such as harvesting of biomass, growth times, duration of decontamination and treatment of radioactive biomass. A complete development of $G.$ lithophora based bioremediation would require determining these aspects in future studies.

Table 3: Comparison of Sr uptake in $G.$ lithophora with previously reported experimental data on 90Sr uptake by organisms

<table>
<thead>
<tr>
<th>Organism</th>
<th>Uptake capacity (ng g$^{-1}$)</th>
<th>% removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V.$ zizanoides (0mM Ca)42</td>
<td>-</td>
<td>94%</td>
</tr>
<tr>
<td>$V.$ zizanoides (40 mM Ca)42</td>
<td>-</td>
<td>40%</td>
</tr>
<tr>
<td>Paspalum notatum10,**</td>
<td>0.14</td>
<td>20%</td>
</tr>
<tr>
<td>Sorghum halense49,**</td>
<td>0.14</td>
<td>32%</td>
</tr>
<tr>
<td>Panicum virgatum19,**</td>
<td>0.15</td>
<td>23%</td>
</tr>
<tr>
<td>Amaranthus retroflexus50</td>
<td>0.000077</td>
<td>5%</td>
</tr>
<tr>
<td>Calotropis gigantea43,*</td>
<td>103.37</td>
<td>97%</td>
</tr>
<tr>
<td>$G.$ lithophora (this study)$^+$</td>
<td>177</td>
<td>99%</td>
</tr>
</tbody>
</table>

* Uptake achieved in 168 h
** Concentration in plant tissue after 8 weeks of harvest
$^+$ Based on multi-spike experiment (Figure S5)
Another aspect of bioremediation of radionuclides in the environment is the ability of microorganism to survive in the presence of ionizing radiation. The intracellular uptake of radiotoxic 226Ra and 90Sr could potentially result in oxidative damage in DNA, proteins and lipids due to the generation of reactive oxygen species. Cyanobacteria have been detected in radioactive areas surrounding Chernobyl nuclear reactor51, uranium mining operations52 and in vicinity of hydrothermal spring caves53, suggesting that they may have some degree of resistance to ionizing radiation. However, little is known about \textit{G. lithophora}'s radiotolerance and response to oxidative stress and future experiments characterizing the viability of \textit{G. lithophora} cells when exposed to elevated radiation could provide some insights in this regard.

\textit{G. lithophora} sequesters 226Ra and 90Sr within intracellular ACC inclusions at very low extracellular Ra/Ca concentration ratios, offering a unique solution to the general problem of remediating 226Ra and 90Sr in aqueous environments with naturally high Ca concentrations. Further studies investigating the stability of intracellular inclusions in environmentally relevant matrices and optimization of various process parameters such as maximum 226Ra and 90Sr uptake capacity, and tolerance to other metalloids present in the waste streams will be needed to ensure successful development of \textit{G. lithophora} based bioremediation approach for 90Sr and 226Ra.

4. ASSOCIATED CONTENT

This manuscript is accompanied by Supporting Information. An extra document contains 5 figures. Data on OD of cultures in absence of radionuclide, saturation indices of Ca and Sr solids in the solution, 226Ra uptake by \textit{G. lithophora} from BG-11 containing 210 kBq L$^{-1}$ 226Ra, and data on uptake of 90Sr by \textit{G. lithophora} during successive spike experiment.
5. ACKNOWLEDGMENTS

We would like to thank Timothy McClure (MIT) for his assistance with ICP-OES, Ryan Samz and Mitchell S Galanek, MIT Environmental Health and Safety, for supplying 226Ra stock solutions, radiation protection equipment and safety expertise. We thank Fériel Skouri-Panet and Margot Coutaud (IMPMC) for assistance in the Sr experiments. The authors declare no competing financial interest.

REFERENCE

(6) Li, J.; Margaret Oliver, I.; Cam, N.; Boudier, T.; Blondeau, M.; Leroy, E.; Cosmidis,

(15) Povinec, P. P.; Hirose, K.; Aoyama, M. Radiostrontium in the Western North Pacific:

(25) Pohl, P.; Schimmack, W. Adsorption of Radionuclides (134Cs, 85Sr, 226Ra, 241Am) by Extracted Biomasses of Cyanobacteria (Nostoc Carneum, N. Insulare, Oscillatoria Geminata and Spirulina Laxis-Sima) and Phaeophyceae (Laminaria Digitata and L.

(33) Cam, N.; Benzerara, K.; Georgelin, T.; Jaber, M.; Lambert, J. F.; Poinsot, M.; Skouris-Panet, F.; Cordier, L. Selective Uptake of Alkaline Earth Metals by Cyanobacteria

(42) Singh, S.; Eapen, S.; Thorat, V.; Kaushik, C. P.; Raj, K.; D’souza, S. Phytoremediation of 137cesium and 90strontium from Solutions and Low-Level

Sequestration of radionuclides Radium-226 and Strontium-90 by cyanobacteria forming intracellular calcium carbonates

Neha Mehta¹, Karim Benzerara², Benjamin D. Kocar¹,³*, Virginie Chapon⁴

¹,³ Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
² Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
³ Exponent, Inc. 1055 E. Colorado Blvd, Suite 500. Pasadena, California 91106, United States.
⁴ CEA, CNRS, Aix-Marseille Université, UMR 7265 Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint-Paul-lez-Durance, France.

*Corresponding Author

4 Pages; 5 figures
Figure S1: Time evolution of OD (circles) of *Synechocystis* PCC 6803 cultures in BG-11 in triplicate.

Saturation Indices calculation:

Visual MINTEQ (3.0) software package was used to calculate saturation indices of the culture medium with several possible Ca and Sr solids based on the bulk chemical analyses. The cultures were assumed to be in free exchange with the atmosphere with a partial CO$_2$ pressures of 3.5 atm. Using multi-sweep analysis, saturation indices were calculated for all Ca-carbonate phases reported in the Visual MINTEQ database as a function of dissolved Ca concentration at fixed pH of 8, for cultures amended with 226Ra. In contrast, saturation indices for all Ca and Sr solids reported in Visual MINTEQ database were calculated as a function of pH and fixed dissolved Ca$^{2+}$ for cultures amended with 90Sr.
Figure S2: The saturation indices of the solution with Ca-carbonate solids that may possibly remove 226Ra are plotted as a function of dissolved total Ca concentration (at fixed pH=8).

Figure S3: The saturation indices of the solution with Ca and Sr carbonate solids that may possibly remove 90Sr from solution, are plotted as a function of solution pH (at fixed total dissolved $\text{Ca}^{2+}=250$ µM).
Figure S4: Cell grown in BG-11 amended with 210 kBq L$^{-1}$ 226Ra, and 6.32x10^{-4} M Ca. The squares denote residual 226Ra activity in the solution and circles denote OD of the cell suspension.

Figure S5: *G. lithophora* cells suspended at OD=0.5 in BG-11 amended with 90Sr. The BG-11 was successively spiked with 90Sr to measure maximum uptake of 90Sr by *G. lithophora*. The total amount of 90Sr uptake measured 160 kBq L$^{-1}$ (40 kBq L$^{-1}$ per spike), which considering an OD of 0.5 equals to 924 kBq (g of biomass)$^{-1}$.