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PERSPECTIVE OPEN

Endogenous alpha-synuclein monomers, oligomers and
resulting pathology: let’s talk about the lipids in the room
Bryan A. Killinger1, Ronald Melki2, Patrik Brundin3 and Jeffrey H. Kordower1*

Alpha-synuclein is an intrinsically disordered, highly dynamic protein that pathogenically aggregates into inclusion structures called
Lewy bodies, in several neurogenerative diseases termed synucleinopathies. Despite its importance for understanding disease, the
oligomerization status of alpha-synuclein in healthy cells remains unclear. Alpha-synuclein may exist predominantly as either a
monomer or a variety of oligomers of different molecular weights. There is solid evidence to support both theories. Detection of
apparent endogenous oligomers are intimately dependent on vesicle and lipid interactions. Here we consider the possibility that
apparent endogenous alpha-synuclein oligomers are in fact conformations of membrane-bound alpha-synuclein and not a bona
fide stable soluble species. This perspective posits that the formation of any alpha-synuclein oligomers within the cell is likely toxic
and interconversion between monomer and oligomer is tightly controlled. This differs from the hypothesis that there is a
continuum of endogenous non-toxic oligomers and they convert, through unclear mechanisms, to toxic oligomers. The distinction
is important, because it clarifies the biological origin of synucleinopathy. We suggest that a monomer-only, lipid-centric view of
endogenous alpha-synuclein aggregation can explain how alpha-synuclein pathology is triggered, and that the interactions
between alpha-synuclein and lipids can represent a target for therapeutic intervention. This discussion is well-timed due to recent
studies that show lipids are a significant component of Lewy pathology.
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INTRODUCTION
Alpha-synuclein (αSyn) is an intrinsically disordered, highly flexible
protein, which plays an important role in the pathogenesis of
several neurodegenerative diseases cumulatively referred to as
synucleinopathies. In different synucleinopathies, neurons and/or
glia bare the hallmark intracellular deposits of filamentous αsyn1

but the origin of this pathology remains unclear. αSyn oligomers
with β-sheet structure (αsynO-β) are toxic to cells, possibly
through physical disruption of cellular membranes.2,3 αSynO-β/
preformed fibrils (PFFs) generated in vitro or isolated from the
brains of patients developing synucleinopathies can “seed”
aggregates, especially in transgenic rodent models overexpressing
αsyn,4 and initiate a toxic cascade reminiscent of that seen in
disease.5–7 However, not all oligomers are believed to be bad
actors, as evidence suggests that various oligomers may not only
exist in the cell but also have normal cellular functions.8–10 Indeed,
some conformers of αsynO-β do not seed pathology and are non-
toxic.11–13 Functional endogenous oligomers have been contro-
versial, as their existence has been both confirmed and refuted by
carefully executed studies.8,14,15

Are there benign αsyn oligomers that have normal cellular
functions, and if so, how do they transition to toxic αsynO-β? Here,
in this short review, we discuss how lipid–αsyn interactions might
help explain the observation of apparent endogenous non-toxic
oligomers and highlight alternative models that are monomer-
centric. Furthermore, we will extend this viewpoint to consider its
implications for synucleinopathy pathogenesis. There has been
substantial work done in this area and several exhaustive reviews
on lipid–αsyn interactions16–21 and oligomerization22,23 are avail-
able; hence, for the sake of clarity, we will not comprehensively
discuss the literature.

BIOLOGY OF LIPIDS IN NEURODEGENERATIVE DISEASE
The brain is ~60% lipids by weight.24 Lipids have diverse cellular
functions in biology including cell signaling, energy storage, and
structural partitioning.25 Phospholipids contain amphipathic
characteristics with a charged hydrophilic phosphate group and
a carbon chain of varying lengths.25 Phospholipids spontaneously
form bilayer structures in aqueous solutions that are the basis of
cellular membranes. Lipids have not been as extensively studied
as proteins in vivo, possibly because of their hydrophobicity,
chemical complexity, and the fact that they are not gene
products.25 However, lipids are crucial for cellular function and
are implicated in several neurodegenerative diseases including
synulceinopathies.26 Recent technological advances with lipodo-
mic analysis have furthered the study of lipids.27–30 Current
lipodomic analyses, however, are focused on whole-cell lysates
and therefore insensitive to cellular spatial and temporal
dimensions, which are crucial for understanding lipid function.25

αSYN–VESICLE MEMBRANE INTERACTIONS
Shortly following the discovery of αsyn in Lewy pathology,31 the
lipid-binding properties of asyn were documented and the
significance of disease-causing point mutations in lipid-binding
domains was recognized.32 Indeed, one of the earliest histochem-
ical descriptions of Lewy bodies noted that they stain positively for
phospholipids, particularly sphingomyelin.33 Since then, interac-
tions between αsyn and vesicle lipids have been implicated in the
initial generation of synucleinopathy.16–19,34–36 The hypothesis
that lipids control pathological αsyn aggregation primarily stems
from observations that lipids/vesicles influence aggregation
kinetics in vitro,34,37–40 and that disease-related missense
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mutations of SNCA alter residues within the N-terminal lipid-
binding domain of αsyn.41–46 αSyn may redistribute to lipid
compartments early in disease pathogenesis.36 Several disease-
causing αsyn mutants abnormally associate with intracellular
vesicles and lipid droplets,47,48 and dyshomeostasis of intracellular
lipids are likely an early molecular event preceding pathology
formation.49 The key to pathogenesis lies within the lipid-binding
domain of αsyn.
αSyn binding to vesicular membranes is important, because it

influences oligomerization and pathological aggregation. Evi-
dence suggests that non-pathological αsyn is involved with
vesicular dynamics in cells9,18,50–55 and regulation of the
presynaptic vesicle pool.56,57 αSyn–lipid interactions may have a
vesicle tethering function. It has been proposed that the broken α-
helical N-terminus can function to tether intracellular vesicles via a
“double-anchor” mechanism.58–61 The biological significance of
αsyn-mediated clustering is unknown; however, it could serve to
promote the exchange of lipids between adjacent vesicles62 and
possibly promote vesicle fusion.56–58,62–64 αSyn preferentially
binds to membranes with lipid-packing defects65–68 and high
curvature.69–72 In the neurons, αsyn is densely clustered around
intracellular vesicles and vesicular tubule structures, most
prominently at the nerve terminal.73 When incubated with small
(~10–30 nm) unilamaller vesicles, the N-terminal of αsyn adopts an
extended α-helical conformation as it coats the vesicular surface
and a broken α-helical conformation when interacting with
micelles.59,74–80 The interaction between the N-terminus of αsyn
with lipid membranes is driven by electrostatic interactions
between positively charged residues and lipid phosphate head
group.81 When membrane bound, the N-terminus residues (1–26)
of αsyn rigidly bind to the membrane and the internal segment
(residues 26–97) acts to sense lipid properties and regulates
binding affinity.82 Interestingly, the hydrophobic stretch of
residues 71–82 are required for pathological aggregation of
αsyn83 and, therefore, lipid-sensing properties of αsyn and
pathological aggregation occur through the same functional
domain. It is not clear whether mutation of the N-terminus results
in a toxic gain of function or loss of function.
Many cellular functions have been attributed to αsyn and

membrane interactions, including soluble N‐ethylmaleimide sen-
sitive factor attachment protein receptor (SNARE) complex
assembly and exocytosis; however, the exact cellular function of
αsyn remains unclear.9,50,84 αSyn interacts with SNARE proteins at
the vesicle surface.85–88 αSyn binding to membranes promotes
SNARE complex formation and may function as a SNARE
chaperone protein.9,88,89 Vesicular membrane-binding promotes
the oligomerization of αsyn.9 In vitro phospholipids can also
increase the rate of pathological aggregation (i.e., β-sheet
confirmations) by decreasing lag time of primary nucleation.37,90

The effect of lipids on αsyn aggregation is dependent on lipid to
protein ratio, with a low ratio promoting aggregation and higher
ratio being inhibitory.74,91 This bimodal phenomenon probably
results from a lack of monomer available for oligomer elongation
when the lipid ratio is too high. Interestingly, increasing αsyn
expression, presumably shifting the intracellular lipid to protein
ratio, promotes aggregation of αsyn in cells. Notably, it has been
hypothesized that reducing monomeric αsyn is an important
therapeutic target.92–94

A confusing aspect to the literature is that binding of αsyn to
membranes has been reported to both inhibit95–97 and to
promote αsyn aggregation.39,47 This may be due to differences
in assay conditions between studies, such as membrane lipid
composition and αsyn concentration. Indeed, recent studies using
lipodomics implicated specific fatty acid oleic acid in the
pathogenesis of Parkinson’s disease.49 In the model proposed by
Fanning and colleagues49, soluble αsyn binds to oleic acid,
effectively sequestering the monomer to lipid membranes and
ultimately culminating in pathological aggregate formation. As

they also observed an increase in oleic acid in response to αsyn
overexpression, there may be a toxic lipid dyshomeostatis that
preceeds aggregate formation. Their results suggest a complex
origin of synucleinopathy where both lipid metabolism and αsyn
are central players.
αSyn may have a more generalized cellular function as an

effector of lipid dynamics, and not as a factor of a specific
subprocess or pathway. To highlight this concept, consider the
curious relationship between αsyn and erythropoiesis (i.e., red
blood cell differentiation) for which others have hypothesized
αsyn that may have an underlying redundant mechanism in the
two cells of different linage.98 αSyn is highly expressed in
erythrocytes under the control of transcription factor GATA1.99,100

During the terminal step of erythropoiesis, α-syn expression
dramatically increases and remains elevated in the mature
erythrocyte.98 αSyn is then found associated with phospholipids
and vesicle membranes in the mature erythrocyte.101 Thus, which
of the proposed cellular functions does αsyn perform during
erythropoiesis? One likely explanation is that αsyn plays a role in
the dramatic intracellular lipid organization, analogous to asym-
metric cytokinesis, which occurs prior to the phenomenon of
enucleation. Enucleation is the process by which organelles are
condensed and extruded from the cell to form a mature
erythrocyte. Indeed, just prior to enucleation αsyn can be found
associated with lipids of the cell, particularly the nucleus and ER,
which are key players in enucleation. αSyn accumulates at the site
of nuclear extrusion,102 suggesting it is directly involved with
enucleation lipid dynamics. Concurrently, SNARE machinery is
decreased in the erythrocyte, suggesting that the potential
involvement of αsyn in lipid dynamics during enucleation is
independent of hypothesized SNARE functions.103 However, if
αsyn is involved in this cellular phenomenon, it is non-essential or
interchangeable with beta or gamma synucleins, as only minor
phenotypic abnormalities of erythrocytes are observed in α-syn-
knockout models.99

SOLUBLE OLIGOMERS DEVOID OF LIPID
There is good evidence of a naturally occurring metastable soluble
αsyn oligomer (i.e., tetramer) that is devoid of vesicle/lipid
binding.8 However, the existence of a soluble αsyn tetramer is
based mostly on results from crosslinking experiments.8,48,104–106

The interpretation of crosslinking experiments is non-trivial. αSyn
tetramers are captured when using a permissive chemical cross-
linker with spacer arm length (DSG spacer arm length 7.7 Å) and
perhaps not with a shorter spacer arm (formalin spacer arm length
~2 Å).107 A milieu of progressively larger oligomers are formed and
captured even when purified recombinant αsyn is incubated with
glutaraldehyde.108 The successful detection of an αsyn tetramer in
tissues and cells is dependent on sample preparation conditions
and can be detected when cells remain intact prior to crosslinking
or when tissue lysates are kept highly concentrated.107 Indeed,
purification of αsyn prevents the detection of a soluble tetramer
further suggesting a cofactor is required and this factor is likely of
lipid origin.109 Although the question remains which lipid cofactor
might be responsible for the tetramer formation, the tetramer and
αsyn–lipid interactions are inextricably linked. This is highlighted
when recently a transgenic mouse model (called “3K”) of tetramer
deficiency was generated by introducing 3E– > K mutations in
αsyn’s lipid-binding N-terminus.48 These 3K mice exhibit aggres-
sive αsyn aggregation, loss of an apparent tetramer, and a motor
phenotype that has some semblance to Parkinson’s disease. The
lipid-binding domain was mutated in the 3K mice and corre-
spondingly lipid interactions were enhanced48 and similar to what
was observed with similar mutations in cells.110 In both mice and
cells, mutated 3K αsyn clustered around vesicles and intact tissue
crosslinking captured less soluble tetramer.48,106,110 Was this due
to less tetramer or alternatively less soluble tetramer? The results
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could be explained either way, but if the captured αsyn species is
truly an insoluble tetramer, one would expect less detection in the
soluble fraction, as the authors observed. Indeed, the results
appear to fit a scenario where folding on the vesicular membrane
is driving αsyn pathology without the need for a soluble tetramer.
(Fig. 1)
Detection of endogenous oligomers, including the tetramer,

could be explained by compartmentalized αsyn residing on the
vesical membrane (Fig. 1). Membrane interactions occur through
electrostatic forces between positively charged lysine residues of
αsyn and negatively charge phosphate group of lipids.41,75,81,111

Interestingly, the same crosslinking chemicals used to capture
tetramers chemically modify lysine side chains of αsyn and
neutralize their charge.112 Chemically modifying the lysine side
chains during tissue crosslinking would presumably disrupt
membrane binding, because it neutralizes the required electro-
static charge of lysine residues. Therefore, captured oligomers
would dissociate from the membrane and would be detected in
the soluble fraction, producing the characteristic gel-shift of the
αsyn tetramer.106 To highlight this concept, the neutralization of
αsyn charge by chemical cross-linkers is routinely used to enhance
the retention of αsyn on polyvinylidene difluoride membranes
during western blotting protocols.112 Together, adjacent αsyn
molecules bound to intracellular vesicle surfaces (i.e., compart-
mentalized) might disassociate into the soluble fraction once
chemically modified by the crosslinking reagent. This phenom-
enon would also help explain why the soluble tetramer has similar
intermolecular n-terminal structure as the membrane-bound form.
The apparent soluble tetramer may be stabilized by covalent

bonds formed in the oxidative environment of the erythrocyte
(i.e., the source from which it was originally isolated). Biochemical
characterization of a putative αsyn tetramer was mostly done
using erythrocyte derived αsyn.8 Erythrocytes have millimolar
concentrations of hemoglobin. Hemoglobin oxidatively catalyzes
the formation of intramolecular dityrosine bonds resulting in a
mixture of αsyn dimers and tetramers.113 Dityrosine crosslink
formation occurs rapidly113,114 and would likely occur to some
extent during αsyn purification from erythrocytes. αSyn in
erythrocytes associates with vesicles101,102 and stable dityrosine
αsyn occurs in clinical blood samples.115 Together, it is probable
that stable αsyn oligomers isolated from erythrocytes are due to
oxidative crosslinking of adjacent αsyn molecules bound to vesicle
membranes. Heat denaturation irreversibly abolished the tetra-
mers α-helix structure, indicating that the captured configuration
was not in equilibrium but instead was a stabilized structure

originating from the tissue (i.e., vesicle bound). Lipid binding of
the tetramer was enhanced when compared with the monomer,
further suggesting it retained a lipid-binding confirmation.8

Removal of lipids with Lipodex 1000 did not affect the tetramer
detection, suggesting the tetramer was not associated with any
stabilizing lipid structure. Stabilization of small oligomers via
oxidative crosslinking can prevent progressive aggregation and
might explain why the stable tetramer appears to resist
aggregation.8,116 Together, it is likely to be that the stable soluble
αsyn tetramer purified from erythrocyte is a covalently stabilized
membrane-bound confirmation similar to that captured using
exogenous crosslinking agents.
Soluble αsyn oligomers have been detected using several

imaging techniques. Förster resonance energy transfer (FRET) is a
powerful technique used to determine intermolecular distances
between molecules with 1–2 nm spatial resolution.117 FRET has
been employed to study various aspects of αsyn oligomerization
mostly in vitro9,77,118–120 but also ex vivo121 and in vivo.122 In vitro,
purified αsyn forms distinct oligomer conformers, which then can
spontaneously convert to protease resistant and toxic αsynO-β.12

Biomolecular fluorescence complementation (BiFC) technique
uses fluorescent constructs to determine protein–protein interac-
tion. BiFC constructs have been used to study αsyn aggregation
in vivo;123,124 however, the resolution of this technique cannot
differentiate between small oligomers and complex formation (i.e.,
membrane bound). The method detects diffuse staining in
neurons lacking pathology, suggesting either small aggregates
or close association of αsyn molecules normally within the
cytosol.124 αSyn comes into close proximity around synaptic
vesicles and possibly forms multimers on the membrane.15 Other
BiFC techniques employing photoactivatable fluorescent mole-
cules can increase the spatial resolution to several nanometers,125

but this type of imaging has yet to be done with αsyn.

SOLUBLE DISORDERED MONOMER DEVOID OF LIPID
There is also good evidence that αsyn exists predominantly as an
intrinsically disordered monomer in the cytosol.10,14,126–130 αSyn
purified from Escherichia coli behaves as an intrinsically disordered
protein with a large stokes radius,129 which may be why
monomeric αsyn appears to have greater mass in some assays.126

Non-denaturing purification procedures from several tissue
sources also produce a disordered monomeric αsyn.126 A
disordered soluble monomer has been observed directly using
in-cell nuclear magnetic resonance (NMR) imaging techniques.14

Fig. 1 Endogenous soluble oligomers are inextricably associated with lipid/vesicle binding. Depicted is an possible explanation for the
detection of a soluble αsyn oligomer. In the cytoplasm, αsyn exists in an equilibrium between a disordered slightly compact monomer and
membrane-bound α-helix confirmation. The N-terminus of αsyn binds to vesicle membranes via electrostatic interactions and adopts an
α-helix structure. αSyn most likely binds to localized areas of vesicle surfaces with lipid-packing defects. Normally, in the cell ~5–10% of αsyn is
interacting with vesicle surfaces. The same percentage is also proposed for soluble oligomers. Covalent bonds between adjacent αsyn
molecules capture the confirmations bound to the vesicle surface. Covalent modification of amino-acid residue side chains, especially lysine,
following chemical crosslinking neutralizes a portion of αsyn charge required for membrane binding. The captured species could then retain
the membrane-bound confirmation and enter the aqueous phase for subsequent detection. Thus, endogenous soluble functional oligomers
are unlikely, in agreement with several studies. Instead, endogenous oligomers may represent confirmations of membrane-bound αsyn. This
hypothesis makes lipid-syn interactions at the membrane a crucial mediator of pathology initiation. DSP dithiobis(succinimidyl propionate),
DSG disuccinimidyl glutarate
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Specifically, investigators transfected cells with recombinant αsyn
labeled with 15N isotope to monitor individual αsyn molecules
within the living cells. Results showed that the majority of
monomeric αsyn maintained a disordered confirmation in the cell,
while becoming slightly more compact than in free solution,
probably due to molecular crowding.14 The compact structure
observed in vivo likely prevents spontaneous aggregation in the
cytosol.131 Although this is compelling evidence that the majority
of αsyn in the cell occurs as a disordered monomer, the result
does not rule out the existence of a tetramer. A tetramer that
existed at low concentration would not be detected and it is
possible that the recombinant αsyn behaved dissimilarly to
endogenous αsyn. Importantly, this study demonstrated that the
majority of αsyn in the cell is cytosolic and monomeric, and
suggests that membrane interactions are likely transient and
highly dependent on local environment (e.g., nerve terminal).
Correspondingly, it would be interesting if αsyn persists as a
monomer at axon terminals where it’s vesicle interactions are
more prominent than in the cell body.73,132 The α-helix
conformation αsyn was recently described in HELA cells using
FRET, where it was demonstrated that αsyn assumes several
confirmations when interacting with vesicle surfaces.133 Consid-
ered together, the majority of αsyn in the cell exists as a relatively
compact disordered monomer and adopts an α-helix structure
when interacting with vesicle membranes. The native state of αsyn
may not include an oligomer, whether free and soluble, or
vesicle bound.

ABERRANT VESICLE BINDING PROGRESSES TO PATHOLOGY
Assuming monomeric αsyn is interacting with vesicle membranes,
and remains monomeric at the vesicle surface under normal
circumstances, how might pathology begin? (Fig. 2). One possible
scenario involves vesicle surfaces acting as two-dimensional (2D)
reactors that promote pathogenic intermolecular interactions of
αsyn.91,134–136 In the cystosol, αsyn remains monomeric and in a
slightly compact configuration. Transient interactions with vesicle
surfaces induce a conformational shift, but not necessarily
oligomerization, and concentrate αsyn molecules on the vesicle
surface. This focal point on the vesicle surface is where opposing
αsyn molecules bind and might serve as the molecular origins for
Lewy pathology. Numerous cellular and genetic factors converge

at this focal point in such a way that creates an environment
conducive for the initiation of pathogenic αsyn aggregation.
Studies using sonicated αsyn PFFs suggest that once the αsynO-β
is present, progressive aggregation and toxicity follow.7,137 Yet,
studies that utilize PFF’s to assess pathology are bypassing
pathology generation and may be recapitulating downstream
pathological events. Therefore, the use of PFF’s to study
synucleinopathy is likely to give valuable insight into the
progression of these diseases and perhaps are not suitable to
study the initiation of the disease.
At the membrane, αsynO-β might act similar to a “molecular

shovel” inserting itself into the membrane with destructive, toxic,
consequences.2,138 Together with lipid/vesicle interactions at the
center of αsyn function, a route to pathophysiology might be the
collapse of clustered lipids/vesicles into a pathological inclusion.
Similar to a massive star transitioning to a black hole, at some
point pathological αsyn and lipids form a critically dense structure,
and compact to form a Lewy body. Interestingly, the architecture
of the Lewy pathology supports this interpretation.139–144

Neuropathological examination of patient brains shows a mixture
of αsyn staining in neurons that consist of a pale diffuse, punctate
irregular shape (i.e., uneven distribution), discrete body (i.e., pale
body), and a massive dense structure with a pale core (i.e., Lewy
body).139 These structures have been hypothesized to be snap-
shots of a pathological process with Lewy bodies being the result.
Indeed, pale bodies contain a mixture of granular and vesicular
structures and are often found near mature LB.141,145 Using a lipid
centric view, punctate irregular “early” pathology might represent
the initial vesicle clustering48 or lipid droplet formation47 before
the characteristic pathology develops. Overexpression of αsyn in
yeast models produces lipid only inclusions, lacking the filamen-
tous αsyn that is the hallmark of synucleinopathies.146 Lipids have
been identified as a core component of Lewy pathology33,147,148

but this has largely been ignored and the pathology is often
considered “proteinaceous.”
Recent work by Shahmoradian and colleagues149 provided

substantial evidence that Lewy pathology consists of compacted
lipid components from a variety of organelles with αsyn oligomers
interspersed. Their work strongly suggests that Lewy pathology is
actually an inclusion of fragmented lipids, for which αsyn–lipid
interactions play a causative role. Ultrastructural characterization
of Lewy pathology showed tubule vesicular, fragmented

Fig. 2 Potential role of lipids in αsyn aggregate pathoetiology. In the cell, αsyn is partitioned between aqueous phase and the lipid phase via
transient interactions at the vesicle surface. Endogenous αsyn probably exists in several states, including a compact monomer and a vesicle-
bound monomer with an N-terminal α-helix structure. Folding αsyn monomers on the vesicle surfaces likely plays a non-essential or
redundant role in vesicle dynamics. β-Sheet confirmation of αsyn may begin at vesicle surfaces. Toxic effects of β-sheet oligomers included
vesicle permeabilization or the formation of toxic mixed lipid–protein structures. Pathology initiation might involve specific configurations of
αsyn folding onto a variety of membranes. Altered lipid-sensing properties by known disease-causing mutations (e.g., A30P, E46K, and A53T)
might alter the affinity of αsyn for certain vesicle lipid components (depicted as yellow and red circles), or change the spatial arrangement of
αsyn molecules on the vesicle surface. Resulting β-sheet oligomers may have different toxic or prion-like properties based the physiochemical
details of the initial pathology development

B.A. Killinger et al.

4

npj Parkinson’s Disease (2019)    23 Published in partnership with the Parkinson’s Foundation



membranous, and mixed lipid–protein structures, all of which can
be formed from αsyn interactions with vesicle membranes.
Electron dense structures, consistent with lysosomes, were also
observed throughout Lewy pathology.149 Lysosomes are central
mediators of lipid metabolism150 and the conspicuous presence of
lysosomes surrounded by fragmented membrane structures
strongly suggests a deficit in lysosomal/autophagic pathways,
specifically the removal of lipid membranes. Large-scale genome-
wide association studies have implicated lysosomal/autophagy
pathway in several neurodegerative diseases, including
synucleinopathies.151,152

A lipid-centric view of Lewy pathology is transformative in that
it helps unify and identify disease-causing pathology of several
molecular origins. Several neurodegenerative diseases are cur-
rently characterized by protein aggregation, when instead we may
be missing the lipid components that are the core of the
pathology. For example, clinical cases resembling synucleinopa-
thies are documented without the presence of Lewy pathology
(e.g., Parkin mutations with early-onset Parkinson’s disease), as
measured by αsyn staining.153 The presence of lipid inclusions in
the absence of αsyn are not generally considered when examining
patient tissues.

DETERMINING αSYN–LIPIDS INTERACTIONS IN LIVING CELLS
αSyn interactions with lipids and vesicles has been investigated
mostly in vitro and needs to be characterized in living cells. There
are several promising strategies to start understanding lipid–αsyn
interactions. The first strategy uses synthetic bifunctional lipids to
directly determine lipid–protein interactions.154,155 This strategy
offers flexibility with analysis and offers unambiguous evidence of
direct αsyn–lipid interactions in vivo. Captured lipid–αsyn
molecules can be subsequently labeled or purified for down-
stream analysis. Labeling the structures will help determine where
αsyn–lipid interactions are most relevant in the cell. Purification of
the structures with subsequent analysis by liquid
chromatography–mass spectrometry could determine specific
αsyn proteoforms involved with pathological lipid interactions,
as well as global analysis of other proteins that are involved.
However, the drawback to this strategy is the investigator can only
assess one specific lipid species at a time and a synthetic
bifunctional lipid must be available or developed for application.
Recently, a bifunctional analog of glucosylceramide, a lipid
implicated in synucleinopathy,156 has become commercially
available and could aid in these studies.
A shotgun lipidomic analysis may also be useful, but because of

the complexity of whole-cell lipid determination, the data may not
give insight into the localized αsyn–lipid interactions that precede
pathology formation. Recently, a shotgun lipodomic analysis was
conducted on various αsyn mutant models and αsyn was found to
have an effect on lipid metabolism.49 However, it is difficult to
draw distinct conclusions or find drug targets based on the
description of a total lipid species. The resulting information is
most useful in implicating lipid metabolism or catabolism path-
ways, and not the characterization of the specific localized lipids
that may be involved with initiating pathology. To find a disease-
relevant target, a focused lipodomic approach looking at specific
organelles, or better yet, early Lewy pathology, will be the most
illuminating. Lipodomic arrays can also be used to screen many
lipid–protein interactions; however, they have the disadvantage of
not representing in vivo binding conditions.
A key question remains: at what point during its interaction with

cytoplasmic membranes and extracellular vesicles does αsyn
adopt a pathological confirmation? To answer this question, one
needs to consider the membrane as a chemical reactor favoring
molecular encounters.134 This is the consequence that restrains
monomeric or low-molecular-weight oligomeric αsyn diffusion

from a three-dimensional to a 2D space upon interaction with the
plasma membrane or extracellular vesicles plane.

CONCLUSIONS
Evidence for a soluble αsyn oligomer might be best explained by
folding intermediates on the plasma or vesicle membranes that
remain soluble for subsequent extraction and detection. This
interpretation does not require a soluble functional oligomer and
seems to fit much of the experimental data. The distinction
between a soluble native oligomer and vesicle-bound oligomers/
folding intermediates is important, because it clarifies the origins
of pathological aggregation of αsyn. With this perspective,
determining the molecular details of αsyn–vesicle/lipid interac-
tions is important for understanding the endogenous origins of
synucleinopathy. Although there is consensus that aggregation of
αsyn is associated with neurological disease, the precise molecular
origin of the aggregate pathology remains a mystery.
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