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Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let's talk about the lipids in the room

Alpha-synuclein is an intrinsically disordered, highly dynamic protein that pathogenically aggregates into inclusion structures called Lewy bodies, in several neurogenerative diseases termed synucleinopathies. Despite its importance for understanding disease, the oligomerization status of alpha-synuclein in healthy cells remains unclear. Alpha-synuclein may exist predominantly as either a monomer or a variety of oligomers of different molecular weights. There is solid evidence to support both theories. Detection of apparent endogenous oligomers are intimately dependent on vesicle and lipid interactions. Here we consider the possibility that apparent endogenous alpha-synuclein oligomers are in fact conformations of membrane-bound alpha-synuclein and not a bona fide stable soluble species. This perspective posits that the formation of any alpha-synuclein oligomers within the cell is likely toxic and interconversion between monomer and oligomer is tightly controlled. This differs from the hypothesis that there is a continuum of endogenous non-toxic oligomers and they convert, through unclear mechanisms, to toxic oligomers. The distinction is important, because it clarifies the biological origin of synucleinopathy. We suggest that a monomer-only, lipid-centric view of endogenous alpha-synuclein aggregation can explain how alpha-synuclein pathology is triggered, and that the interactions between alpha-synuclein and lipids can represent a target for therapeutic intervention. This discussion is well-timed due to recent studies that show lipids are a significant component of Lewy pathology.

INTRODUCTION

Alpha-synuclein (αSyn) is an intrinsically disordered, highly flexible protein, which plays an important role in the pathogenesis of several neurodegenerative diseases cumulatively referred to as synucleinopathies. In different synucleinopathies, neurons and/or glia bare the hallmark intracellular deposits of filamentous αsyn 1 but the origin of this pathology remains unclear. αSyn oligomers with β-sheet structure (αsynO-β) are toxic to cells, possibly through physical disruption of cellular membranes. [START_REF] Fusco | Structural basis of membrane disruption and cellular toxicity by alpha-synuclein oligomers[END_REF][START_REF] Froula | Defining alpha-synuclein species responsible for Parkinson disease phenotypes in mice[END_REF] αSynO-β/ preformed fibrils (PFFs) generated in vitro or isolated from the brains of patients developing synucleinopathies can "seed" aggregates, especially in transgenic rodent models overexpressing αsyn, [START_REF] Thakur | Modeling Parkinson's disease pathology by combination of fibril seeds and alpha-synuclein overexpression in the rat brain[END_REF] and initiate a toxic cascade reminiscent of that seen in disease. [START_REF] Luk | Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells[END_REF][START_REF] Volpicelli-Daley | Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death[END_REF][START_REF] Luk | Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice[END_REF] However, not all oligomers are believed to be bad actors, as evidence suggests that various oligomers may not only exist in the cell but also have normal cellular functions. [START_REF] Bartels | Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[END_REF][START_REF] Burre | Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation[END_REF][START_REF] Burre | Properties of native brain alpha-synuclein[END_REF] Indeed, some conformers of αsynO-β do not seed pathology and are nontoxic. [START_REF] Winner | In vivo demonstration that alpha-synuclein oligomers are toxic[END_REF][START_REF] Cremades | Direct observation of the interconversion of normal and toxic forms of alpha-synuclein[END_REF][START_REF] Forloni | Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases[END_REF] Functional endogenous oligomers have been controversial, as their existence has been both confirmed and refuted by carefully executed studies. [START_REF] Bartels | Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[END_REF][START_REF] Theillet | Structural disorder of monomeric alpha-synuclein persists in mammalian cells[END_REF][START_REF] Wang | alpha-synuclein multimers cluster synaptic vesicles and attenuate recycling[END_REF] Are there benign αsyn oligomers that have normal cellular functions, and if so, how do they transition to toxic αsynO-β? Here, in this short review, we discuss how lipid-αsyn interactions might help explain the observation of apparent endogenous non-toxic oligomers and highlight alternative models that are monomercentric. Furthermore, we will extend this viewpoint to consider its implications for synucleinopathy pathogenesis. There has been substantial work done in this area and several exhaustive reviews on lipid-αsyn interactions [START_REF] Galvagnion | The role of lipids interacting with alpha-synuclein in the pathogenesis of Parkinson's disease[END_REF][START_REF] Suzuki | Pathological role of lipid interaction with alpha-synuclein in Parkinson's disease[END_REF][START_REF] Snead | Alpha-synuclein function and dysfunction on cellular membranes[END_REF][START_REF] Alza | Lipids at the crossroad of alpha-synuclein function and dysfunction: biological and pathological implications[END_REF][START_REF] O'leary | Interplay between alpha-synuclein amyloid formation and membrane structure[END_REF][START_REF] Alecu | Dysregulated lipid metabolism and its role in alphasynucleinopathy in Parkinson's disease[END_REF] and oligomerization [START_REF] Bengoa-Vergniory | Alpha-synuclein oligomers: a new hope[END_REF][START_REF] Lashuel | The many faces of alphasynuclein: from structure and toxicity to therapeutic target[END_REF] are available; hence, for the sake of clarity, we will not comprehensively discuss the literature.

BIOLOGY OF LIPIDS IN NEURODEGENERATIVE DISEASE

The brain is ~60% lipids by weight. [START_REF] O'brien | Lipid composition of the normal human brain: gray matter, white matter, and myelin[END_REF] Lipids have diverse cellular functions in biology including cell signaling, energy storage, and structural partitioning. [START_REF] Muro | Lipids in cell biology: how can we understand them better?[END_REF] Phospholipids contain amphipathic characteristics with a charged hydrophilic phosphate group and a carbon chain of varying lengths. [START_REF] Muro | Lipids in cell biology: how can we understand them better?[END_REF] Phospholipids spontaneously form bilayer structures in aqueous solutions that are the basis of cellular membranes. Lipids have not been as extensively studied as proteins in vivo, possibly because of their hydrophobicity, chemical complexity, and the fact that they are not gene products. [START_REF] Muro | Lipids in cell biology: how can we understand them better?[END_REF] However, lipids are crucial for cellular function and are implicated in several neurodegenerative diseases including synulceinopathies. [START_REF] Adibhatla | Role of lipids in brain injury and diseases[END_REF] Recent technological advances with lipodomic analysis have furthered the study of lipids. [START_REF] Brugger | Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry[END_REF][START_REF] Lydic | Lipidomics unveils the complexity of the lipidome in metabolic diseases[END_REF][START_REF] Yang | Lipidomics: techniques, applications, and outcomes related to biomedical sciences[END_REF][START_REF] Saliba | The systematic analysis of protein-lipid interactions comes of age[END_REF] Current lipodomic analyses, however, are focused on whole-cell lysates and therefore insensitive to cellular spatial and temporal dimensions, which are crucial for understanding lipid function. [START_REF] Muro | Lipids in cell biology: how can we understand them better?[END_REF] 

αSYN-VESICLE MEMBRANE INTERACTIONS

Shortly following the discovery of αsyn in Lewy pathology, [START_REF] Spillantini | Alpha-synuclein in Lewy bodies[END_REF] the lipid-binding properties of asyn were documented and the significance of disease-causing point mutations in lipid-binding domains was recognized. [START_REF] Jensen | Binding of alphasynuclein to brain vesicles is abolished by familial Parkinson's disease mutation[END_REF] Indeed, one of the earliest histochemical descriptions of Lewy bodies noted that they stain positively for phospholipids, particularly sphingomyelin. [START_REF] Jager | Sphingomyelin in Lewy inclusion bodies in Parkinson's disease[END_REF] Since then, interactions between αsyn and vesicle lipids have been implicated in the initial generation of synucleinopathy. [START_REF] Galvagnion | The role of lipids interacting with alpha-synuclein in the pathogenesis of Parkinson's disease[END_REF][START_REF] Suzuki | Pathological role of lipid interaction with alpha-synuclein in Parkinson's disease[END_REF][START_REF] Snead | Alpha-synuclein function and dysfunction on cellular membranes[END_REF][START_REF] Alza | Lipids at the crossroad of alpha-synuclein function and dysfunction: biological and pathological implications[END_REF][START_REF] Burre | Definition of a molecular pathway mediating alpha-synuclein neurotoxicity[END_REF][START_REF] Kramer | Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies[END_REF][START_REF] Halliday | Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease[END_REF] The hypothesis that lipids control pathological αsyn aggregation primarily stems from observations that lipids/vesicles influence aggregation kinetics in vitro, [START_REF] Burre | Definition of a molecular pathway mediating alpha-synuclein neurotoxicity[END_REF][START_REF] Galvagnion | Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation[END_REF][START_REF] Zhu | The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation[END_REF][START_REF] Lee | Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form[END_REF][START_REF] Grey | Acceleration of alpha-synuclein aggregation by exosomes[END_REF] and that disease-related missense mutations of SNCA alter residues within the N-terminal lipidbinding domain of αsyn. [START_REF] Jo | Defective membrane interactions of familial Parkinson's disease mutant A30P alphasynuclein[END_REF][START_REF] Fares | The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of alpha-synuclein, and enhances its secretion and nuclear localization in cells[END_REF][START_REF] Ghosh | The newly discovered Parkinson's disease associated Finnish mutation (A53E) attenuates alpha-synuclein aggregation and membrane binding[END_REF][START_REF] Robotta | Alphasynuclein disease mutations are structurally defective and locally affect membrane binding[END_REF][START_REF] Kara | alpha-Synuclein mutations cluster around a putative protein loop[END_REF][START_REF] Flagmeier | Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of alpha-synuclein aggregation[END_REF] αSyn may redistribute to lipid compartments early in disease pathogenesis. [START_REF] Halliday | Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease[END_REF] Several diseasecausing αsyn mutants abnormally associate with intracellular vesicles and lipid droplets, [START_REF] Cole | Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein[END_REF][START_REF] Nuber | Abrogating native alpha-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease[END_REF] and dyshomeostasis of intracellular lipids are likely an early molecular event preceding pathology formation. [START_REF] Fanning | Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment[END_REF] The key to pathogenesis lies within the lipid-binding domain of αsyn.

αSyn binding to vesicular membranes is important, because it influences oligomerization and pathological aggregation. Evidence suggests that non-pathological αsyn is involved with vesicular dynamics in cells [START_REF] Burre | Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation[END_REF][START_REF] Snead | Alpha-synuclein function and dysfunction on cellular membranes[END_REF][START_REF] Burre | The synaptic function of alpha-synuclein[END_REF][START_REF] Scott | alpha-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis[END_REF][START_REF] Larsen | Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis[END_REF][START_REF] Nemani | Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis[END_REF][START_REF] Busch | Acute increase of alpha-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation[END_REF][START_REF] Lautenschlager | alpha-synucleinregulator of exocytosis, endocytosis, or both?[END_REF] and regulation of the presynaptic vesicle pool. [START_REF] Murphy | Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons[END_REF][START_REF] Cabin | Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein[END_REF] αSyn-lipid interactions may have a vesicle tethering function. It has been proposed that the broken αhelical N-terminus can function to tether intracellular vesicles via a "double-anchor" mechanism. [START_REF] Fusco | Structural basis of synaptic vesicle assembly promoted by alphasynuclein[END_REF][START_REF] Georgieva | Membranebound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles[END_REF][START_REF] Nass | Parkinson's Disease: Molecular and Therapeutic Insights from Model Systems[END_REF][START_REF] Georgieva | The lipidbinding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms[END_REF] The biological significance of αsyn-mediated clustering is unknown; however, it could serve to promote the exchange of lipids between adjacent vesicles [START_REF] Sharon | alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins[END_REF] and possibly promote vesicle fusion. [START_REF] Murphy | Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons[END_REF][START_REF] Cabin | Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein[END_REF][START_REF] Fusco | Structural basis of synaptic vesicle assembly promoted by alphasynuclein[END_REF][START_REF] Sharon | alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins[END_REF][START_REF] Mesmin | A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP[END_REF][START_REF] Lev | Non-vesicular lipid transport by lipid-transfer proteins and beyond[END_REF] αSyn preferentially binds to membranes with lipid-packing defects [START_REF] Ouberai | alpha-Synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling[END_REF][START_REF] Garten | Methyl-branched lipids promote the membrane adsorption of alpha-synuclein by enhancing shallow lipid-packing defects[END_REF][START_REF] Nuscher | Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study[END_REF][START_REF] Kamp | Binding of alpha-synuclein affects the lipid packing in bilayers of small vesicles[END_REF] and high curvature. [START_REF] Middleton | Effects of curvature and composition on alphasynuclein binding to lipid vesicles[END_REF][START_REF] Pranke | alpha-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding[END_REF][START_REF] Kjaer | The influence of vesicle size and composition on alpha-synuclein structure and stability[END_REF][START_REF] O'leary | Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated alpha-synuclein[END_REF] In the neurons, αsyn is densely clustered around intracellular vesicles and vesicular tubule structures, most prominently at the nerve terminal. [START_REF] Boassa | Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis[END_REF] When incubated with small (~10-30 nm) unilamaller vesicles, the N-terminal of αsyn adopts an extended α-helical conformation as it coats the vesicular surface and a broken α-helical conformation when interacting with micelles. [START_REF] Georgieva | Membranebound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles[END_REF][START_REF] Chandra | A broken alpha -helix in folded alpha-synuclein[END_REF][START_REF] Davidson | Stabilization of alphasynuclein secondary structure upon binding to synthetic membranes[END_REF][START_REF] Hellstrand | Adsorption of alpha-synuclein to supported lipid bilayers: positioning and role of electrostatics[END_REF][START_REF] Ferreon | Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence[END_REF][START_REF] Trexler | Alpha-synuclein binds large unilamellar vesicles as an extended helix[END_REF][START_REF] Jao | Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement[END_REF][START_REF] Bussell | A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins[END_REF] The interaction between the N-terminus of αsyn with lipid membranes is driven by electrostatic interactions between positively charged residues and lipid phosphate head group. [START_REF] Jo | alpha-Synuclein membrane interactions and lipid specificity[END_REF] When membrane bound, the N-terminus residues (1-26) of αsyn rigidly bind to the membrane and the internal segment (residues 26-97) acts to sense lipid properties and regulates binding affinity. [START_REF] Fusco | Direct observation of the three regions in alpha-synuclein that determine its membrane-bound behaviour[END_REF] Interestingly, the hydrophobic stretch of residues 71-82 are required for pathological aggregation of αsyn [START_REF] Giasson | A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly[END_REF] and, therefore, lipid-sensing properties of αsyn and pathological aggregation occur through the same functional domain. It is not clear whether mutation of the N-terminus results in a toxic gain of function or loss of function.

Many cellular functions have been attributed to αsyn and membrane interactions, including soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex assembly and exocytosis; however, the exact cellular function of αsyn remains unclear. [START_REF] Burre | Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation[END_REF][START_REF] Burre | The synaptic function of alpha-synuclein[END_REF][START_REF] Logan | alpha-Synuclein promotes dilation of the exocytotic fusion pore[END_REF] αSyn interacts with SNARE proteins at the vesicle surface. [START_REF] Almandoz-Gil | In situ proximity ligation assay reveals co-localization of alpha-synuclein and SNARE proteins in murine primary neurons[END_REF][START_REF] Lou | alpha-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking[END_REF][START_REF] Sun | Functional cooperation of alpha-synuclein and VAMP2 in synaptic vesicle recycling[END_REF][START_REF] Atias | Synapsins regulate alpha-synuclein functions[END_REF] αSyn binding to membranes promotes SNARE complex formation and may function as a SNARE chaperone protein. [START_REF] Burre | Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation[END_REF][START_REF] Atias | Synapsins regulate alpha-synuclein functions[END_REF][START_REF] Burre | Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro[END_REF] Vesicular membrane-binding promotes the oligomerization of αsyn. [START_REF] Burre | Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation[END_REF] In vitro phospholipids can also increase the rate of pathological aggregation (i.e., β-sheet confirmations) by decreasing lag time of primary nucleation. [START_REF] Galvagnion | Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation[END_REF][START_REF] Gaspar | Reprint of "Ganglioside lipids accelerate alpha-synuclein amyloid formation[END_REF] The effect of lipids on αsyn aggregation is dependent on lipid to protein ratio, with a low ratio promoting aggregation and higher ratio being inhibitory. [START_REF] Chandra | A broken alpha -helix in folded alpha-synuclein[END_REF][START_REF] Bodner | Multiple tight phospholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy[END_REF] This bimodal phenomenon probably results from a lack of monomer available for oligomer elongation when the lipid ratio is too high. Interestingly, increasing αsyn expression, presumably shifting the intracellular lipid to protein ratio, promotes aggregation of αsyn in cells. Notably, it has been hypothesized that reducing monomeric αsyn is an important therapeutic target. [START_REF] Mittal | beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson's disease[END_REF][START_REF] Chu | Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions[END_REF][START_REF] Chatterjee | Proteasome-targeted nanobodies alleviate pathology and functional decline in an alpha-synuclein-based Parkinson's disease model[END_REF] A confusing aspect to the literature is that binding of αsyn to membranes has been reported to both inhibit [START_REF] Narayanan | Membrane binding and self-association of alphasynucleins[END_REF][START_REF] Zhu | Lipid binding inhibits alpha-synuclein fibril formation[END_REF][START_REF] Jo | Alpha-synuclein-synaptosomal membrane interactions: implications for fibrillogenesis[END_REF] and to promote αsyn aggregation. [START_REF] Lee | Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form[END_REF][START_REF] Cole | Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein[END_REF] This may be due to differences in assay conditions between studies, such as membrane lipid composition and αsyn concentration. Indeed, recent studies using lipodomics implicated specific fatty acid oleic acid in the pathogenesis of Parkinson's disease. [START_REF] Fanning | Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment[END_REF] In the model proposed by Fanning and colleagues [START_REF] Fanning | Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment[END_REF] , soluble αsyn binds to oleic acid, effectively sequestering the monomer to lipid membranes and ultimately culminating in pathological aggregate formation. As they also observed an increase in oleic acid in response to αsyn overexpression, there may be a toxic lipid dyshomeostatis that preceeds aggregate formation. Their results suggest a complex origin of synucleinopathy where both lipid metabolism and αsyn are central players.

αSyn may have a more generalized cellular function as an effector of lipid dynamics, and not as a factor of a specific subprocess or pathway. To highlight this concept, consider the curious relationship between αsyn and erythropoiesis (i.e., red blood cell differentiation) for which others have hypothesized αsyn that may have an underlying redundant mechanism in the two cells of different linage. [START_REF] Nakai | Expression of alpha-synuclein, a presynaptic protein implicated in Parkinson's disease, in erythropoietic lineage[END_REF] αSyn is highly expressed in erythrocytes under the control of transcription factor GATA1. [START_REF] Renella | Genetic deletion of the GATA1-regulated protein alpha-synuclein reduces oxidative stress and nitric oxide synthase levels in mature erythrocytes[END_REF]100 During the terminal step of erythropoiesis, α-syn expression dramatically increases and remains elevated in the mature erythrocyte. [START_REF] Nakai | Expression of alpha-synuclein, a presynaptic protein implicated in Parkinson's disease, in erythropoietic lineage[END_REF] αSyn is then found associated with phospholipids and vesicle membranes in the mature erythrocyte. 101 Thus, which of the proposed cellular functions does αsyn perform during erythropoiesis? One likely explanation is that αsyn plays a role in the dramatic intracellular lipid organization, analogous to asymmetric cytokinesis, which occurs prior to the phenomenon of enucleation. Enucleation is the process by which organelles are condensed and extruded from the cell to form a mature erythrocyte. Indeed, just prior to enucleation αsyn can be found associated with lipids of the cell, particularly the nucleus and ER, which are key players in enucleation. αSyn accumulates at the site of nuclear extrusion, 102 suggesting it is directly involved with enucleation lipid dynamics. Concurrently, SNARE machinery is decreased in the erythrocyte, suggesting that the potential involvement of αsyn in lipid dynamics during enucleation is independent of hypothesized SNARE functions. 103 However, if αsyn is involved in this cellular phenomenon, it is non-essential or interchangeable with beta or gamma synucleins, as only minor phenotypic abnormalities of erythrocytes are observed in α-synknockout models. [START_REF] Renella | Genetic deletion of the GATA1-regulated protein alpha-synuclein reduces oxidative stress and nitric oxide synthase levels in mature erythrocytes[END_REF] 

SOLUBLE OLIGOMERS DEVOID OF LIPID

There is good evidence of a naturally occurring metastable soluble αsyn oligomer (i.e., tetramer) that is devoid of vesicle/lipid binding. [START_REF] Bartels | Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[END_REF] However, the existence of a soluble αsyn tetramer is based mostly on results from crosslinking experiments. [START_REF] Bartels | Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[END_REF][START_REF] Nuber | Abrogating native alpha-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease[END_REF][104][105][106] The interpretation of crosslinking experiments is non-trivial. αSyn tetramers are captured when using a permissive chemical crosslinker with spacer arm length (DSG spacer arm length 7.7 Å) and perhaps not with a shorter spacer arm (formalin spacer arm length ~2 Å). 107 A milieu of progressively larger oligomers are formed and captured even when purified recombinant αsyn is incubated with glutaraldehyde. 108 The successful detection of an αsyn tetramer in tissues and cells is dependent on sample preparation conditions and can be detected when cells remain intact prior to crosslinking or when tissue lysates are kept highly concentrated. 107 Indeed, purification of αsyn prevents the detection of a soluble tetramer further suggesting a cofactor is required and this factor is likely of lipid origin. 109 Although the question remains which lipid cofactor might be responsible for the tetramer formation, the tetramer and αsyn-lipid interactions are inextricably linked. This is highlighted when recently a transgenic mouse model (called "3K") of tetramer deficiency was generated by introducing 3E-> K mutations in αsyn's lipid-binding N-terminus. [START_REF] Nuber | Abrogating native alpha-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease[END_REF] These 3K mice exhibit aggressive αsyn aggregation, loss of an apparent tetramer, and a motor phenotype that has some semblance to Parkinson's disease. The lipid-binding domain was mutated in the 3K mice and correspondingly lipid interactions were enhanced [START_REF] Nuber | Abrogating native alpha-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease[END_REF] and similar to what was observed with similar mutations in cells. 110 In both mice and cells, mutated 3K αsyn clustered around vesicles and intact tissue crosslinking captured less soluble tetramer. [START_REF] Nuber | Abrogating native alpha-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease[END_REF]106,110 Was this due to less tetramer or alternatively less soluble tetramer? The results could be explained either way, but if the captured αsyn species is truly an insoluble tetramer, one would expect less detection in the soluble fraction, as the authors observed. Indeed, the results appear to fit a scenario where folding on the vesicular membrane is driving αsyn pathology without the need for a soluble tetramer. (Fig. 1) Detection of endogenous oligomers, including the tetramer, could be explained by compartmentalized αsyn residing on the vesical membrane (Fig. 1). Membrane interactions occur through electrostatic forces between positively charged lysine residues of αsyn and negatively charge phosphate group of lipids. [START_REF] Jo | Defective membrane interactions of familial Parkinson's disease mutant A30P alphasynuclein[END_REF][START_REF] Davidson | Stabilization of alphasynuclein secondary structure upon binding to synthetic membranes[END_REF][START_REF] Jo | alpha-Synuclein membrane interactions and lipid specificity[END_REF]111 Interestingly, the same crosslinking chemicals used to capture tetramers chemically modify lysine side chains of αsyn and neutralize their charge. 112 Chemically modifying the lysine side chains during tissue crosslinking would presumably disrupt membrane binding, because it neutralizes the required electrostatic charge of lysine residues. Therefore, captured oligomers would dissociate from the membrane and would be detected in the soluble fraction, producing the characteristic gel-shift of the αsyn tetramer. 106 To highlight this concept, the neutralization of αsyn charge by chemical cross-linkers is routinely used to enhance the retention of αsyn on polyvinylidene difluoride membranes during western blotting protocols. 112 Together, adjacent αsyn molecules bound to intracellular vesicle surfaces (i.e., compartmentalized) might disassociate into the soluble fraction once chemically modified by the crosslinking reagent. This phenomenon would also help explain why the soluble tetramer has similar intermolecular n-terminal structure as the membrane-bound form.

The apparent soluble tetramer may be stabilized by covalent bonds formed in the oxidative environment of the erythrocyte (i.e., the source from which it was originally isolated). Biochemical characterization of a putative αsyn tetramer was mostly done using erythrocyte derived αsyn. [START_REF] Bartels | Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[END_REF] Erythrocytes have millimolar concentrations of hemoglobin. Hemoglobin oxidatively catalyzes the formation of intramolecular dityrosine bonds resulting in a mixture of αsyn dimers and tetramers. 113 Dityrosine crosslink formation occurs rapidly 113,114 and would likely occur to some extent during αsyn purification from erythrocytes. αSyn in erythrocytes associates with vesicles 101,102 and stable dityrosine αsyn occurs in clinical blood samples. 115 Together, it is probable that stable αsyn oligomers isolated from erythrocytes are due to oxidative crosslinking of adjacent αsyn molecules bound to vesicle membranes. Heat denaturation irreversibly abolished the tetramers α-helix structure, indicating that the captured configuration was not in equilibrium but instead was a stabilized structure originating from the tissue (i.e., vesicle bound). Lipid binding of the tetramer was enhanced when compared with the monomer, further suggesting it retained a lipid-binding confirmation. [START_REF] Bartels | Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[END_REF] Removal of lipids with Lipodex 1000 did not affect the tetramer detection, suggesting the tetramer was not associated with any stabilizing lipid structure. Stabilization of small oligomers via oxidative crosslinking can prevent progressive aggregation and might explain why the stable tetramer appears to resist aggregation. [START_REF] Bartels | Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[END_REF]116 Together, it is likely to be that the stable soluble αsyn tetramer purified from erythrocyte is a covalently stabilized membrane-bound confirmation similar to that captured using exogenous crosslinking agents.

Soluble αsyn oligomers have been detected using several imaging techniques. Förster resonance energy transfer (FRET) is a powerful technique used to determine intermolecular distances between molecules with 1-2 nm spatial resolution. 117 FRET has been employed to study various aspects of αsyn oligomerization mostly in vitro [START_REF] Burre | Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation[END_REF][START_REF] Ferreon | Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence[END_REF][118][119][120] but also ex vivo 121 and in vivo. 122 In vitro, purified αsyn forms distinct oligomer conformers, which then can spontaneously convert to protease resistant and toxic αsynO-β. [START_REF] Cremades | Direct observation of the interconversion of normal and toxic forms of alpha-synuclein[END_REF] Biomolecular fluorescence complementation (BiFC) technique uses fluorescent constructs to determine protein-protein interaction. BiFC constructs have been used to study αsyn aggregation in vivo; 123,124 however, the resolution of this technique cannot differentiate between small oligomers and complex formation (i.e., membrane bound). The method detects diffuse staining in neurons lacking pathology, suggesting either small aggregates or close association of αsyn molecules normally within the cytosol. 124 αSyn comes into close proximity around synaptic vesicles and possibly forms multimers on the membrane. [START_REF] Wang | alpha-synuclein multimers cluster synaptic vesicles and attenuate recycling[END_REF] Other BiFC techniques employing photoactivatable fluorescent molecules can increase the spatial resolution to several nanometers, 125 but this type of imaging has yet to be done with αsyn.

SOLUBLE DISORDERED MONOMER DEVOID OF LIPID

There is also good evidence that αsyn exists predominantly as an intrinsically disordered monomer in the cytosol. [START_REF] Burre | Properties of native brain alpha-synuclein[END_REF][START_REF] Theillet | Structural disorder of monomeric alpha-synuclein persists in mammalian cells[END_REF][126][127][128][129][130] αSyn purified from Escherichia coli behaves as an intrinsically disordered protein with a large stokes radius, 129 which may be why monomeric αsyn appears to have greater mass in some assays. 126 Non-denaturing purification procedures from several tissue sources also produce a disordered monomeric αsyn. 126 A disordered soluble monomer has been observed directly using in-cell nuclear magnetic resonance (NMR) imaging techniques. [START_REF] Theillet | Structural disorder of monomeric alpha-synuclein persists in mammalian cells[END_REF] Fig. 1 Endogenous soluble oligomers are inextricably associated with lipid/vesicle binding. Depicted is an possible explanation for the detection of a soluble αsyn oligomer. In the cytoplasm, αsyn exists in an equilibrium between a disordered slightly compact monomer and membrane-bound α-helix confirmation. The N-terminus of αsyn binds to vesicle membranes via electrostatic interactions and adopts an α-helix structure. αSyn most likely binds to localized areas of vesicle surfaces with lipid-packing defects. Normally, in the cell ~5-10% of αsyn is interacting with vesicle surfaces. The same percentage is also proposed for soluble oligomers. Covalent bonds between adjacent αsyn molecules capture the confirmations bound to the vesicle surface. Covalent modification of amino-acid residue side chains, especially lysine, following chemical crosslinking neutralizes a portion of αsyn charge required for membrane binding. The captured species could then retain the membrane-bound confirmation and enter the aqueous phase for subsequent detection. Thus, endogenous soluble functional oligomers are unlikely, in agreement with several studies. Instead, endogenous oligomers may represent confirmations of membrane-bound αsyn. This hypothesis makes lipid-syn interactions at the membrane a crucial mediator of pathology initiation. DSP dithiobis(succinimidyl propionate), DSG disuccinimidyl glutarate Specifically, investigators transfected cells with recombinant αsyn labeled with [START_REF] Wang | alpha-synuclein multimers cluster synaptic vesicles and attenuate recycling[END_REF] N isotope to monitor individual αsyn molecules within the living cells. Results showed that the majority of monomeric αsyn maintained a disordered confirmation in the cell, while becoming slightly more compact than in free solution, probably due to molecular crowding. [START_REF] Theillet | Structural disorder of monomeric alpha-synuclein persists in mammalian cells[END_REF] The compact structure observed in vivo likely prevents spontaneous aggregation in the cytosol. 131 Although this is compelling evidence that the majority of αsyn in the cell occurs as a disordered monomer, the result does not rule out the existence of a tetramer. A tetramer that existed at low concentration would not be detected and it is possible that the recombinant αsyn behaved dissimilarly to endogenous αsyn. Importantly, this study demonstrated that the majority of αsyn in the cell is cytosolic and monomeric, and suggests that membrane interactions are likely transient and highly dependent on local environment (e.g., nerve terminal). Correspondingly, it would be interesting if αsyn persists as a monomer at axon terminals where it's vesicle interactions are more prominent than in the cell body. [START_REF] Boassa | Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis[END_REF]132 The α-helix conformation αsyn was recently described in HELA cells using FRET, where it was demonstrated that αsyn assumes several confirmations when interacting with vesicle surfaces. 133 Considered together, the majority of αsyn in the cell exists as a relatively compact disordered monomer and adopts an α-helix structure when interacting with vesicle membranes. The native state of αsyn may not include an oligomer, whether free and soluble, or vesicle bound.

ABERRANT VESICLE BINDING PROGRESSES TO PATHOLOGY

Assuming monomeric αsyn is interacting with vesicle membranes, and remains monomeric at the vesicle surface under normal circumstances, how might pathology begin? (Fig. 2). One possible scenario involves vesicle surfaces acting as two-dimensional (2D) reactors that promote pathogenic intermolecular interactions of αsyn. [START_REF] Bodner | Multiple tight phospholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy[END_REF][134][135][136] In the cystosol, αsyn remains monomeric and in a slightly compact configuration. Transient interactions with vesicle surfaces induce a conformational shift, but not necessarily oligomerization, and concentrate αsyn molecules on the vesicle surface. This focal point on the vesicle surface is where opposing αsyn molecules bind and might serve as the molecular origins for Lewy pathology. Numerous cellular and genetic factors converge at this focal point in such a way that creates an environment conducive for the initiation of pathogenic αsyn aggregation. Studies using sonicated αsyn PFFs suggest that once the αsynO-β is present, progressive aggregation and toxicity follow. [START_REF] Luk | Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice[END_REF]137 Yet, studies that utilize PFF's to assess pathology are bypassing pathology generation and may be recapitulating downstream pathological events. Therefore, the use of PFF's to study synucleinopathy is likely to give valuable insight into the progression of these diseases and perhaps are not suitable to study the initiation of the disease.

At the membrane, αsynO-β might act similar to a "molecular shovel" inserting itself into the membrane with destructive, toxic, consequences. [START_REF] Fusco | Structural basis of membrane disruption and cellular toxicity by alpha-synuclein oligomers[END_REF]138 Together with lipid/vesicle interactions at the center of αsyn function, a route to pathophysiology might be the collapse of clustered lipids/vesicles into a pathological inclusion. Similar to a massive star transitioning to a black hole, at some point pathological αsyn and lipids form a critically dense structure, and compact to form a Lewy body. Interestingly, the architecture of the Lewy pathology supports this interpretation. [139][140][141][142][143][144] Neuropathological examination of patient brains shows a mixture of αsyn staining in neurons that consist of a pale diffuse, punctate irregular shape (i.e., uneven distribution), discrete body (i.e., pale body), and a massive dense structure with a pale core (i.e., Lewy body). 139 These structures have been hypothesized to be snapshots of a pathological process with Lewy bodies being the result. Indeed, pale bodies contain a mixture of granular and vesicular structures and are often found near mature LB. 141,145 Using a lipid centric view, punctate irregular "early" pathology might represent the initial vesicle clustering [START_REF] Nuber | Abrogating native alpha-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease[END_REF] or lipid droplet formation [START_REF] Cole | Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein[END_REF] before the characteristic pathology develops. Overexpression of αsyn in yeast models produces lipid only inclusions, lacking the filamentous αsyn that is the hallmark of synucleinopathies. 146 Lipids have been identified as a core component of Lewy pathology [START_REF] Jager | Sphingomyelin in Lewy inclusion bodies in Parkinson's disease[END_REF]147,148 but this has largely been ignored and the pathology is often considered "proteinaceous."

Recent work by Shahmoradian and colleagues 149 provided substantial evidence that Lewy pathology consists of compacted lipid components from a variety of organelles with αsyn oligomers interspersed. Their work strongly suggests that Lewy pathology is actually an inclusion of fragmented lipids, for which αsyn-lipid interactions play a causative role. Ultrastructural characterization of Lewy pathology showed tubule vesicular, fragmented Electron dense structures, consistent with lysosomes, were also observed throughout Lewy pathology. 149 Lysosomes are central mediators of lipid metabolism 150 and the conspicuous presence of lysosomes surrounded by fragmented membrane structures strongly suggests a deficit in lysosomal/autophagic pathways, specifically the removal of lipid membranes. Large-scale genomewide association studies have implicated lysosomal/autophagy pathway in several neurodegerative diseases, including synucleinopathies. 151,152 A lipid-centric view of Lewy pathology is transformative in that it helps unify and identify disease-causing pathology of several molecular origins. Several neurodegenerative diseases are currently characterized by protein aggregation, when instead we may be missing the lipid components that are the core of the pathology. For example, clinical cases resembling synucleinopathies are documented without the presence of Lewy pathology (e.g., Parkin mutations with early-onset Parkinson's disease), as measured by αsyn staining. 153 The presence of lipid inclusions in the absence of αsyn are not generally considered when examining patient tissues.

DETERMINING αSYN-LIPIDS INTERACTIONS IN LIVING CELLS

αSyn interactions with lipids and vesicles has been investigated mostly in vitro and needs to be characterized in living cells. There are several promising strategies to start understanding lipid-αsyn interactions. The first strategy uses synthetic bifunctional lipids to directly determine lipid-protein interactions. 154,155 This strategy offers flexibility with analysis and offers unambiguous evidence of direct αsyn-lipid interactions in vivo. Captured lipid-αsyn molecules can be subsequently labeled or purified for downstream analysis. Labeling the structures will help determine where αsyn-lipid interactions are most relevant in the cell. Purification of the structures with subsequent analysis by liquid chromatography-mass spectrometry could determine specific αsyn proteoforms involved with pathological lipid interactions, as well as global analysis of other proteins that are involved. However, the drawback to this strategy is the investigator can only assess one specific lipid species at a time and a synthetic bifunctional lipid must be available or developed for application. Recently, a bifunctional analog of glucosylceramide, a lipid implicated in synucleinopathy, 156 has become commercially available and could aid in these studies.

A shotgun lipidomic analysis may also be useful, but because of the complexity of whole-cell lipid determination, the data may not give insight into the localized αsyn-lipid interactions that precede pathology formation. Recently, a shotgun lipodomic analysis was conducted on various αsyn mutant models and αsyn was found to have an effect on lipid metabolism. [START_REF] Fanning | Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment[END_REF] However, it is difficult to draw distinct conclusions or find drug targets based on the description of a total lipid species. The resulting information is most useful in implicating lipid metabolism or catabolism pathways, and not the characterization of the specific localized lipids that may be involved with initiating pathology. To find a diseaserelevant target, a focused lipodomic approach looking at specific organelles, or better yet, early Lewy pathology, will be the most illuminating. Lipodomic arrays can also be used to screen many lipid-protein interactions; however, they have the disadvantage of not representing in vivo binding conditions.

A key question remains: at what point during its interaction with cytoplasmic membranes and extracellular vesicles does αsyn adopt a pathological confirmation? To answer this question, one needs to consider the membrane as a chemical reactor favoring molecular encounters. 134 This is the consequence that restrains monomeric or low-molecular-weight oligomeric αsyn diffusion from a three-dimensional to a 2D space upon interaction with the plasma membrane or extracellular vesicles plane.

CONCLUSIONS

Evidence for a soluble αsyn oligomer might be best explained by folding intermediates on the plasma or vesicle membranes that remain soluble for subsequent extraction and detection. This interpretation does not require a soluble functional oligomer and seems to fit much of the experimental data. The distinction between a soluble native oligomer and vesicle-bound oligomers/ folding intermediates is important, because it clarifies the origins of pathological aggregation of αsyn. With this perspective, determining the molecular details of αsyn-vesicle/lipid interactions is important for understanding the endogenous origins of synucleinopathy. Although there is consensus that aggregation of αsyn is associated with neurological disease, the precise molecular origin of the aggregate pathology remains a mystery.

Fig. 2

 2 Fig. 2 Potential role of lipids in αsyn aggregate pathoetiology. In the cell, αsyn is partitioned between aqueous phase and the lipid phase via transient interactions at the vesicle surface. Endogenous αsyn probably exists in several states, including a compact monomer and a vesiclebound monomer with an N-terminal α-helix structure. Folding αsyn monomers on the vesicle surfaces likely plays a non-essential or redundant role in vesicle dynamics. β-Sheet confirmation of αsyn may begin at vesicle surfaces. Toxic effects of β-sheet oligomers included vesicle permeabilization or the formation of toxic mixed lipid-protein structures. Pathology initiation might involve specific configurations of αsyn folding onto a variety of membranes. Altered lipid-sensing properties by known disease-causing mutations (e.g., A30P, E46K, and A53T) might alter the affinity of αsyn for certain vesicle lipid components (depicted as yellow and red circles), or change the spatial arrangement of αsyn molecules on the vesicle surface. Resulting β-sheet oligomers may have different toxic or prion-like properties based the physiochemical details of the initial pathology development
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