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Abstract 

Q-Switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties 

(absorption coefficient, scattering coefficient and its anisotropy) of a paint are determined with a 

multiple scattering model (3-flux model), and from measurements of reflection - transmission of light 

through thin layers. The energy deposition profiles are calculated at wavelengths 532 nm and 

1.064 µm. They are different from those described by a Lambert - Beer law. In particular, the energy 

deposition of the laser beam is not maximum on the surface but at some depth inside the medium. 

The ablated rate was measured for the two wavelengths, and compared with the energy deposition 

profile predicted by the model. This allows to understand the evolution of the ablated depth with the 

wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold 

fluence of ablation decrease. 
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Introduction 

Several studies were devoted on the laser ablation of paint for decontamination processes in 

the nuclear industry [1 - 7]. Nuclear dismantling faces the problem of paint removal on large surfaces 

of painted walls. The conventional methods for paint stripping on concrete walls are mainly based on 

mechanical grinder and lead to an important volume of aerosols and wastes. Laser ablation has been 

evaluated as a promising method for paint removal with a number of advantages: the method reduces 

considerably the waste volume as the removal of paint is selective, the ablated matter can be collected 

by aerosol aspiration/filtration, and the automation of the process can provide a higher personal 

safety.  

Laser ablation is a complex phenomenon, involving the fast heating of the material and its 

ejection. The effects of the laser beam parameters on the ablation rate, as the fluence, the 

wavelength, the pulse duration and the repetition rate, have been studied and described in the 

literature [4 - 8]. However, paints are complex materials, including polymer properties and oxides 

(pigments) properties, and the ablation process is not completely understood. This paper focuses on 

the first step of the laser-matter interaction, which is the energy deposition of the laser beam in the 

material. From the energy deposition in depth profile, the laser ablation properties, i.e. the threshold 

fluence, the ablated rate and the ablation efficiency, will be analysed.  

Paint is a turbid medium. The multiple scattering of the light in the bulk leads to a particular 

energy deposition of the laser beam in the medium, which differs from the Lambert - Beer law. In 

particular, overheating inside the bulk were predicted [9] and measured [10]. The laser ablation 

efficiency and optical properties of a turbid medium were already compared [11] for sintered 

polytetrafluoroethylene. Other works are reported for the ablation of tissue [9, 12]. However, for paint, 

no study relates to the characterization of the energy deposition, compared to the ablation rate, 

despite that optical properties are characterized for studies in conservation [13], on solar panels [14 - 

17], on the ageing of paint in space [18], or on the scattering of light by pigments [19, 20]. 

Nd:YAG laser ablation of a grey epoxy paint, at wavelengths 532 nm and 1.064 µm, are 

presented in this paper. The absorption coefficient, scattering coefficient and its anisotropy are 

determined with a 3-flux model and from optical measurements of transmitted and diffuse flux. The 

measured parameters and the model allow calculating the energy deposition profile. The ablation rates 

are measured for the two wavelengths, and compared with these specific energy deposition profiles. 
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3-flux model 

The 3-flux model [21, 22] is applied to describe the light propagation in a turbid medium and to 

determine the energy deposition profile. The fundamental principles of the model are presented below:  

One considers the flux F1, representing the laser (collimated) beam travelling in the positive 

direction + z in a turbid medium. Within a differential distance dz, the collimated flux can be transferred 

in diffuse flux in the same direction (F2) and in the opposite direction (F3), and the diffuse flux F2 and F3 

can be exchanged (cf. Figure 1). Five parameters are introduced: k, the absorption coefficient of the 

collimated flux; K, the absorption coefficient of the diffuse flux; S1, the scattering coefficient from the 

collimated flux to the diffuse flux in the direction + z; S2, the scattering coefficient from the collimated 

flux to the diffuse flux in the direction – z; and S, the scattering coefficient from a diffuse flux to the 

other. 

The 3-flux equations are: 
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These equations are one-dimensional, which imposes that the laser beam diameter is much 

larger than the thickness e of the medium, 1/k or 1/S, which represent characteristic absorption length 

and diffusion length respectively. Solutions to this set of equations are: 
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Coefficients C1, C2 and C3 are determined from the boundary conditions at z = e and z = 0. C1 

represents the laser flux penetrating into the medium. One imposes C1 = 1. C2 and C3 are determined 

from the reflections at the interfaces. They are calculated as being: 
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The reflection coefficients for the diffuse flux at the interfaces z = 0 (R0) and z = e (Re) 

correspond to an average value of the reflection for angle of incidence between 0 and π / 2. The 

reflection of the collimated beam at the interface z = e is supposed negligible (< 5% in our case). 

The measured reflection and transmission of the light through thin layers are distinguishable in 

3 coefficients: the diffuse reflection Rdiffuse, the diffuse transmission Tdiffuse and the transmission of the 

collimated beam Tcollimated. The diffuse reflection represents only the bulk reflection. The surface 

reflections (e.g. the specular reflection) are not considered (one supposed with C1 = 1 that the total 

laser beam energy penetrates in the medium). We have: 

      Rdiffuse = F3(0) – F2(0)     (5) 

Tdiffuse = F2(e) – F3(e) 

  Tcollimated = F1(e)       

The unknown parameters k, K, S, S1, S2 can be resumed to 3 unknown parameters. The 

reference [21] showed that the absorption of the diffuse flux is close to twice the absorption of the 

collimated flux: K ≈ 2 k. This difference is related to a larger optical path of the diffuse flux compared 

to the collimated flux, according to the axis z. The coefficients S1 and S2 are in relation with the phase 

function p(cos θ) [22], which describes the angular properties of the scattering. The phase function is 

normalised as: 
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with θ the angle between the direction of the incident beam and the scattered beam. By introducing 

the global scattering coefficient s, we have: 

s = S1 + S2.       (7) 
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S1 expresses the forward diffusion, i.e. the whole light scattered by a particle and propagating 

in the positive half space +z: 
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And, S2, for the negative half space: 
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If we express the phase function as a series of Legendre polynomials Pn (cos θ), as 
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Thereafter, one considers only the first order of the development in the equation (10), (i.e. 

parameter g1), because the other terms are negligible compared to it, or are divided by a more 

important factor as seen in (11). The reference [21] showed that coefficients S and s are related as:  

S = s (3 g0 - g1) / 4      (13) 

Since the values of the three unknown parameters k, s, and g1, representing the absorbing 

coefficient, the scattering coefficient and its anisotropy, are determined, the energy deposition profile is 

calculated as: 

321 KFKFkF)z(M ++=      (14) 

The energy deposition profile is related to the heat source term Q(x, y, z, t) usually introduced 

in the heat equation to calculate the temperature evolution of the material [8], as Q(x, y, z, t) = (1-R) 

M(z) I0(x, y, t), with R the reflection at the surface. For non-scattering semi-infinite matter, the energy 

deposition profile is normalised as: 
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Relation (15) can’t be used with the relation (14), because one part of the laser beam is 

reemitted from the surface as a diffuse reflection (coming from the backward flux F3). For the relation 

(14), with a semi-infinite medium, one have: 

diffuse
0
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∞

            (16) 

The parameters k, s and g1 must be known to calculate the energy deposition profile. They 

can be determined from measurements of the diffuse reflection, diffuse transmission and collimated 

transmission of light through thin layers. 

 

Measurement of the optical properties of the paint 

Homogeneous thin layers of paint of a few tens of micrometers were realised to measure the 

diffuse reflection, diffuse transmission and collimated transmission of a laser beam. The thin layers 

were fabricated by "spin coating", on a transparent polycarbonate substrate (lexan). A characteristic 

profile of the thin layers is given on figure 2.  

The diffuse reflection, collimated transmission and diffuse transmission are measured with an 

integrating sphere “Labsphere” and a sensor “Centronic TO5”. The internal reflection coefficient of the 

integrating sphere was calibrated before the measurements. Two lasers are used for measurements: a 

He:Ne laser at λ = 543.5 nm, and a Nd:YAG laser at λ = 1.064 µm. Results are supposed to be the 

same at the wavelength λ = 532 nm and the wavelength λ = 543.5 nm. The 3-flux model parameters k, 

s and g1 are fitted from the experimental results. At λ = 543.5 nm, the measurements and the 

theoretical transmissions and reflections as a function of the thickness of the paint are presented on 

figure 3, with the best fitted parameters s = 1.8×105 m-1, k = 1.2×104 m-1, g1 = 1.45. In the same way, 

the transmissions and reflection as a function of the thickness of the paint are presented on figure 4 at 

λ = 1.064 µm, with the best fitted parameters s = 9×104 m-1, k = 9×103 m-1, g1 = 1.8.  

The scattering coefficient is twice more important at λ = 543.5 nm than at λ = 1.064 µm. This is 

due to the diameter of the scattering pigments (TiO2). One can estimate the scattering coefficient of 

the medium by taking into account the mean diameter of the particles, measured to be close to 

350 nm, and with the volume proportion ~ 0.8 %. The ordinary index of refraction of TiO2 (n0) is 2.66, 

and the extraordinary index of refraction (ne) is 2.96 at 543 nm [23]. By assuming that TiO2 is isotropic, 

its index of refraction is calculated as nTiO2 = (2n0 + ne) / 3 = 2.76 at 543 nm. In the same way, the 
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index of refraction of TiO2 is 2.57 at 1.064 µm. From these values, the scattering coefficient of the 

medium is calculated as the scattering coefficient of a single particle multiplied by its volume 

proportion in the material. The scattering coefficient of a single particle is calculated from the Mie 

theory [22], with the refraction index of the polymer measured as being close to 1.5 for both 

wavelengths. That gives s ≈ 1.6×105 m-1 for λ = 543.5 nm and s ≈ 7×104 m-1 for λ = 1.064 µm. These 

values should be understood as estimations, because of the complexity of the medium, but they are 

closed to the ones obtained from the measurements and the 3-flux model. 

The absorption coefficient is nearly the same for the two wavelengths. It’s due to the 

absorbing pigments (carbon particles) that are completely opaque to the laser radiation. Thus, no 

difference is expected between the two wavelengths, which is well verified from the measurements 

and the 3-flux theory. 

Finally, figure 5 represents the energy deposition profile M(z) in a semi-infinite medium 

calculated from the 3-flux model and the previous optical parameters for the two wavelengths. 

 

Laser ablation 

The ablation of the paint was performed with Q-switched Nd:YAG lasers. The pulse duration is 

80 ± 10 ns (FWHM), the repetition rate 20 Hz, and the wavelengths λ = 1.064 µm and λ = 532 nm. The 

spatial distribution of the beam intensity was homogenised by a multimode optical fibre. Details of the 

systems are presented in the reference [5]. The crater depths and spatial profiles are measured with a 

profilometer (MAHR) with a mechanical sensor (MFW-250). The depth resolution of the measurements 

is better than 1 µm. The crater spatial profiles are directly correlated with the beam profile (flat top, 

with the same diameter that the laser beam), as seen on figure 6. Thus, the presented crater depths 

are an average value of the depth measured in different zones of the craters.  

The craters depth evolution with the fluence is presented on figure 7. The depth is proportional 

to the number of applied pulses in the whole studied range (3 - 100 pulses). The threshold fluence is 

1.7 J cm-2 at λ = 1.064 µm and 1.2 J cm-2 at λ = 532 nm. Over this fluence, the ablated depth increases 

until reaching a saturation. The maximum available depth is higher at λ = 1.064 µm (13 µm / pulse) 

than at λ = 532 nm (6.5 µm / pulse). 
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Discussion 

The thermal conductivity of the paint was estimated as being D = 0.03 cm2 s-1 [7]. The thermal 

diffusion length during the laser pulse Dt  ≈ 0.5 µm is low compare to the optical penetration depth 

(~ 10 µm), which involves that the thermal diffusion during the pulse can be neglected. Thus, the 

ablation depth should be related to the profile of the energy deposition M(z) in the material. The 

ablation threshold fluence should depend on the laser energy deposited on the surface, and the 

ablated depth should depend on the optical penetration depth. Figure 5 shows that the maximum of 

the energy deposition is not located at the surface but inside the medium. By increasing the scattering 

coefficient from s = 0.9×105 m-1 (λ = 1.064 µm) to s = 1.8×105 m-1 (λ = 532 nm), the total quantity of 

energy absorbed in the medium ∫
∞

0

dz)z(M  decreases, the penetration depth decreases, and the 

maximum of the energy deposition increases. This can be also seen on Figure 8 where the energy 

deposition in a medium with a constant absorption coefficient k = 1×104 m-1 is calculated for different 

scattering coefficient ranging from s = 1×104 m-1 to s = 1×106 m-1 (g1 = 0). 

Table 1 compares the energy deposition in the paint with the maximum available ablation 

depth and with the threshold fluences, for the two wavelengths. The energy deposition profile is 

characterized by the penetration depth, defined as zM(0) / e, and by the position of the maximum of the 

energy deposition zMmax (cf. notation on figure 5). zM(0) / e is the depth at which the energy deposition is 

equal to 1/e of the energy deposition at the surface. The value of the energy deposition is represented 

by the terms M(0) and Mmax. One notices that a proportional relation is found between these values 

and the ablation measurements: by decreasing the penetration depth of a factor ~ 1.9 between 

1.064 µm and 532 nm, the ablation depth decreases by a factor 2. Moreover, by decreasing the value 

of the energy deposition at the surface (or close to the surface) by a factor ~ 0.6, the threshold fluence 

decreases of a factor ~ 0.7. The same proportionality is obtained by considering the position of the 

maximum of the energy deposition zMmax and the value Mmax instead of zM(0) / e and M(0). The 

maximum available ablation depths are close to the depths of the maximum of the energy depositions 

zMmax for both wavelengths. 

Thus, one highlights that the maximum ablation depth is more important with a low scattering 

material, as well as the global absorbed energy. However, the maximum ablation efficiencies (i.e. the 



 9

ablated volume per joule) are nearly the same for the two wavelengths. The ablation efficiencies are 

presented on figure 9. Because the craters have flat top profiles with the same diameter as the laser 

beam, the ablation efficiency (mm3 J-1) is the depth per pulse, presented on figure 7, divided by the 

fluence. The maximum efficiency is close to η = 0.25 mm3 J-1, for the fluence F =  2.2 J cm-2 at 532 nm 

and η = 0.22 mm3 J-1 for the fluence F = 3.5 – 4.5 J cm-2 at 1.064 µm. These similar efficiencies can be 

well understood by the modelling of the laser beam energy deposition in the bulk: the increase of the 

scattering of the paint from the wavelength 1.064 µm to 532 nm decreases the ablation threshold at 

the same time that the ablated depth decreases. Of course, for industrial application of a 

decontamination process, the wavelength λ = 1.064 µm should be highlight, because the available 

power is higher than at λ = 532 nm, for similar cost.  

 

Conclusion 

Nd:YAG laser ablation of a turbid medium (paint) was studied at the wavelengths 1.064 µm 

and 532 nm. The paint scattering and absorption coefficients were determined with a 3-flux model and 

from measurements of optical transmission and reflection of light through thin layers. The energy 

deposition profiles were calculated with the obtained optical parameters and compared with the 

ablation depth and ablation threshold. Variation of the threshold fluence and maximum available 

ablation depth per pulse with the wavelength are well explained by the energy deposition profile. More 

particularly, one observes that a higher scattering coefficient decreases the total absorbed energy, 

decreases the penetration depth, and increases the maximum of the energy deposition. This leads to 

lower threshold fluence and lower ablated depth. Thus, for this paint, the ablation efficiencies are 

similar for the two wavelengths. Additional experiments and studies will be performed on the link 

between the absolute value of the ablation rate and the energy deposition profile. In particular, the 

influence of the overheating inside the bulk due to the multiple scattering will be studied in future work. 
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Table 

 

 

Table 1: Comparison between the energy deposition, the ablation depth and the threshold fluence for 

the two wavelengths. 

 

 M(0) (m-1) Mmax (m-1) 
Threshold 

fluence (J cm-2) 
zMmax

 (m) 
Absorption depth 

M(0) / e (m) 

Maximum ablated 

depth (µm) 

1.064 µm 1.43×104 1.72×104 1.7 8×10-6 5.2×10-5 13 

532 nm 2.28×104 2.64×104 1.2 4.1×10-6 2.84×10-5 6.5 

1.064 / 532 0.63 0.65 1 / 0.71 1.95 1.83 2 
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Figures captions 

 

Figure 1: Scheme of the 3-flux model. 

 

Figure 2: Characteristic profile of a thin layer. 

 

Figure 3: Collimated transmission, diffuse transmission and diffuse reflection for various thicknesses 

at λ = 532 nm. Lines: 3-flux model with s = 1.8×105 m-1, k = 1.2×104 m-1, g1 = 1.45. Symbols : 

Experimental results. 

 

Figure 4: Collimated transmission, diffuse transmission and diffuse reflection for various thicknesses 

at λ = 1.064 µm. Lines: 3-flux model with s = 9×104 m-1, k = 9×103 m-1, g1 = 1.8. Symbols : 

Experimental results. 

 

Figure 5: Energy deposition profile in the paint at λ = 1.064 µm (s = 9×104 m-1, k = 9×103 m-1, g1 = 1.8) 

and λ = 532 nm (s = 1.8×105 m-1, k = 1.2×104 m-1, g1 = 1.45) from the 3-flux model.  

 

Figure 6: Typical crater profile, obtained at F = 4 J cm-2, λ = 1.064 µm, 10 pulses.  

 

Figure 7: Ablated depth per pulse as a function of the fluence for λ = 1.064 µm and λ = 532 nm.  

 

Figure 8: Energy deposition profile from the 3-flux model with k = 1×104 m-1, g1 = 0, and for various s.  

 

Figure 9: Ablation efficiencies as a function of the fluence for the two wavelengths.
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Figure 4 
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Figure 5 
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Figure 6: 
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Figure 7 
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Figure 8 
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Figure 9 

 

 

 


