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Blowing impact on a hot turbulent boundary

layer - I. Experimental study
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Abstract

We present an experimental study of non-isothermal blowing through a porous flat

plate using hot and cold wires anemometry. The calibration procedure is presented,

taking into account the influence of the temperature. King’s law coefficients are de-

termined and a cosinus method is employed to calibrate the angle of the cross wires.

A first set of measurements permits to investigate the influence of the temperature

on the hot wire and the Seebeck effect on the cold wire. The experimental results

are presented. We observe that blowing has a strong influence on the velocity and

temperature profiles as well as on the velocity-velocity and velocity-temperature

correlations and on the flow statistics. The velocity and temperature spectra are

also given, showing that their slopes are modified by the blowing.

Key words: hot and cold wires anemometers, non-isothermal blowing,

velocity-temperature correlations, turbulent boundary layers
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1 Nomenclature

A, B King’s law coefficients

E Voltage, V

F Blowing rate (injection rate), %

FU , FV , FT Flatness factors

f Frequency, Hz

fft Fast Fourier Transform

H(f) Frequency response

I King’s law exponent

k Parameter

L Wires length, m

n Amperage, A

R Resistance ,Ω

St Temperature sensibility coefficient of the wire, V.K−1

Su Velocity sensibility coefficient of the wire, V.s.m−1

∗ Corresponding author. Present address: PROMES/CNRS - Rambla de la thermody-

namique - Tecnosud - 66100 Perpignan - France. Tel : +33 4 68 68 22 32. Fax : +33 4 68

68 22 13.

Email address: Francoise.Daumas-Bataille@univ-perp.fr (F. Bataille).
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SU , SV , ST Skewness factors

U Velocity, m.s−1

Ue Effective velocity, m.s−1

U⊥ Orthogonal velocity, m.s−1

U‖ Parallel velocity, m.s−1

u, v, w Velocity components in x, y, z directions, m.s−1

x, y, z Cartesian coordinates, m

α Temperature coefficient, K−1

αi Angle between the lab vertical and wire i direction, o

δ Boundary layer thickness, m

ρ Density, kg.m−3

Subscripts and superscripts

∞ Variable related to the flow far from the wall (main hot flow)

inj Variable related to the injected fluid (cold fluid)

hw Variable related to the hot wire

m Mean value

rms Root mean square value

w Value at the wall
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2 Introduction

The protection of materials is a topic that has important applications in particu-

lar in aeronautic technology. For example, the combustion efficiency increases with

the gas temperature and the walls have to be protected. Several techniques enable

this protection such as ablation, film cooling or blowing. Ablation consists of the

sublimation of a thin protective layer added on the surface of the wall. Film cool-

ing can be obtained by a discrete injection of cold fluid, which forms a film above

the wall. Blowing is an injection of cold fluid through a porous element inserted

into the wall, which permits an homogeneous cooling and a reduced consumption

of coolant. Besides, film cooling and blowing are also considered in aeronautics for

de-icing purpose [8]. In this paper, we will focus on the cooling of a flat plate using

non-isothermal blowing.

Blowing through a flat plate or a cylinder has been studied both experimentally [2,

18] and numerically [1, 4, 10, 11, 15, 16] for many years but also more recently. The

present work is the continuation of several previous research works conducted at

the Centre Thermique de Lyon. Blowing has first been studied in the plane config-

uration, with both RANS (Reynolds Averaged Navier Stokes) simulation methods

and classical experimental measurements [2]. It allowed to obtain friction and heat

transfer coefficients, as well as mean velocity and temperature profiles. Then the

impact of blowing through a porous cylinder on the flow around this cylinder has

been investigated [9] and the effect of blowing on the boundary layer, on the shear

layer and on flow instabilities was studied [10, 11].

Nevertheless, in all the above studies, only the influence of the blowing on the mean

quantities was determined. This aspect is very important but needs to be com-

pleted by the knowledge of the turbulent fluctuations behaviour when blowing is

applied. In particular, it is now well known that the temperature fluctuations can
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damage the walls. Consequently, when a wall has to be protected, two aspects have

to be taken into account: the mean wall temperature and the level of the temper-

ature fluctuations. To our knowledge, no existing paper deals with the influence

of non-isothermal blowing on the turbulent fluctuations, especially on the double

correlations (velocity-velocity and velocity-temperature).

The aim of this work is to provide a better knowledge of the influence of cold blowing

on a turbulent hot boundary layer. These experiments will also permit to validate the

developments conducted in the modelling and numerical study of the blowing using

Thermal Large Eddy Simulation (see Part II). The particularity of this experimental

study is to provide velocity-velocity and velocity-temperature correlations as well

as velocity and temperature spectra for a large range of blowing rates at a high

Reynolds number. For this purpose, we will use a triple wires probe with two hot

wires and a cold one, as well as a high sampling frequency.

First, the experimental facilities are described in section 2. Then the calibration

techniques used for the hot and cold wires are presented and explained in details

in section 3. We focus, in particular, on the influence of the temperature upon the

hot wire signal and on a quite simple way to take this effect into account in the

calibration law. Finally, the cold and hot wire anemometers are used to measure

the impact of cold blowing on the hot turbulent boundary layer in section 4. We

present results concerning the velocity and temperature fluctuations profiles but

also the velocity-temperature correlations and the flow statistics in order to better

understand the efficiency of the blowing process.
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Fig. 1. Heated wind tunnel.

3 Experimental facilities

3.1 Wind tunnel

In the present study, we focus on the blowing process and its impact on a hot

turbulent wall flow. Experiments are conducted in a heated subsonic wind tunnel

with a rectangular test section of 0.2 m x 0.5 m (see Fig. 1). A boundary layer

first develops along a 1.3 meters long impermeable wall (see Fig. 2). Then, this

turbulent boundary layer flows over a porous wall of dimensions 20 cm x 30 cm. At

the beginning of the impermeable plate, a small cylinder of 2 mm diameter is placed,

which permits to trigger the turbulent transition of the boundary layer at a fixed

location in the wind-tunnel.

The secondary air flow is injected uniformly through the porous wall thanks to a

plenum located below the plate. The injected mass flow rate is measured using a

pressure-reducing orifice. The porous material is composed of sintered-stainless-steel

and has a porosity of about 30 %. The average diameter of the pores is about 20 µm

and the average surface roughness of the plate is nearly 5 µm.

6



The main flow velocity can be adjusted within the range of [0, 30] m.s−1 and the

velocity residual has been measured to be always below 1 % in the mainstream (see

[14] for more details). In this study, we choose a main velocity of U∞ = 10 m.s−1

(which corresponds to a Reynolds number of about 750, 000 at the beginning of the

porous plate). The main flow temperature can vary from the ambient to 500 K thanks

to a 120 kW electrical heating generator. Thermal control is ensured by heating

needles driven by a PID regulator. The temperature gap between the hot flow and

the cold one is chosen to satisfy two main constrains. First, we want to validate our

anemometry measurements set-up with a moderate temperature difference. In fact,

the hot wire response is very sensitive to the temperature and the measurements are

largely biased if no well-adapted temperature correction is applied. Furthermore, we

want to use our experimental results to validate our large Eddy Simulations. As the

theoretical approach is based on the Boussinesq approximation, the numerical results

are not valid for a temperature difference greater than 30 K for air. Consequently,

the main flow temperature T∞ is set to have a temperature difference between the

main flow and the injected one, ∆T = T∞ − Tinj, equal to 20 K. The temperature

fluctuations are measured to be less than 0.2 K in the mainstream.

The blowing ratio, or injection rate, F , represents the amount of coolant injected in

comparison to the main flow rate. It is defined as:

F =
ρinjUinj

ρ∞U∞

(1)

where ρ is the density, U the velocity, subscript inj refers to the injected fluid and

subscript ∞ to the main fluid.
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3.2 Velocity and temperature measurements

Cold and hot wires anemometry is used to measure the temperature and velocity

signals but also the temperature-velocity and velocity-velocity correlations. We con-

sider a triple wires probe with one cold wire and two crossed hot wires. The cold

wire is mounted on a Dantec 55P01 type support and is a 1 µm diameter Pt/Rh

(10 %) Wollaston wire, with about 1 mm long sensitive wire. A cross support (Dantec

55P51) is used for the hot wires, which are 5 µm diameter Pt/Rh (10 %) Wollaston

wires, with about 1 mm long sensitive wire. A mechanical system enables the wire

supports to stand together and close. The wires are disposed as shown in Fig. 3.

It permits to measure the longitudinal (u) and vertical (v) velocity components at

the same place than the temperature. Note that the wires are separated by about

1 mm, which permits to neglect the influence from one wire to another. In order to

minimize the effects of space integration induced by finite dimensions of both cold

and hot wires, they are placed parallel to the wall, along the transverse direction

(z) that is an homogeneity direction of the turbulent flow. The probes are fixed on

a traversing mechanism allowing to move them in the direction normal to the wall

with an accuracy of 10 µm.

The hot wire probe is driven by a 90C10 CTA Dantec module and the cold wire probe

by a 90C20 CCA Dantec module. Data are acquired through an AT-MIO-16E10
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Fig. 3. Three wires support disposition (Dantec 55P51 and 55P01).

National Instruments A/D card. Hot-wires probes are calibrated in velocity with a

Pitot tube combined with a high sensitivity Furness FCO332 differential pressure

transmitter. Its accuracy is better than 1 % of the measured value throughout its

[0 − 100] Pa range with a 0.1 Pa resolution. The cold wire probe is calibrated using

a miniature Pt100 probe (PTFC101A) of 0.01 K accuracy. The wall temperature

is measured with a K-type thermocouple welded onto the surface. Using an IR

camera, it has previously been proved not to disrupt the temperature field of the

porous surface [2].

As the frequency response of the cold wire is not ideal, we have to correct the

temperature signal given by the wire. Taking into account many works on cold wire

response [12, 13, 17] and our wire characteristics, we have estimated the frequency

response H(f) of the probe [3]. Then, the measured temperature spectrum is directly

corrected by this function H(f). The profiles of the temperature fluctuations are

divided by a factor H = 0.89, which is calculated so that:

H
2

∫ ∞

0
T̂ 2(f) df =

∫ ∞

0
H2(f)T̂ 2(f) df (2)

where the temperature spectrum T̂ (f) has been measured in our configuration to

be representative of our temperature measurements.
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4 Wires calibration methods

4.1 Cold wire calibration

For the calibration of the cold wire, the voltage is assumed to vary linearly with the

wire temperature, which can be considered to be equal to the temperature of the flow

rounding the wire (theoretically there is less than 0.04K difference for that wire in

our configuration). The linearity has been checked in our configuration (I = 0.1 mA,

R = 100.3 Ω). We measure a sensitivity ∂E/∂T = 3.15 10−2 V.K−1, which leads to

a temperature coefficient of α = 1.57 10−3 K−1 (to be compared with the tabulated

value at 293 K: αo = 1.60 10−3 K−1). With the 12 bits A/D card within [0, 10] V,

the sensitivity of the temperature measurement can be estimated to 0.02 K.

4.2 Hot wires calibration with velocity and temperature

In the main flow, pressure variations within the boundary layer are negligible in

comparison with the density variations due to the temperature gradient normal to

the wall. Thus, the hot wire response is mainly sensitive to the local velocity and

temperature of the flow. Fig. 4(a) shows an example of calibration curves obtained

for various values of T∞. These measures give a calibration law in agreement with

King’s law [7]:

E2
hw = A(T ) + B(T )Un (3)

where A, B and n are King’s law coefficients. These coefficients are determined

using a least squares minimizing method. As the coefficients depend on each other,

an iterative technique is employed. The exponent n varies within [0.45, 0.48] and

variation laws of the coefficients A and B are difficult to model. Consequently, as
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noticed by [5], we fix the exponent n independently of the temperature and the

mean value calculated for all the temperatures is retained. We then fix n to a value

of 0.46 for the first wire and 0.47 for the second one. Using these values for n, the

coefficients A and B are calculated, for each value of the mean temperature, with

the iterative least squares method and are observed to vary linearly with the flow

temperature (see Fig. 4(b)). Note that the error between the calculated values and

the linear law is lower than 0.5 %. For the wire i (i = 1 or i = 2), the evolution of

Ai and Bi is written: Ai = Ai;0 + Ai;1 T and Bi = Bi;0 + Bi;1 T . The values of all the

coefficients are given in Table 1.

For the angle calibration of the crossed hot wires, a cosinus method [6] is employed.

King’s law is written using an effective velocity defined as:
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hot wire 1 hot wire 2

n1 = 0.46 n2 = 0.47

α1 = 49.3 o α2 = 49.7 o

k1 = 0.17 k2 = 0.15

A1;0 = 4.15V2 A2;0 = 4.32V2

A1;1 = −8.78 10−3 V2.K−1 A2;1 = −9.63 10−3 V2.K−1

B1,0 = 0.529V2.s0.46.m−0.46 B2,0 = 0.629V2.s0.47.m−0.47

B1;1 = −0.97 10−3 V2.s0.46.m−0.46.K−1 B2;1 = −1.20 10−3 V2.s0.47.m−0.47.K−1

Table 1

Calibration coefficients for the two hot wires.

U2
e = U2

⊥ + k2U2
‖ (4)

where U⊥ and U‖ are respectively the orthogonal and parallel velocity as far as

the wire axis is considered. If αi is the angle between the lab vertical and wire i

direction, the angle calibration with a least square minimization method leads to

the coefficients values given in Table 1.

4.3 Velocity components determination

Due to the non-linearity of the equation between the velocity components expressed

in the laboratory referential and in the wire referential, the inversion is not obvious

and the difficulty comes from the introduction of the ki parameters. Without these

latters, one can write:
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Ue,1

Ue,2




= M.




U

V




(5)

where M is defined as:

M =




cos α1 sin α1

− cos α2 sin α2




(6)

Consequently, we can express the velocity in the lab referential by inversion of the

matrix M .

When parameters ki are considered, it leads to the following equations:





U2
e,1 = a1U

2 + b1UV + c1V
2 (7)

U2
e,2 = a2V

2 + b2V U + c2U
2 (8)

where a1,2, b1,2 and c1,2, are defined as:





a1 = (cos α1)
2 + k2

1(sin α1)
2 (9)

b1 = 2(1 − k2
1) cos α1 sin α1 (10)

c1 = (sin α1)
2 + k2

1(cos α1)
2 (11)

a2 = (sin α2)
2 + k2

2(cos α2)
2 (12)

b2 = 2(k2
2 − 1) cos α2 sin α2 (13)

c2 = (cos α2)
2 + k2

2(sin α2)
2 (14)

When considering V constant (resp. U constant) in Eq. (7) (resp. in Eq. (8)), one

obtains a second order equation with two real solutions. But in both cases, only
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one solution has a physical basis and, as a consequence, it leads to the following

expressions of U and V :





U =
−b1V +

√
b2
1V

2 − 4a1(c1V 2 − U2
e,1)

2a1

(15)

V =
−b2U +

√
b2
2U

2 − 4a2(c2U2 − U2
e,2)

2a2

(16)

An iterative method is employed to determine U and V with an initialization of

the method with the solution calculated for ki = 0. We observe that the calculation

rapidly converges after four or five iterations.

5 Preliminary measurements

5.1 Influence of the temperature on the hot wire

As noticed before, the temperature has an impact on the hot wires responses. This

influence can be estimated by the sensitivity coefficients of the hot wires. In fact,

we can estimate the change in the velocity induced by the temperature gap of our

configuration (∆T = 20 K) by:

St∆T/Su ' 4 m.s−1 (17)

where St = ∂E/∂T and Su = ∂E/∂U are the temperature/velocity sensibility coef-

ficients of the wire. Therefore, the temperature correction of King’s law coefficients

appears very important here.

The study of the temperature influence on the hot wires in our configuration shows

very little differences on the mean velocity profiles. In contrast, the velocity fluctu-
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ations are significantly underestimated without the correction of the coefficients A

and B to take the instantaneous temperature into account. We have reported on

Fig. 6(a) the velocity fluctuations profiles for three injection rates when considering

the instantaneous temperature correction for King’s coefficients (A(T ) and B(T ))

or not (A(Tm) and B(Tm)). In the latter case, King’s coefficients are taken at the

mean temperature Tm calculated at each wire position in the boundary layer during

a separate set of measurements. We can notice a nearly 30 % error in the estimation

of the velocity fluctuations level when no instantaneous temperature correction is

considered. These differences come from the possibility (or not), for the the coeffi-

cients A and B, to vary with the temperature fluctuations. Indeed, Fig. 6(b) shows

the correlation between the temperature fluctuations and the errors in the velocity

fluctuations profiles of Fig. 6(a).

These observations point out the importance of measuring simultaneously the instan-

taneous velocity and temperature in order to well estimate the velocity fluctuations

levels.
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5.2 Influence of the Seebeck effect on the cold wire response

Even if the cold wire gives access to a scalar (and not to a vector like the hot wires),

its position must be chosen carefully. In fact, the features of the spatial evolution

of the temperature (such as an isothermal direction) should help to find a good

position for this wire. More precisely, one should be carreful to the Seebeck effect

that appears at the wires’ junctions (PtRh-Ag and Ag-Steel prong in our case).

In our configuration, two positions of the cold wire are questioning. On the one hand,

in order to minimize the Seebeck effect, the wire should be parallel to the transverse

axis z. On the other hand, the vertical position, along y axis, would give access to a

better location for the measurement of the temperature and velocity since hot and

cold wire can be closer (about 1 mm between each wire). In our configuration, we

have chosen the second position to get the better localized measures and we correct

the Seebeck effect.

This correction comes from a comparison between the measurements from the three

wires probe (described previously) and a two wires probe. This latter has a cold

wire and a hot wire that are parallel, close and placed along transverse axis, so that

the Seebeck effect can be neglected. The mean temperature profiles from these two

probes are plotted on Fig. 7(a). The differences correspond to the temperature gradi-

ent level and are a characteristic of the Seebeck effect. We can estimate the Seebeck

coefficient by plotting the difference of voltage between the two cold wires divided

by the wires length L and the temperature gradient. We take here as wire length

L = 3 mm, because it corresponds to the distance between the junctions Ag-Steel

prongs, which have a higher thermoelectrical effect than the PtRh-Ag junctions. We

observe on Fig. 7(b) the thermoelectrical effect on the vertical cold wire. Note that

an unique value for all injection rates can hardly be obtained, since the temperature

gradient between the two junctions is not constant in time. In fact, we have consid-
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ered a mean gradient and no variation in time. The phase change of the temperature

fluctuations between the two junctions cannot be neglected. Indeed, the tempera-

ture difference between the two junctions due to the mean temperature gradient

can be evaluated to ∆T ' ∂Tm

∂y
L ' 1.5 K, whereas the temperature difference due

to the phase change can be estimated to ∆T ' Trms ' 2 K (for phase opposition).

Consequently, the Seebeck effect in our configuration may come from both mean

gradient and phase change of the temperature signal. Note here that the Seebeck

effect from phase changes also exists when the cold wire is placed along isothermal

lines.

When the fluctuations profiles of the temperature and the velocity from the two

probes are compared, we observe little discrepancies (less than 3 % for F < 5 %,

and less than 6 % for F = 5 %). Consequently, in our configuration the main con-

sequence of the Seebeck effect is the modification of the mean profiles. Since the

mean temperature profiles are misestimated, the mean velocity profiles are also mis-

estimated due to the calibration laws for A(T ) and B(T ). Therefore, we consider

in the following the mean temperature signal of the ”three wires probe” corrected

by the mean temperature signal from the ”two wires probe”. Doing so, the mean

temperature profiles from the two probes fit exactly, and the mean velocity profiles
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correspond very well (less than 2 % error).

6 Results and discussion of the blowing process

In this section, we present the experimental results of non-isothermal blowing through

the porous plate. The injection rate varies from 0% (no injection) to 5%. We first

present the impact of the blowing at the wall, then we investigate its influence on

the boundary layer.

6.1 Effect of the blowing at the wall

Fig. 8 presents the evolution of the wall temperature for several injection rates. These

results are obtained both using thermocouples and extrapolating the results of the

cold wire. We can first observe that we have a very good agreement between the two

methods. When the blowing is applied, the mean wall temperature is significantly

reduced even for weak injection rates. The temperature fluctuations are also very

important at the wall since they can damage it, even if the mean wall temperature

is low. Fig. 16 shows that near the wall the temperature fluctuations increase with

the blowing rate but remain low (≤ 2 K) in all cases.

In Fig. 9, the wall gradients of the velocity and the temperature are displayed.

Concerning the velocity, we note a continuous decrease of the gradient, and as a

consequence of the wall shear stress (τw = µ∂U
∂y
|y=0) and the friction coefficient

(Cf = τw

1/2ρU2 ), when the blowing rate increases. This decrease is first very important,

then the gradient tends to zero, which corresponds to the blow off of the boundary

layer. The behaviour of the temperature gradient is more delicate. First, the gradient

increases for weak blowing rates (F lower than 1%). Then it decreases for higher

injection rates. For a weak blowing ratio, the wall temperature is highly decreased,
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whereas the temperature of the near-wall flow is not much modified. Consequently,

it induces a high temperature difference between the wall and the flow that is close

to the wall, and thus a high temperature gradient. For higher injection rates, the

blowing decreases the temperature of the flow above the wall as well as the wall

temperature (development of a cold fluid film), leading to a temperature of the

same order of magnitude than the injected fluid. The temperature gradient is thus

reduced.
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Fig. 8. Wall temperature measured with a ther-

mocouple and by extrapolation from cold wire.
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Fig. 9. Velocity and temperature gradients at

the wall.

6.2 Influence of the blowing on the boundary layer

When blowing is applied, the boundary layers are affected. The blowing increases

both the dynamic and thermal boundary layers as it can be seen in Fig. 10. We

can remark that the thickness of the two boundary layers are equal and that they

are similarly affected by the blowing. We also plotted the position of the maximum

of the velocity fluctuations as a function of the blowing rate. We observe that it

increases with the blowing and its evolution is almost linear. It follows the increase

of the boundary layer thickness.

The mean longitudinal and vertical velocity profiles are presented in Fig. 11 and 13.

The two profiles are disturbed by the injection. The longitudinal velocity is de-
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Fig. 10. Boundary layer thickness evolution with F .

creased, whereas the vertical one is increased, for a constant vertical position in

the boundary layer. We can also remark that the shape of the longitudinal velocity

is modified for high injection rates, illustrating another behaviour of the velocity

field. The trend is logarihtmic without injection and becomes almost linear for high

blowing rates.

The longitudinal and vertical velocity fluctuations are strongly modified by the blow-

ing, as it can be observed in Fig. 12 and 14. The levels of these fluctuations increase

when the injection rate increases, except at the wall, where they slightly decrease.

Furthermore, the peak of the fluctuations is shifted away from the wall. We can also

remark that the width of the peak is spreaded, showing that the region where the

turbulent mixing takes place widens.

Concerning the temperature, we can first note that the mean temperature (Fig. 15)

is affected. The temperature is reduced and we note, as for the velocity, that the

shape is modified for high injection rates (from a logarithmic to a linear trend). The

temperature fluctuations (Fig. 16) are dramatically affected by the blowing. Their

increase is very important. Their peak is also shifted but, at the opposite of the

velocity fluctuations, their level near the wall slightly increases. The shape of these

profiles changes, especially for the highest blowing rates.
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Fig. 12. Longitudinal velocity fluctuations.
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Fig. 13. Mean vertical velocity.
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Fig. 14. Vertical velocity fluctuations.
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Fig. 15. Mean temperature.
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Fig. 16. Temperature fluctuations.
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On both the mean longitudinal velocity and temperature profiles, we can see the

increase in the boundary layers thickness previously noticed. We also observe a

change in concavity around y = 0.005 m at F = 3% and around y = 0.02 m at

F = 5%, which is characteristic of the blow-off of a boundary layer. Indeed, it shows

that a low-speed and low-temperature fluid layer forms above the porous plate. The

blow-off phenomenon also influences the mean vertical velocity profiles, the shape

of which changes for F ≥ 3%.

The skewness and flatness factors for the longitudinal and vertical velocity as well

as the temperature are given in Fig 17 to 22. Without blowing the flow statistics are

nearly Gaussian, with S ≈ 0 and F ≈ 3. The skewness and flatness factors deviate

from these values when blowing is applied. This reveals decentered and spreaded

flow statistics. The evolution of the temperature skewness and flatness factors is

gradual. For the two highest injection rates, the longitudinal velocity skewness and

flatness profiles display peaks at about y = 0.005 m (F = 3% ) and y = 0.02 m

(F = 5%), which corresponds to the size of the low-speed fluid film. This change

in the statistics of the longitudinal velocity can therefore be seen as another sign

of the blow-off of the boundary layer. SV and FV profiles also show an important

modification due to the blow-off.
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Fig. 20. Flatness factor FV .
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Fig. 21. Skewness factor ST .
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Fig. 23 to 27 present the velocity and temperature spectra for several injection rates

and different positions in the boundary layer. Without injection, we find that the

velocity spectrum slope is close to the classical −5/3 Kolmogorov value. This slope

is modified by the blowing. The effect is not very clear for weak injection rates but

is evident for higher blowing rates. In particular, for a blowing rate of 5%, the slope

is decreased and reaches a value close to −1 (see Fig. 23). It is also interesting to see

that the level of the spectrum evolves with the position when the flow is submitted

to blowing, whereas it does not in the case without blowing (see Fig. 24 and 25).

Concerning the temperature spectrum, we observe a slope in the inertial range equal

to −5/3. At the opposite of the velocity spectrum, we do not have a clear influence

of the blowing on the slope (see Fig. 26 and 27). A slight influence on the level can be

noted, but it remains limited. Nevertheless, we have to remind that the temperature

difference is weak (≤ 20 K) and we can imagine that a stronger blowing effect could

be observed with wider temperature ranges.

In Fig. 28 to 30 we can see the velocity-temperature and velocity-velocity correla-

tions. As for the velocity and temperature fluctuations, the peaks of the correlations

are increased and shifted away from the wall with increasing blowing rate. On the

velocity-velocity correlation profile we observe a change in sign for F ≥ 3%. Again,

this shows that the near-wall turbulence is strongly modified when the boundary

layer is blown off.
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Fig. 24. Velocity spectrum for F = 0.0%.
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Fig. 25. Velocity spectrum for F = 5.0%.
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Fig. 26. Temperature spectrum for F = 0.0%.
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Fig. 28. U ′T ′ correlation.
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Fig. 29. −V ′T ′ correlation.
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7 Conclusions

The experimental study of a boundary layer submitted to non-isothermal blowing

has been presented. Different probes were used. A probe with two crossed hot wires

and a cold hot wire allowed simulataneous measurements of the instantaneous ve-

locity and temperature. The study showed that the calibration procedure is delicate

due to the temperature difference. By the following, we determined the influence

of the blowing on the dynamic and thermal boundary layers. We observed that the

blowing modifies the velocity and temperature profiles but also the turbulent fluctu-

ations. In particular, we measured the double correlations of turbulence submitted

to non-isothermal blowing. In all the cases, the turbulent quantities are increased

but their peaks are shifted away from the wall. Furthermore, we noticed that the

blowing modifies the velocity and temperature spectra. We also observed that the

blow-off of the boundary layer induces a change in the near-wall turbulence. Finally,

these results will be useful for the numerical study of the blowing and will permit

new developments of Thermal Large Eddy Simulation (see Part II).
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