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Abstract We discuss the use of a continuous-time jump Markov process as the
driving process in stochastic differential systems. Results are given on the estimation
of the infinitesimal generator of the jump Markov process, when considering sample
paths on random time intervals. These results are then applied within the framework
of stochastic dynamical systems modeling and estimation. Numerical examples are
given to illustrate both consistency and asymptotic normality of the estimator of the
infinitesimal generator of the driving process. We apply these results to fatigue crack
growth modeling as an example of a complex dynamical system, with applications to
reliability analysis.
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1 Introduction

A general stochastic differential system may be written as follows:

dZt

dt
= f (Zt, Xt), (1)
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where Zt is a process describing the dynamical system to be modeled, Xt a stochastic
process and f a given function with the appropriate properties, assuring both ex-
istence and uniqueness of a solution. We refer to the stochastic process Xt as the
driving process. Such an interpretation of Eq. 1 comes from control theory, when
observing an evolution Zt to be controlled by a random process Xt. Yet whereas
control theory looks toward optimizing a functional of Xt, the study of stochastic
differential systems such as Eq. 1 aims at modeling dynamical systems with random
components.

This formulation is quite general, thus an appropriate function f must be given
to be consistent with a specific physical phenomenon. This function may be built
as follows: first, a deterministic part describes the general behavior of the system;
second, because the system is not completely known or has an intrinsically stochastic
behavior, a stochastic part is needed to take the random component into account.
This is the aim of the process Xt, which disturbs the deterministic description of the
phenomenon. The nature of the driving process is consequently of major interest,
because it conditions the general behavior of the system (1).

When Xt is a very irregular noisy process, it is approximated by the Wiener
process. Thus, we are in the framework of Stochastic Differential Equations which
constitutes the basic methodology for modeling dynamical systems subject to para-
metric random noises. Hence, with the appropriate initial conditions, the system
(1) can be reformulated as an Itô stochastic differential equation, whose solution
is a diffusion process (see, e.g., Øksendal, 2003; Sobczyk, 1991, for theory and
applications). Estimation problems in stochastic differential equations are discussed
by, e.g., Jankunas and Khasminskii (1997), Kutoyants (2004).

In this paper, we use a quite different approach, modeling the driving process by a
continuous-time, finite state space Markov process. The first contribution goes back
to Goldstein (1951) : he introduced a two-state Markov chain as a driving process,
in an effort to give a stochastic representation of the telegraph equation. Then, the
more general case of a continuous time finite state space Markov process as the
driving process has been studied. In this way, the system (1) could be interpreted
as a model for the movement of particles, with Xt being the velocity of the system.
Hence, the couple markovian process (Zt, Xt) is called a “transport process” and has
some interesting probabilistic properties which can be found in the literature (see,
e.g., Dautray, 1989; Lapeyre and Pardoux, 1998). In control theory, these systems are
known as “Piecewise deterministic Markov processes” (see Davis, 1993). We suggest
here to use this kind of approach to model a wide class of dynamical systems.

Once the stochastic formulation of a dynamical system has been given through a
random evolution such as Eq. 1, the fundamental key point of the estimation remains.

As a matter of fact, the observed data which will be exploited to achieve the
estimation of the different parameters of the system only concerns the process Zt.
Consequently, some methods are needed to estimate both the function f and the
Markov driving process Xt from sample paths of Zt. Concerning the function f , it
is common to make an assumption on its general form, depending on the physical
phenomenon to be modeled. Then, the parameters of f are estimated with results
and methodologies from data analysis (for an example of data analysis of a stochastic
dynamical system in structural mechanics, see Spencer et al., 1989). In this paper, the
main interest is the estimation of the Markov driving process Xt from trajectories of
the observed process Zt.
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We try to be as general as possible about the estimation, in order to obtain results
available for a wide class of applications. Thus, we consider that we observe K
sample paths of Zt defined on random time intervals [0, Tk]k=1...K, assuming that the
random variables (r.v.) Tk are independent and identically distributed (i.i.d.). This
is an extension of the case when sample paths are defined on the same fixed-time
interval [0, T], with constant T > 0. Such data could come from a stochastic system
whose sample paths are observed until failure. In this case, the trajectories are i.i.d.,
yet not of the same size.

Provided that sample paths of Zt and Xt have the same duration, one of the major
task of the paper is the estimation of the Markov driving process Xt on randomly
censored data. In fact, we observe only the trajectories of the process Zt, while the
process Xt remains unobservable. Statistical inferences for a Markov process have
been discussed by Billingsley (1961) and Albert (1962). More precisely, Albert gave
fundamental results on the estimation of the infinitesimal generator of Xt and the
associated asymptotic properties when observing sample paths on the same fixed-
time interval [0, T]. We will look for the same results on random time intervals. Once
the estimation of the driving process is available, we can return to the estimation of
the whole stochastic dynamical system.

Our main motivation for the present study is stochastic fatigue crack growth
modeling, an engineering problem widely studied in the last three decades. To the
authors’ knowledge, there is no work modeling fatigue crack growth with dynamical
system driven by a jump Markov process.

The paper is organized as follows: in Section 2, we briefly present the well-known
maximum-likelihood estimator (MLE) of the infinitesimal generator of a continuous-
time finite state space Markov process and its asymptotic properties, when sample
paths are of the same length. In Section 3, we extend these results for random
censored data. In Section 4, we use the results of Section 3 within the framework
of dynamical systems modeling: we study a stochastic differential system driven by
a jump Markov process, with given initial conditions. In Section 5, we present some
numerical applications to the results of Sections 3 and 4: first, the good behavior
of the estimator with random censored data is illustrated; next, we introduced a
numerical example in the framework of fatigue crack growth modeling. We give
applications to reliability calculation and estimation.

2 Preliminaries

In this section, we introduce general notation and we remind some results on the
MLE of the infinitesimal generator of a Markov process.

Let (Xt, t ≥ 0) be a time-homogeneous, continuous-time Markov process with
finite state space E = {1, 2, . . . , d}. The initial distribution of Xt is denoted by
α = (α(i))i∈E, where α(i) = P[X0 = i]. We denote by A = (aij)i, j∈E its infinitesimal
generator, which is stable, that is

aij ≥ 0, for all i �= j,
and aii = −ai = −∑k∈E,i �=k aik.
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Suppose we observe K sample paths of Xt, censored by the i.i.d. r.v. (Tk)k=1...K.
The Tk are independent of Xt with common distribution function F on R+.
We denote

(
Xk

t , 0 ≤ t ≤ Tk
)

k=1,...,K the censored sample paths of Xt, which are
independent.

In the particular case where Tk = T for all k = 1, . . . , K, with T a strictly positive
constant, we are in the framework of Albert (1962). It means the distribution function
F of Tk is F(t) = 1{T≤t}. We introduce the following notation:

– Nij(K) is the total number of transitions from state i to state j on the K trials;
– Vi(K) is the total length of time that state i is occupied on the K trials.

Albert (1962) performed the maximum-likelihood estimation of A and proved
both consistency and asymptotic normality when considering sample paths defined
on the same fixed-time interval [0, T]:

Theorem 1 (Albert, 1962) Suppose we have K independent sample paths of a jump
Markov process (Xt, t ≥ 0) on an interval [0, T] with T > 0.

(a) The maximum-likelihood estimator âij(K) of the infinitesimal generator of the
jump Markov process estimated on the K sample paths is given by

âij(K) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nij(K)

Vi(K)
if i �= j and Vi(K) �= 0,

−
∑

l∈E\{i} Nil(K)

Vi(K)
if i = j and Vi(K) �= 0,

0 if Vi(K) = 0.

(2)

(b) The estimator âij(K) is strongly consistent as K → ∞, i.e. âij(K)
a.s.−−−→

K→∞
aij.

(c) If P[Xt = i] > 0, for all i ∈ E, the set of r.v.
{√

K
(
âij(K) − aij

)}

i �= j
are asymptot-

ically normal as K → ∞ with zero mean and covariances given by

σ 2(i, j; p, q) = D(i, j; p, q)aij

/∫ T

0
P
[
Xt = i

]
dt , (3)

where

D(i, j; p, q) =
{

1 if (i, j) = (p, q), for all (i, j), (p, q) ∈ E2

0 otherwise.
(4)

3 Estimating the Markov Driving Process

In this section, we give results on the estimation of the generator when considering
random censored data, that is when the Tk are positive r.v. Let us introduce the
following additional notation:

– Nk
ij(Tk), the total number of transitions from state i to j on the sample path

(
Xk

t , 0 ≤ t ≤ Tk
)
;

– Vk
i (Tk), the total length of time that state i is occupied on the sample path(

Xk
t , 0 ≤ t ≤ Tk

)
.
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We naturally have
K∑

k=1

Nk
ij(Tk) = Nij(K),

and
K∑

k=1

Vk
i (Tk) = Vi(K). (5)

We consider âij(K) given by Eq. 2 from Theorem 1, where Nij(K) and Vi(K) are
defined in expression (5), that is:

âij(K) := Nij(K)

Vi(K)
=
∑K

k=1 Nk
ij(Tk)

∑K
k=1 Vk

i (Tk)
. (6)

For any censored time distribution F, part (b) and (c) of Theorem 1 do not apply
since the K sample paths are defined on random time intervals. Thence, we will
prove that both consistency and asymptotic normality remain true for the extended
definition (6) of âij(K).

Proposition 1 (Consistency) Estimator (6) is strongly consistent when considering K
sample paths on random-time intervals [0, Tk], k = 1, . . . , K, that is âij(K)

a.s.−−−→
K→∞

aij.

Proof Expression (6) of âij can be written

âij(K) = 1

K

K∑

k=1

Nk
ij(Tk)

/
1

K

K∑

k=1

Vk
i (Tk).

Since Nk
ij(Tk), respectively Vk

i (Tk), are i.i.d., the Strong Law of Large Numbers gives

âij(K)
a.s.−−−→

K→∞
EN1

ij(T1)

EV1
i (T1)

,

where E is the expectation relative to the sample paths of Xt defined on random
time intervals. Hence, conditioning on the r.v. T, we may write

EN1
ij(T1)

EV1
i (T1)

=
∫ ∞

0
EN1

ij(s)dF(s)
/∫ ∞

0
EV1

i (s)dF(s),

where F is the distribution function of T1. According to Theorem 5.1 from Albert
(1962), the following relations holds for all s > 0:

EN1
ij(s) = aij

∫ s

0
P
[
X(t) = i

]
dt,

EV1
i (s) =

∫ s

0
P
[
X(t) = i

]
dt.

Finally

EN1
ij(T1)

EV1
i (T1)

= aij

which proves the proposition. 	




436 Methodol Comput Appl Probab (2006) 8: 431–447

Proposition 2 (Asymptotic normality) Let estimator (6) be given. The set of r. v.{√
K
(
âij(K) − aij

)}

i �= j
are asymptotically normal as K → ∞, provided that P[Xt =

i] > 0, with zero mean and covariances

σ 2(i, j; p, q) = D(i, j; p, q)aij

/∫ ∞

0

∫ s

0
P
[
Xt = i

]
dtdF(s) , (7)

with D(i, j; p, q) defined in Eq. 4.

Proof By definition of the estimator (6), we have for any i, j ∈ E, with i �= j,

√
K
(
âij(K) − aij

) = √
K
(

Nij(K)

Vi(K)
− aij

)

= K
∑K

k=1 Vk
i (Tk)

(
Nij(K) − aijVi(K)√

K

)

.

Applying Slutsky’s theorem, and since Vk
i are i.i.d., the r.v.’s

{√
K
(
âij(K)−aij

)}

i �= j
have the same asymptotic distribution as

{
1

EV1
i (T1)

(
Nij(K) − aijVi(K)√

K

)}

i �= j

.

Then, from the Central Limit Theorem, this random vector asymptotically follows
a normal distribution with zero mean and the elements of its covariance matrix
given by

σ 2(i, j; p, q) =
E

[(
N1

ij(T1) − aijV1
i (T1)

) (
N1

pq(T1) − apqV1
p(T1)

)]

EV1
i (T1)EV1

p(T1)
. (8)

Again, from Theorem 5.1 of Albert (1962), we have for all s > 0,

E

[(
N1

ij(s) − aijV1
i (s)

) (
N1

pq(s) − apqV1
p(s)

)]
= D(i, j; p, q)aij

∫ s

0
P[Xt = i]dt.

We should now write the numerator of Eq. 8 conditioning on T:

E

[(
N1

ij(T1) − aijV1
i (T1)

) (
N1

pq(T1) − apqV1
p(T1)

)]

= E

∫ ∞

0

[(
N1

ij(s) − aijV1
i (s)

) (
N1

pq(s) − apqV1
p(s)

)]
dF(s)

=
∫ ∞

0
E

[(
N1

ij(s) − aijV1
i (s)

) (
N1

pq(s) − apqV1
p(s)

)]
dF(s)

= D(i, j; p, q)aij

∫ ∞

0

∫ s

0
P
[
Xt = i

]
dtdF(s).

where we used the independence between T and Xt to exchange the order of in-
tegration. Moreover, remembering

EV1
i (T1) =

∫ ∞

0

∫ s

0
P
[
Xt = i

]
dtdF(s), for all i ∈ E,

we get expression (7) of the covariances. 	
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Remark 1 When all the Tk equal the same constant T > 0, then F(t) = 1{T≤t} and
we have

σ 2(i, j; p, q) = D(i, j; p, q)aij

/∫ ∞

0

∫ s

0
P
[
Xt = i

]
dtdF(s) ,

= D(i, j; p, q)aij

/∫ T

0
P
[
Xt = i

]
dt ,

which is the case of Albert’s estimation on fixed-time interval [0, T].

4 Dynamical System Estimation

We present here the general formulation of a stochastic dynamical system driven by
a jump Markov process. First, we manage to give an analytical form of the system’s
reliability function. Next, a method for the estimation of the system is proposed.

4.1 Preliminaries

Let us consider a process (Zt, t ≥ 0) describing a stochastic dynamical system on
[0, L], with L a strictly positive constant. The driving process is a jump Markov
process (Xt, t ≥ 0) with finite state space E, infinitesimal generator A and initial
distribution α. The process Zt is governed by

⎧
⎨

⎩

dZt

dt
= f (Zt, Xt), f : [0, L

]× E −→ R+,

Z0 = z0,

(9)

where the function f is assumed to be known with the following assumptions:

A 1. The function f : [0, L] × E −→ R+ is positive and measurable;
A 2. The process (Xt, t ≥ 0) is a finite state space irreducible Markov process with

stationary distribution π = (πi, i ∈ E);
A 3. There is a function k : E −→ R+ such that, for z, z′ ∈ [0, L] and x ∈ E,

∣
∣ f (z, x) − f (z′, x)

∣
∣ ≤ k(x)

∣
∣z − z′∣∣ .

We are interested in studying system (9) when the process Zt evolves over [0, L]
and finally reaches a certain point denoted {�}, where it stays indefinitely. Point {�}
is an absorbing point. Using classical notation of reliability analysis, we employ the
following two-set partition for the state space of Zt: a set of working states U = [0, �[
and a set of down states D = [�, L], with 0 < � ≤ L.

The initial random condition Z0 belongs to a subset [0, C] ⊂ [0, �[, with 0 < C <

�. The subset [0, C] is introduced to avoid having supK Z k
0 = {�}, otherwise, it would

mean the system could start in the subset D. The distribution of the r.v. Z0 is denoted
by β, that is β(B) = P[Z0 ∈ B], with B a Borel subset of [0, C].

We also define the hitting time τ of D by τ = inf{t ≥ 0 : Zt ∈ D}. Because D =
[�, L] with {�} an absorbing point, the time τ when the system reaches point {�} is
also the failure time.
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In the following, we suppose we have K independent copies of Zt, denoted by(
Z k

t , 0 ≤ t ≤ Tk
)
, for k = 1, . . . , K, defined on random time intervals [0, Tk]. The Tk

are K independent copies of τ .
The coupled process (Zt, Xt) is markovian with well-known theoretical frame-

work (see, e.g., Davis, 1993; Lapeyre and Pardoux, 1998). It allows us to give some
analytical results for (Zt, Xt) and for the reliability analysis of the system (9). The
generator B of the Markov process (Zt, Xt, t ≥ 0) is given by

Bg(z, i) = f (z, i)
∂

∂z
g(z, i) +

∑

j∈E

A(i, j)g(z, j), (10)

with i, j ∈ E, z ∈ [0, L] and g a continuous and differentiable function on the first
argument.

The initial distribution of the couple (Zt, Xt) is denoted

μ(B, i) = P
[
Z0 ∈ B, X0 = i

]
, with B a Borel subset of [0, C] and i ∈ E. (11)

An alternative for the definition of the failure time τ is the following:

τ = inf
{
t ≥ 0 : (Zt, Xt) ∈ D × E

}
. (12)

It is much more convenient to describe the failure time τ as a function of the couple
process (Zt, Xt) rather than of Zt only. As matter of fact, we can note the direct link
between the distribution function F of τ and the reliability function R of the couple
(Zt, Xt), defined by

R(t) = P
[
(Zs, Xs) ∈ U × E, ∀s ≤ t

]
. (13)

Introducing Pij(t; z, B) for the transition probability function of the Markov
process (Zt, Xt), that is

Pij(t; z; B) = P
(
Zt ∈ B, Xt = j|Z0 = z, X0 = i

)
, (14)

the expression of F becomes

F(t) = 1 − R(t) = 1 −
∑

i, j∈E

∫

[0,C]
μ(dz, x)Pij(t; z, U). (15)

When the infinitesimal generator B is bounded, the transition probability function
P(t) is given through the Kolmogorov equations, and P(t) = exp tB.

4.2 Estimating the Generator of the Markov Driving Process

We remind that system (9) aims at modeling a dynamical system described by
a stochastic process Zt. Consequently, it is justified to assume that we have K
independent sample paths

(
Z k

t , 0 ≤ t ≤ Tk
)

of the process Zt. These sample paths
could be obtained from laboratory measurements on the real dynamical system to be
modeled.

Nevertheless, we also need some sample paths corresponding to the driving
process Xt. As a matter of fact, we need some trajectories

(
Xk

t , 0 ≤ t ≤ Tk
)

to the
estimate generator A using results from Section 2. It is obviously not possible to
observe directly trajectories of the driving process from measurements. Hence, we
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need to “extract” an estimation of Xk
t from the available measurements, that is from

the Z k
t . We propose the following way.

We denote the derivative by Żt = dZt/dt and
(
Ż k

t

)
k=1...K the associated samples.

From system (9), the following relationship holds between Z k
t , Ż k

t and Xk
t :

Ż k
t = f

(
Z k

t , Xk
t

)
. (16)

We only observe the Z k
t . Yet, there are a lot of methods which give an estimation

of the derivatives Ż k
t from sample paths Z k

t , e.g., the simple secant method (see
Virkler et al., 1979, for a complete analysis of the different methods available in the
framework of fatigue crack growth). If we denote by �t the time discretization step
of the data set, the estimator of Ż k

t is

̂̇Z
k

t = Z k
t+�t/2 − Z k

t−�t/2

�t
. (17)

Moreover, we must assume there exists a function h from expression (16) giving

Xk
t as a function of Z k

t and ̂̇Z
k

t . Such a function not always exists, yet when the
stochastic process Xt is a linear additive or multiplicative term in the function f , we
may easily find the corresponding function h. Hence, we may estimate the Xk

t with
the following relationship:

X̂k
t = h

(

Z k
t , ̂̇Z

k

t

)

. (18)

In the present context, it is assumed that the states of the process Xt are known, thus
the paths X̂k

t are filtered according to this known state space. If the state space is not
known, which is the most common case, some clustering methods can be used to fit
as well as possible with the estimated sample paths of Xt. In Chiquet et al. (2006), we
apply the classical K-means algorithm to estimate the state space of Xt.

With the estimated paths X̂k
t , which are defined on the same random time intervals

as Z k
t , that is [0, Tk], k = 1, . . . , K, we may estimate the generator A of the jump

Markov process Xt with expression (6). Note that it is not the optimal estimator for A
in the particular context defined by the dynamical system (1), because the censoring
time of the paths is also the failure time τ , which obviously depends on Xt from
Eq. 15. Yet, we will see that it still give some good results in the following section,
by investigating some numerical validations.

5 Numerical Applications

In this section, we first aim at giving a numerical application for Markov processes
estimation, strictly corresponding to Propositions 1 and 2 of Section 2. We illustrate
both the estimator consistency and its asymptotic normality. Next, a complete nu-
merical example for fatigue crack growth is given, when modeling crack propagation
by a stochastic system driven by a jump Markov process, thus exploiting the first part
of the numerical applications.
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5.1 Markov Process with Random Censoring

We shall consider a given state space E, a generator A and an initial distribution
α for the Markov jump process Xt, in order to simulate sample paths. We have
chosen a uniform initial distribution, the 3-state space E = {1, 2, 3} and the following
generator:

A =
⎡

⎢
⎣

−0.02 0.02 0

0.027 −0.03 0.003

0.01 0 −0.01

⎤

⎥
⎦ . (19)

The sample paths are censored at times (Tk)k=1,...,K, which follow an exponential
law with parameter λ, i.e. Tk ∼ E(λ) for all k = 1, . . . , K (e.g. λ = 0.001). It is then
easy to simulate K sample paths of Xt to estimate A and look at the consistency and
asymptotic normality of estimator Â as a function of K, the number of trajectories.

From Proposition 2, the r.v.’s
√

K
(
âij(K) − aij

)
for i �= j are asymptotically normal

as K → ∞, with zero mean and covariances given by Eq. 7. Then we have

P

[

−u1−γ /2 ≤
√

K
(
âij(K) − aij

)

σ(i, j; p, q)
≤ u1−γ /2

]

= 1 − γ,

where uγ is the γ − percentile of the centered and reduced normal r.v. We denote by
σ̂ 2 a consistent estimator of the covariance (see, e.g. Sadek and Limnios, 2005), that
is verifying σ̂ 2(K)

a.s.−−−→
K→∞

σ 2. It means that the following confidence interval holds

asymptotically for aij:
[

âij(K) − u1−γ /2
σ̂ (i, j; p, q; K)√

K
; âij(K) + u1−γ /2

σ̂ (i, j; p, q; K)√
K

]

. (20)

We can calculate the covariance σ 2(i, j; p, q) using

σ 2(i, j; p, q) = D(i, j; p, q)aij

∫ ∞

0

∫ s

0
P
[
Xt = i

]
dtdF(s)

= D(i, j; p, q)aij

∫ ∞

0

∫ s

0
α exp (tA)eiλ exp(−λs)dtds,

where ei is the ith vector of the canonical basis of R
d, with d the number of states

of E, that is d = 3 in the present case. Sadek and Limnios (2005) gave results on
the estimation of reliability measurements for continuous-time Markov processes.
Henceforth, they allow us to give the following estimator for the covariance:

σ̂ 2(i, j; p, q; K) = D(i, j; p, q)̂aij(K)

∫ ∞

0

∫ s

0
α exp

(
tÂ
)
eîλ(K) exp

(−̂λ(K)s
)

dtds,

(21)

where λ̂(K) is the MLE of λ, given by

λ̂(K) = 1

T̄
, withT̄ = 1

K

K∑

k=1

Tk. (22)
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Fig. 1 Asymptotic normality
and consistency for elements
a12 and a21 of the matrix
generator

With the above statistical results, we can represent the r.v.
(
âij(K)

)
i �= j as a function

of the number K of sample paths used for the estimation and the corresponding
confidence interval (20). Figure 1 represents this r.v. for, respectively, a12 and a21.
Results for a23 and a31 are of the same kind.

Another way to evaluate the consistency of the estimator âij(K) is to observe a
given error function between âij(K) and aij. We suggest to estimate the classical Mean
Squared Error (MSE: see, e.g. Härdle, 1990), adapted to the present context, that is

MSE(K) =
∑

i, j∈E
i �= j

E

[(
âij(K) − aij

)2
]
. (23)

We can again take advantage of the asymptotic normality of the
{√

K
(
âij(K)−

aij
)}

i �= j. We denote Y(i, j) = √
K
(
âij(K) − aij

)
a r.v. with a cumulative distribution

function Gij. Thus,

MSE(K) =
∑

i, j∈E
i �= j

1

K

∫

R+
y2dGij(y). (24)
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Fig. 2 Estimated Mean
Squared Error

The distribution functions Gij can be estimated by their asymptotic value, i.e. by the
normal distribution with zero mean and covariance σ 2 whose estimator is given by
Eq. 21. Moreover, noticing that

∫
R+ y2dGij is nothing but the second order moment

of the normal r. v. Y, we suggest the following estimator for the MSE:

M̂SE(K) = 1

K

∑

i, j∈E
i �= j

σ̂ 2(i, j; p, q; K). (25)

The results are illustrated on Fig. 2.
From Figs. 1 and 2, not only can we see that the estimator is consistent and

asymptotically normal, but also it quickly reaches an acceptable value, for a mean
censored-time which is reasonable (1/λ = 1000). This property is interesting for
applications where laboratory measurements are expensive, i.e. when the number
of sample paths is small.

5.2 Estimating a Dynamical System: Fatigue Crack Growth Analysis

Let us now give a numerical example in the framework of a process Zt describing a
dynamical system such as Eq. 9.

This application is motivated by stochastic fatigue crack growth modeling, which
is an engineering problem widely studied during the last three decades in structural
analysis and system reliability (see, e.g, Lin and Yang, 1985; Sobczyk, 1993; Tanaka,
1999; Tsurui and Ishikawa, 1986; Yang and Manning, 1996). Here the size of a crack is
described by the process Zt and the dynamical system models its random growth. The
crack size Zt takes its values on [0, L], where L is the wall thickness of a structure
subject to some fatigue crack growth degradation. The absorbing point {�} could
represent a critical crack size for which the structure collapses once reached.

We choose the function f : (z, x) −→ azb v(x), with a, b ∈ R+, as suggested by
Lin and Yang (1985) and later by Yang and Manning (1996) to model the crack
growth law. We also consider the one-to-one function v : E −→ R+ which allows us
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to modulate easily the effect of the process Xt on the stochastic component of the
system. The corresponding random evolution is the following:

⎧
⎨

⎩

dZt

dt
= aZ b

t × v(Xt), a, b ∈ R+,

Z0 = z0.
(26)

The driving process Xt is the jump Markov process considered in the previous numer-
ical application. Let v : (1, 2, 3) → (1, 0.9, 1.2). Hence, the term v(Xt) in system (26)
models the variabilities of the growth rate of Zt. Depending on the state occupied
by Xt, which modulates the growth rate of Zt, the system will evolve faster or more
slowly: when Xt is in state 1, v(Xt) = 1 and the growth rate of Zt is considered as
“moderate” ; when Xt is in state 2, v(Xt) = 0.9 and the system evolves more slowly;
when Xt is in state 2, v(Xt) = 1.2 and the system goes faster. The process Zt starts
almost surely from an initial point z0 ∈]0, �[ and finally reaches the absorbing point
{�} where it stops its evolution. Hence, the process Zt takes its values on [z0,�].
Provided that � < L < ∞, assumptions A1 and A3 are satisfied for the function f .

The data set is generated from system (26), with the true generator A. Initial
distributions α and β, constants a and b and absorbing point {�} are

⎧
⎪⎪⎨

⎪⎪⎩

α(1) = 1, α(2) = 0, α(3) = 0;
β(z) = δz0 , with z0 = 9;
a = 5.10−4, b = 1.5;
� = 50.

(27)

Figure 3 represents 20 trajectories generated from system (26) with parameters
(27), as an illustration. The whole generated data set is composed of 10,000 sample
paths. In the following, these simulated data will be used to estimate parameters and
reliability measurements of the system.

Concerning the generator, we use the method described in paragraph 4.2 to
perform the estimation, that is:

1. Estimate the Ż k
t with the secant method, which is appropriate to system (26);

2. Estimate the Xk
t with function h defined in the general case by Eq. 18, which

links Zt, Xt and Żt. In the case of system (26), it is easy to see that

X̂k
t = v−1

(
1

a

(
Z k

t

)−b ̂̇Z
k

t

)

;

3. Estimate the generator A from the estimated sample paths X̂k
t of the jump

Markov process, with results from Section 2.

When comparing the initial true generator A and the estimator Â obtained as
described above, we obtain results similar to those obtained in the simpler case of
a Markov process with random censoring, particularly a fast consistency. Thus, in
this example, the fact that Xt and τ are dependent has no significant impact on the
estimation of A.
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Fig. 3 Data set generated
from system (26)

We can now take advantage of the classical Monte-Carlo method to obtain some
reliability measurements of system (26). As an example, we propose to estimate the
reliability function R defined by Eq. 13.

The true value of R could be calculated from result (15), yet we need a method to
discretize the continuous generator B. Another simpler approach is the estimation of
the true value by the Monte-Carlo method. Estimating the distribution of the failure
time τ is quite easy, and here, we have R(t) = 1 − F(t). Once the estimation of R
is achieved on the whole data generated with the true generator A, we compare the
estimation of R achieved on sample paths simulated with the estimated generator Â,
using Monte-Carlo technique each time.

Figure 4 presents some results of reliability estimation: the “true” reliability has
been obtained on the whole data set described above. We compare it with the
estimation of the system’s reliability obtained with 10, 100 and 2, 500 sample paths
generated with Â.

Fig. 4 Reliability estimated
for different numbers of
sample paths
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We quickly reach the true value of the reliability: we may reasonably assume that
the method we proposed to estimate the generator of the Markov driving process
within the framework of stochastic dynamical systems modeling is good.

Until now, the parameters a and b of the function f were supposed to be known,
which allowed us to study the behavior of the estimator of the generator, because this
is the main interest of our work. Nevertheless, in applications, we don’t necessary
know parameters a and b . In the best case, we might suppose we know the general
form of the function f . Consequently, we propose to estimate not only the generator
but also the parameters a and b from the data set. With the estimated values â, b̂ and
Â, we can make some simulations in order to estimate the reliability and compare it
with the one obtained with the true values of a, b and A.

As a first approximation, we propose to estimate a and b through application of
the ordinary least-squares method. Taking logarithm on both sides of Eq. 26, then

ln Żt = ln a + b ln Zt + ln v(Xt). (28)

From the data set, we have N sample points {(ti, Zti)}. We transform this N-sample

to obtain the N-sample
{(

ln Zti , ln ̂̇Z ti

)}
, much more adapted for regression analysis

according to Eq. 28. For notational convenience, we denote xi = ln Zti , yi = ln ̂̇Z ti,
εi = ln v(Xti) and then we have yi = ln a + b xi + εi. Hence, we perform a classical
least-squares regression on the N-sample {(xi, yi)}i=1...N , by minimizing the square of
the so-called residuals εi that is,

∑N
i=1 (yi − ln a − b xi)

2. The following estimators are
well-known:

⎧
⎪⎨

⎪⎩

â = exp
(
ȳ − b̂ x̄

)

b̂ =
∑

xi yi − Nx̄ȳ
∑

x2
i − Nx̄2

, where x̄ = 1

N

∑
xi, ȳ = 1

N

∑
yi.

In this method, the εi = ln Xti describes the individual behavior of the sample i. When
performing linear regression analysis, it is assumed that the εi are independent with
zero mean, which is approximately true for this particular numerical example, and
more generally in stochastic fatigue crack growth modeling; then, this approach could
be a first approximation in order to estimate parameters a and b in our model.

Fig. 5 Reliability estimated
for a and b true and estimated
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The algorithm for the whole system estimation is the following:

1. Estimate the Ż k
t with the secant from the data set;

2. Estimate a and b with the least-squares method on the N-sample{(
ln Zti , ln ̂̇Z ti

)}

i=1...N
as described above;

3. Estimate the sample paths of Xt with function h given by

X̂k
t = v−1

(
1

â

(
Z k

t

)−b̂ ̂̇Z
k

t

)

;

4. Estimate generator A from the X̂k
t ;

5. Estimate the reliability function from simulated paths of Zt through system
(26) with parameters â, b̂ and Â.

Figure 5 illustrates the results, comparing the estimator of the reliability when
parameters a and b are assumed to be known and when they are estimated.

We can see that the estimation of R is rather conservative when estimating the
parameters of the function. It does not mean that the estimation of the infinitesimal
generator is not good, yet the system we have chosen is sensitive to parameters a and
b : we find â = 5.003 × 10−4 and b̂ = 1.506 with the ordinary least-square method,
which are close to the true values given by Eq. 27. However, we can observe a slight
discrepancy in the estimation of the reliability, which proves the sensitiveness of this
system.

6 Conclusions

In this paper, we first gave some results on the estimation of continuous-time Markov
process when sample paths are observed on randomly censored intervals, where the
censoring time is independent to the Markov process. We proved both consistency
and asymptotic normality of the estimator of the generator. These results can be
exploited in a wide class of engineering applications, as soon as Markov processes
are used to model a system whose observations are defined on random time intervals.
We gave a numerical application to illustrate the theoretical results.

Next, we studied the framework of stochastic dynamical systems driven by
continuous-time jump Markov processes. We were able to estimate the generator of
the driving process only from sample paths of the stochastic process to be modeled,
using results from the first part of the paper. We gave the theoretical reliability of the
system and its estimation with Monte-Carlo method. We gave a complete numerical
application to the problem of fatigue crack growth, which is a widely studied complex
dynamical system. We approached the reliability with the generator estimated and
with the parameters of the function f successively known and unknown, illustrating
the good behavior of the estimator of the generator of the jump process.

As a further work, we think that asymptotic results on the whole stochastic
differential system (9) could be of great interest. Lapeyre and Pardoux (1998)
studied asymptotic approximation of transport processes to a diffusion process,
and Korolyuk and Limnios (2005) gave asymptotic results for general stochastic
evolutionary systems which may help us.
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Another key point is to try to take into account the censoring time in the
estimation procedure of the generator of the driving process when they are not
independent, that is in the context of a dynamical system observed until failure. The
authors are working on this issue at the present time.
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