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Abstract

The Raviart-Thomas finite elements provide an appropriate spatial discretization
of the mixed-dual form of the diffusion equation. This discretization can then be
coupled to an efficient solution method. The high performances achieved by such an
approach triggered research on its possible generalization to the transport equation
using a spherical harmonic (or Py) angular approximation. In view of the difficulty
of developing a straightforward generalization within the mixed-dual framework,
we here consider 2-D non-conforming (i.e., allowing interface discontinuities) finite
elements coupled to the second-order form of the transport equation. This non-
conforming approach keeps the mixed-dual property of the relaxation of the flux
interface continuity constraint. We investigate different non-conforming elements
and compare them to the well-known Lagrangian conforming elements.

Key words: neutron transport, spherical harmonics, Raviart-Thomas finite
elements, non-conforming finite elements

1 Introduction

The Raviart-Thomas (RT') finite elements (Raviart and Thomas 1977) are
known to be appropriate for the discretization of the mixed-dual formulation
of the diffusion equation. In this formulation, two unknowns, namely the scalar
flux and the vector current, are simultaneously evaluated. The simplicity of
the diffusion equation enables the implementation of very efficient solution
methods. This is done (among others) in the MINOS solver (Baudron and
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Lautard 2005). In this solver, the flux is expressed in terms of the current
and eliminated from the linear system. The resulting system is then solved for
the current using an efficient alternate direction implicit (ADI) approach. The
flux can then be recovered from the current values. This approach proved to
be very efficient. Notably, several benchmarks can be treated using only one
directional sweeping (in the ADI process) per outer iteration. This makes the
computing time roughly proportional to the number of nodes. The MINOS
solver also provides a simplified transport (SPy) approximation, since this
approximation amounts to solving a set of diffusion equations.

The success of the MINOS solver triggered research on how to possibly gener-
alize it to the transport equation using a spherical harmonic (or Py) angular
approximation (Fedon-Magnaud et al. 1995; Wu 1996; Van Criekingen et al.
2006; Van Criekingen 2004). No method could so far achieve this in a simple
way, that is using the RT mixed-dual elements - or an extension thereof -
for the spatial discretization. The difficulty here stems from the fact that the
RT elements are not directly applicable to the common setting of the trans-
port mixed formulation, i.e., the one based on the even/odd (angular) parity
decomposition introduced by Vladimirov (1963). Indeed, this decomposition
yields two scalar unknowns, namely the even and odd part of the angular
flux, while the RT elements simultaneously approximate a scalar and a vector
unknown (scalar flux and vector current in the diffusion case).

In an attempt to circumvent this problem, we here introduce a vector unknown
based on the even/odd parity decomposition into the mixed-dual transport
formulation. Then, in view of the deficiency of such an approach, we turn our
attention to a second-order (also known as standard) primal alternative, using
non-conforming finite elements. While the use of the second-order formulation
with Py approximation is well-known with Lagrangian elements (de Oliveira
1986), its use with non-conforming elements is to the best of our knowledge
not documented in the literature.

Several authors established equivalences between mixed schemes such as RT,
and non-conforming approaches based on the second-order formulation. This
was done by Hennart in the nuclear engineering community (Hennart 1986;
Hennart and del Valle 1993). But numerical analysts also established such
equivalences for quite general second-order problems (Arnold and Brezzi 1985;
Arbogast and Chen 1995). The proof of such equivalences are hard to gener-
alize to the transport case given the increased complexity of the equation
compared to the diffusion one. In this paper no such generalizations have
been attempted. Moreover, although theoretically interesting, these equiva-
lences are not profitable at an implementation level, i.e., we can not simply
re-use a mixed RT solver turning it into a non-conforming second-order one.
However, an important issue remains, that is that non-conforming approaches,
similarly to the mixed-dual one, relax the interface continuity constraint on



the flux. The flexibility and parallelization capabilities of the non-conforming
finite elements have proved useful in other fields (Kloucek et al. 1996; Ha et al.
2002).

The paper is organized as follows. In Section 2 a review is given of the RT
mixed-dual method as applied to the diffusion case. In Section 3, we describe
our attempt at applying the RT elements to Py transport while keeping a
mixed-dual formulation. In Section 4, we first adapt Hennart’s approach (Hen-
nart 1986) to Py transport and define a family of 2-D non-conforming finite
elements. We then further simplify the lowest-order of these elements to yield
a four node non-conforming element. Section 5 is devoted to criticality calcula-
tions performed with the non-conforming elements which were investigated in
Section 4, and a comparison is made with the classical Lagrangian conforming
elements. Finally, concluding remarks can be found in Section 6.

2 Raviart-Thomas elements for the diffusion equation

Recall that diffusion theory yields the coupled pair of first order equations

s(r) (1)
Vo(r)+3o(r)J(r)=0 (2)

where the two unknowns are the scalar flux ¢(r) and the vector current J (7).
As is well-known, introducing test functions and applying the divergence theo-
rem to (2) yields a mixed-dual weak form (Lautard et al. 1999). In any mixed
method, the finite-dimensional approximation spaces for the two unknowns
cannot be chosen independently. This well-posedness requirement arises from
the “Ladyshenskaya-Babuska-Brezzi” (or “inf-sup”) condition (e.g. Roberts
and Thomas 1991). It can be shown (Raviart and Thomas 1977) that this
condition is satisfied if the flux approximation space Sy equals the divergence
of the current approximation space Sy, that is

V . SJ - S¢- (3)

This requirement is met by the RT elements (Raviart and Thomas 1977).
Indeed, at order k, the RT} element on a rectangular reference unit finite
element uses the following spaces

Sy ={J = jz1ls + jy1ly, jo € Qry14 and jy € Qry1}, Sp = Qrr, (4)
where the polynomial space (), is defined by

Qup = {29, 0<i<a, 0<j<b)



Pascal triangles in figure 1 illustrate the polynomials present in the current
((a) and (b)) and flux (c) basis for the RT element of order 1 (i.e., RT}).
Comparing (a) and (b) to (c) shows that condition (3) is verified for RT;. The
degrees of freedom are taken to be k + 1 values of n - J on each rectangle
side, and (k+ 1)? values of ¢ inside the element. The RT elements enforce the
continuity of n - J, but allow interface discontinuities for ¢.

1 1
X y X y
x2 xy y? z? xy y?
1.3 x2y wa y3 $3 IL'Z’y Xy2 y3
(a) (b)
1 1
X y X y
z? xy y? x2 xy y?
$3 $2y .’Ey2 y3 ZE3 $2y ny y3
(c) (d)

Fig. 1. Mixed Dual RT; finite element: in boldface, terms present in the approxi-
mation space for the vector unknown z— (a) and y— (b) components, and for the
scalar unknown (c); in (d), extension of the scalar unknown approximation space
that accounts for the crossed terms appearing in the transport case.

3 Attempts at mixed-dual Py transport
3.1 Looking for a mized-dual formulation

The even/odd angular parity decomposition of the angular flux ¥(r, Q) defines
its even component ¥* and its odd component ¥~ according to

UE(r, Q) == (I(r,Q) £ U(r, —Q)).

1
2
With these definitions, the transport equation can be written as the coupled
pair of first order equations



Q-VU (r,Q)+o(r) ¥ (r,Q)=0,r) ¢(r) + s(r) (5)
Q-VIH(r, Q) +o(r) ¥ (r,Q2)=0 (6)

where for simplicity we assumed isotropic scattering and sources, and with

o(r) = [, dQUT (7, Q) the scalar flux.

The most straightforward way to obtain a mixed-dual form for (5) and (6)
uses two scalar unknowns, namely ¥ and U~ (Fedon-Magnaud et al. 1995;
Wu 1996). This way is thus not appropriate for RT elements. Moreover, the
increase in the number of unknowns should then be compensated by a better
conditioning of the resulting system matrix, which has not been proved so far.
This is even more true for mixed-hybrid methods based on (5) and (6) (Van
Criekingen et al. 2006), since such methods use additional interface unknowns
(which can be interpreted as a Lagrange multipliers) to enforce interface con-
tinuity constraints.

In order to obtain a scalar and a vector unknown, we introduce (assuming as
in the remainder of this paper that o # 0)

p(r, Q) = _é VUt (r, Q). (7)

With this definition, equation (6) becomes ¥~ = Q- p and we are lead to the
coupled pair of equations

Q-V(Q-p)+a\ll+:as/ Ut dQ + 5 (8)

i

1

Then, introducing test functions ¥* and p in (8) and (9), respectively, inte-
grating over space (V' is the spatial domain, and 9V its boundary) and angle,
and applying the divergence theorem to the second equation, we obtain

Q- V(Q-p)+o Tt T — g0t
I /

4m

:/ /xiﬁs dQ2dv (10)
i JV

o+ dQ’) dQdV

/ / (opp — V-5 U dev+/ n-pUtdQds = 0. (11)
4 JV 47 JOV

This is the mixed-dual weak form with unknowns ¥* and p, for which we can
now consider a RT-type discretization.

Again since we use a mixed formulation, the finite-dimensional approximation
spaces for the two unknowns cannot be chosen independently. Letting S, and



Sg+ respectively denote the approximation spaces for p and ', an analogy
with the classical diffusion analysis suggests that the equivalent of condition
(3) in our transport case is

Q-V(QS,) = Ser,

since the divergence operator in (1) is replaced by the more involved operator
Q- V(Q)in (8). Note that we have for any p = p,1, + p,1, € Sp,

Q-V (Q-p) = Q) 0ups + Quy vy + Dy Oyps + Q5 Oy,

The presence of “crossed terms” 0,p, and 0,p, in this last expression (not
present in the simple divergence of (3)) forbids the use of the RT elements as
such. Rather than look for a hypothetical transport formulation that avoids
such crossed terms, one can broaden Sy+ so as to take these terms into account.
In this view, figure 1 (d) presents an extension of the RT; scalar approximation
space which accounts for the crossed terms.

Introducing angular dependence, we therefore consider the approximation
space defined at order k by

Sp={P=p:1s +pyly, Pz €Ye ® Qry1x and py € Yo @ Qg 11},
Sut+ =Y, ® Pypq

where the polynomial space P, is defined by
P,={z'y, 0<i+j<a} (12)

and Y, contains the even-parity spherical harmonics. Thus the spatial part of
the vector space Sp is the same as Sj in the diffusion case (cf. (4)), while the
spatial part of the scalar space Sg+ has been extended. One can notice that
our heuristic approach makes this extension relevant only for RT} with & > 1.

Substituting the above expansions into equations (10) and (11) yields a non-
symmetric form of matrix equations, which means that the mixed-dual for-
mulation considered here is not self-adjoint.

3.2 A fized-source test problem

We now introduce a demanding fixed-source test problem in order to test the
above formulation. This problem, depicted in figure 2, is derived from the
Azmy benchmark (Azmy 1987). Since the latter is correctly treated by the
S Py method, a low-density region was added so as to make the S Py method
fail. Figure 3 illustrates the deficiency of the SPy method (line of circles)
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Fig. 2. Our fixed-source test problem (o(,) per unit length, s per unit volume).
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Fig. 3. Cell-averaged scalar flux along the line of mesh cells centered at y = 1.125
for our fixed-source test problem.

compared to a reference solution (line of squares) obtained with the discrete
ordinate solver IDT of the APOLLO2 code (Zmijarevic 1999). A 40 x 40 grid
was employed in all our test calculations.



Unfortunately, the approach proposed in Section 3.1 proved unsatisfactory on
our test problem, as illustrated in figure 3 (line of “x”). Besides, the extension
of the scalar approximation space did not prove helpful in practice. In fact, ex-
amining the discretized weak form, it can be shown that the additional spatial
expansion functions in Sy+ (compared to S,) do not contribute to the cell-
averaged value of the scalar flux. Our numerical tests moreover showed that
these additional expansion functions bring a randomly oscillating contribution
to the solution in the low-density region (i.e., for z € [5,7]).

3.8 Other attempts

The deficiency of this approach can be thought to be due (at least in part)
to a too tight continuity requirement on p: the RT discretization yields a
vector with continuous normal component across interfaces, while this is in
general not physically true for p. Therefore, we developed another mixed-dual
formulation redefining our vector unknown as p = —> Q (Q-VI*) = Q¥
whose normal component is physically continuous across interfaces. However,
this approach also failed to provide acceptable results on our test problem,
probably because in this case the directional constraint on the discretized
vector p is too loose. In fact, this last formulation yields a system of matrix
equations which is the transpose of the one obtained with the first definition
of p (equation (7)) , but this property could not be exploited to obtain an
improved method.

Finally, we explored the possibility of using the self-adjoint angular flux (SAAF)
equation of Morel and McGhee (1999) rather than the even/odd-parity de-
composition (Cartier 2005b). Defining as vector unknown (Cartier 2005a)
p(r,) = -1 Q Q- VU(r,Q), one obtains using the SAAF

V-QQ-p(r,Q2)+o(r)¥(r,Q)=
1

o,(7) /S‘Il(r, Q)0+ 5(r) ~ Vo0 (as(r) /S‘II(T,Q) dQ+s(r))

QQ-VY(r,Q)+o(r)pr,Q2)=0

This yields a symmetric system of matrix equations. With this formulation,
the Py approximation expands the angular dependence of the two unknowns
U and p using the same complete set of spherical harmonics up to order
N. The problem here is that the lowest-order angular approximation, which
expands the angular part of ¥ and p using the spherical harmonics up to order
1 (i.e. Yy, Yio and Yi41) does not correspond to the diffusion equation. This
fact seems to impair the possibility of building a Py transport method on this
basis.



4 A Non-Conforming Second-Order Alternative

The well-known even-parity (or primal) second-order formulation (de Oliveira
1986; Palmiotti et al. 1995) is obtained by expressing ¥~ in terms of ¥* in
equation (6), and substituting the result into equation (5). Note that the
second-order primal weak form can in fact be derived without using any
second-order derivative (that is why the terminology “standard” is sometimes
preferred to “second-order”). Indeed, multiplying equation (5) by a test func-
tion Ut and integrating over space and angle yields

//xir+(n-vw—+ax1/+—as dQ’\IﬁL)deV:/ / s Ut dQdv
47 JV 47 JV

47

Integrating by parts (with respect to ), we obtain

—/ /\D‘Q-V\I!*deV—i—/ Q- nitU dQdsS
A JV 47 JOV

+/ / (axiﬁqﬁ—os\iﬁ/ \Il+)deV=/ / s T+ dQdv,
47 JV 47 A7 JV

Expressing ¥~ in terms of U" using (6) finally yields the weak form

- 1 -
/ /n-v\y+—n-vw+dﬁdv+/ Q- nIt U dQds
47 JV g 47 JOV

+/ / (axif+\1;+—as\if+/ ) deV:/ / s T dQdv. (13)
i JV S Ar JV

The ¥~ term in the surface integral (second term) of this last expression
is expressed in terms of ¥* through the boundary conditions. The unique
unknown in this case is thus U+,

The above formulation is well-known, and lies for instance at the basis of the
transport production code EVENT (de Oliveira 1986). However, while this
code uses the usual Lagrangian finite elements (as described in R.T.Ackroyd
1997, for instance), we here consider non-conforming finite elements. By “non-
conforming”, we mean elements that allow interface discontinuities for ¥,
Recall that the mixed-dual RT finite elements enforce the continuity of the
normal component of the vector unknown, but allow interface discontinuities
for the scalar unknown. This relaxation property is thus kept intact when
using non-conforming elements. In fact, equivalences between mixed and non-
conforming second-order methods can be established. This has been done in
the (nuclear) engineering community by Hennart (Hennart and del Valle 1993),
as well as in the numerical analysis community at a more general level (Arnold
and Brezzi 1985; Arbogast and Chen 1995).



In the diffusion case, Hennart (1986) introduced a family of non-conforming
nodal schemes based on the second-order primal formulation of the equation,
using the scalar flux as a unique unknown. The word “nodal” here means that
Hennart took the degrees of freedom to be edge or cell moments, while the
classical finite element approach considers point values as degrees of freedom.
The polynomial expansions in Hennart’s approach are defined at order & so
that the unique spatial approximation space is spanned by

QIH—Q,/C U Qk,k+2 k = 0, ]_, 2, P (14)

Pascal triangles in figure 4 (a) and (b) illustrate this for the lowest two spatial
expansion orders, ¥ = 0 and £ = 1. The degrees of freedom are then £ + 1
moments on each edge of a rectangular element, and (k + 1)? cell moments on
the interior of the element. Note that this repartition of unknowns between
the interior and the edge of a rectangular element is the same as in the RT ele-
ments. This further illustrates the relationship between these non-conforming
elements and the original RT ones. Note by the way that these nodal schemes,
later applied to the transport equation using discrete ordinates for the angu-
lar discretization (del Valle and Mund 2004), are still denoted by “RT}” even
though they do not apply to a mixed-dual formulation.

1 1
X y X y
Xz Ty y2 X2 Xy y2
3 22y oy Y3 3 x2y xy? 3
(a) (b)
(c) NCs (d) NCya

Fig. 4. Second-order primal version of the RTj (a) and RT; (b) elements: in boldface,
terms present in the approximation space for the unique unknown; position of the
nodes in the proposed element of order 0 (c) and 1 (d).

Hennart’s approach is adapted to the primal form of the second-order neu-
tron transport equation with a spherical harmonic angular approximation by
defining a family of 2-D non-conforming finite elements. We keep the spatial
approximation spaces defined in (14), but not the “nodal” character of the
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method: we here use node point values as unknowns. We choose to locate
these nodes at Gauss points. In general at order k, the " spatial approxima-
tion space is thus again spanned by Q425U Q% k+2, but the degrees of freedom
are now the U point values at the k£ + 1 Gauss points on each edge, and at
the (k + 1)? interior Gauss points within each element. This is illustrated on
figure 4 for £ = 0 (c) and £ = 1 (d), and these elements will respectively
be named NC5 and NCj5 in the remainder of this paper. This yields a non-
conforming scheme since continuity of the flux is not enforced across element
interfaces.

The spatially and angularly discretized form of ¥+ is then given by

U (r, Q) ~ (4(2) ® f(r)) ¢4, (15)

where ¢, is the coefficient column vector to be determined, y. contains the
even-parity spherical harmonics as before, and where f(r) contains the basis
functions spanning Qg+2x U Qg k+2. Taking test functions equal to the (trans-
posed) expansion functions, and substituting equation (15) into the weak form
given by equation (13), yields a positive-definite system that can be solved us-
ing powerful iterative techniques such as preconditioned conjugate gradients
(Saad 2003).

With this approach, we come close to the reference solution for the fixed-source
test problem introduced in Section 3.2, as can be seen on figure 3 (line of “x”).
To further demonstrate the convergence of the NC5 and NC}, elements, table
1 gives the root mean square (or L?) error norm for different mesh refinements.
Such a good result was not guaranteed a priori. In fact, the convergence of

L? error norm, x10*
type grid | 5 5 110 x 10 | 20 x 20 | 40 x 40
NCs 695.2 | 5.3 3.9 2.4
NChs 684.0 | 13.4 4.6 2.2
NC, 702.0 | 20.9 7.0 2.9
NC} 719.3 | 47.1 12.4 3.7

Table 1

L? error norm (on the cell-averaged flux values, compared to the reference IDT
calculation obtained on a 40 x 40 grid) for different mesh refinements, using a Ps
angular approximation.
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a non-conforming scheme is often theoretically investigated through a “patch
test” (Strang and Fix 1973), whose mathematical foundations lie in the second
Strang lemma (Ciarlet 1978). This patch test is not passed here (the continuity
of the mean value is not guaranteed across element interfaces), but nevertheless
the results obtained are good. Moreover, one can argue that the “patch test”
was developed for simple second-order partial differential equations (typically
—Au = f) and is thus not directly applicable in the more general case of the
transport equation.

A simple low-order element can be obtained by removing the interior degree of
freedom in the NC5 element. We then obtain a rectangular element with one
node on the middle of each side. The basis {1, z,y, zy} is not unisolvent with
such node positioning, and the spatial basis to use is then {1,z,y,z? — y?}.
This element will be named NCj in this paper. Note that this element can
be obtained by simply rotating the usual lowest-order Lagrangian element.
In fact, it is known as the “rotated Q;” element in the numerical analysis
community. It was tested long ago by Lautard (1981) on the diffusion equation,
and more recently used by Rannacher and Turek (Rannacher and Turek 1992)
for the Stokes problem. Again the patch test is not passed for this element,
but our test problem was successfully treated by this approach. The L? error
norm evolution with mesh refinement is also given in table 1.

The NCjy element has been further analyzed by Douglas et al. (1999) for gen-
eral second-order elliptic problems. Following their suggestion, we can replace
the basis {1, z,y, 2% — y*} by {1,z,y,0(x)? — 0(y)?} with

With the reference element defined as [—1,1]2, and since [', 8(z) = 0, this
basis insures that the average flux is continuous across each element side. The
resulting element will be denoted by NCj. The patch test at order zero is
thus passed for this element. Again, the NC} element was validated on our
fixed-source test problem, and table 1 gives the L? error norm evolution.

5 Criticality calculations

Criticality calculations have been performed to further test the non-conforming
finite elements validated in the previous section. A two-dimensional adapta-
tion of the Takeda 1 benchmark (Takeda et al. 1989) was used. Its geometry is
described in figure 5 and its cross-sections are summarized in table 2. A sim-
plified whole core is represented, and the cross-section values correspond to a
case were the control rods are absent (this is to make the test more severe). A

12



core

Q. O <
O~ O <

reflector

Fig. 5. Geometry for the 2-D Takeda 1 benchmark without control rod. Vacuum
boudaries are considered on each edge

O
region | group oy voy from group 1 | from group 2
core 1 0.223775 | 0.00909319 0.192423 0.0
2 1.03864 0.290183 0.0228253 0.880439
reflector 1 0.250367 0.0 0.193446 0.0
2 1.64482 0.0 0.0565042 1.62452
void 1 0.0128407 0.0 0.01277 0.0
2 0.0120676 0.0 2.40997E-05 0.0107387

Table 2
Cross-section values for the 2-D Takeda 1 benchmark. The fission spectrum yx is
taken equal to 1 in group 1 and 0 in group 2.

reference Spo discrete ordinate calculation for this benchmark was performed
using an 80 x 80 grid, yielding a k.;y = 1.12971. The same value was obtained
with a 40 x 40 grid. As expected, the S Py solver MINOS did not reproduce the
reference solution. Moreover, the MINOS solver failed to provide a converged
value, even with 50 inner iterations (while only one inner iteration is usually
sufficient for not so severe tests). It thus seems that not only the discretization

13



scheme but also the numerical solution scheme of MINOS is not appropriate
to treat this benchmark.

The new Py solver uses the standard power iteration method for the outer
iteration with Tchebyshev acceleration. For the inner iteration, it uses a pre-
conditioned conjugate gradient algorithm, where the preconditioning is done
by forward-backward Gauss-Seidel or incomplete Cholesky factorization.

The proposed non-conforming schemes, that were proved appropriate for the
fixed-source problem, also appear appropriate on this criticality problem. This
can be seen in tables 3 and 4.

P Py

ype grid | 40 % 40 | 80 x 80 | 40 x 40 | 80 x 80
NC; 1.10664 | 1.10636 | 1.12807 | 1.12783
NCh» 1.10623 | 1.10617 | 1.12757 | 1.12758
NC, 1.10673 | 1.10637 | 1.12798 | 1.12777
NC} 1.10744 | 1.10649 | 1.12895 | 1.12797
LL, 1.10727 | 1.10639 | 1.12909 | 1.12799

PLg 1.10611 | 1.10613 | 1.12765 | 1.12759
CLs 1.10612 | 1.10613 | 1.12758 | 1.12758

Table 3
kesp values obtained with the proposed non-conforming elements, as well as with
linear (LL4), parabolic (PL9) and cubic (CL16) Lagrangian elements.

These tables also show the results obtained with the same second-order primal
formulation, but using the usual Lagrangian elements (e.g. R.T.Ackroyd 1997).
With all our second-order schemes, increasing the Py order yields k.sf values
that come increasingly closer to the reference Si, solution. To examine more
closely the performances of the various schemes, the most appropriate test
is to take as reference, for each angular order NN, the corresponding cubic
Lagrangian (C'Lyg) result (we are certain of the convergence of the conforming
elements). As could be expected, the NC1s element is much more precise than
the NCj5 element. Also, as all our NC' schemes, the NC} element provide better
results than the LL, element, especially on the coarser mesh. The fact that
the NCy element is often more precise than the NCj one might be fortuitous.

With the P; approximation, figures 6 and 7 respectively show the Ak.ss and
the root mean square ||AP||z of the error on the power versus the total num-
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P; P
type &rid | 40 % 40 | 80 x 80 | 40 x 40 | 80 x 80
NC; 1.12960 | 1.12909 | 1.13043 | 1.12958
NCis 1.12867 | 1.12871 | 1.12902 | 1.12905
NGy 1.12910 | 1.12885 | 1.12941 | 1.12920
NC 1.13012 | 1.12915 | 1.13047 | 1.12953
LL, 1.13028 | 1.12918 | 1.13065 | 1.12957
PLyg 1.12885 | 1.12875 | 1.12924 | 1.12912
CLs 1.12875 | 1.12873 | 1.12911 | 1.12909

Table 4
kesy values obtained with the proposed non-conforming elements, as well as with
Lagrangian elements (Continued).

ber of non-zero system matrix elements. This emphasizes the additional cost
required to achieve greater precision. Note that while the NC, element per-
forms better than the NC} element in terms of k.f¢, the opposite is true for
the power.

Table 5 further illustrates the cost of each of the second-order schemes in the Ps
case. Beside the number of unknowns and off-diagonal elements in the system
matrix, this table gives the computing time needed using a forward-backward
Gauss-Seidel preconditioning for all schemes. The C+4++ code used to imple-
ment the method was not optimized for computational efficiency. Therefore
it is not appropriate to compare the execution times against other computer
programs. However, since the different methods have been programmed the
same way, comparing their CPU times is relevant. This comparison reveals
that the computing time is roughly directly proportional to the number of
non-zero elements in the system matrix.

Table 5 presents estimates of the condition number of the global matrix. The
condition number of a matrix is the ratio of the largest to the smallest eigen-
value. A value close to unity indicates a better conditioned matrix (Saad 2003).
We notice that the condition number with NC, is almost as good as the one
with LL,. Note that neither the Lagrangian nor the non-conforming schemes
yield a diagonally dominant matrix or an M-matrix (Saad 2003) (known to
have good preconditioning capabilities) in the general Py case. Another esti-
mate of the conditioning of the matrix is the bandwidth size, since this size
limits the fill-in when using (complete or incomplete) Cholesky factorization
techniques. The average bandwidth values are also given in table 5.
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Fig. 6. Akesy (in pcm, with CLyg taken as reference) versus fill-in (number of
nonzero elements in the system matrix, in millions) for the 2-D Takeda 1 benchmark
without control rod.

6 Conclusions

We first investigated the introduction of a vector unknown into the mixed-
dual formulation of the transport equation obtained through the even/odd
parity decomposition. A heuristically motivated extension of the RT element
was proposed to discretize the resulting formulation. Unfortunately, this ap-
proach failed to provide acceptable results on a demanding test problem. Other
schemes introducing a vector and a scalar unknown could possibly be de-
veloped. However, it is doubtful that such scheme would remain simple and
in turn applicable in practice. One should moreover remember that mixed
methods were primarily introduced to obtain an approximation of the vector
unknown directly, that is avoiding errors in the differentiation of the scalar
unknown. However, in the typical criticality calculation context, the vector
unknown J is not needed. In fact, the reason why mixed methods perform
well in the diffusion (and SPy) case is not known. The solution method (i.e.,
the ADI in the case of the MINOS solver) plays a key role in the efficiency of
the solver, but from a purely discretization point of view, no theoretical result
show the superiority (in terms of conditioning) of the mixed linear system
compared to the second-order one. An obvious observation can however be
made, that is that the introduction of the current unknown increases the size
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Fig. 7. Lo error norm (%1000, with C' L4 taken as reference) versus fill-in (number of
nonzero elements in the system matrix, in millions) for the 2-D Takeda 1 benchmark
without control rod.

of the discretized system to be solved. It is interesting to note that recovery
techniques (Chou et al. 2002) have been developed by numerical analysts to
efficiently re-construct the vector unknown from the scalar one, once the latter
has been obtained through a non-conforming scheme. Such techniques rely on
the equivalence between the non-conforming scheme and the mixed one, and
actually claim to take advantage of the lower dimension of the system arising
from the non-conforming scheme. Thus in our case, where the vector unknown
is in fact useless, the use of mixed methods may seem to be an unnecessarily
complicated way to proceed.

We here adapted Hennart’s approach to the transport case with Py angular
approximation, introducing a family of 2-D non-conforming finite elements
whose lowest two order elements have been denoted NC5 and NC4,. These
elements were shown to yield satisfying results on a severe fixed-source test
problem, as well as on a similar criticality calculation. Such convergence was
not guaranteed a priori (the patch test is not passed for these elements).
Further simplifying the lowest-order non-conforming element by eliminating
the interior degree of freedom lead to the NC, (or rotated (1) non-conforming
element. We showed that this element is also convergent on our severe test

17



type | # unknowns | # off-diag | CPU time | cond. number | bandwidth
NCjs 43,920 1,471,680 89.95 392.39 724
NCiq 116,640 8,767,440 975.9 1219.5 1,808.5
NCy 29,520 895,680 51.04 83.17 544
NCj} 29,520 895,680 51.44 183.57 544
LL, 15,129 585,396 29.45 67.44 373
PLg 59,049 4,143,636 282.6 647.98 1,097
CLys 131,769 14,562,756 | 1,037.22 2044.1 2,182
Table 5

Various measures of cost and conditioning for a P5 calculation using a 40 x 40 grid:
number of unknowns and number of off-diagonal non-zero elements in the system
matrix, CPU time (in seconds), condition number (on a reference 8 x 8 calculation)
and average bandwidth.

problem.

The question is then to see whether or not the non-conforming schemes we
consider do add significant improvement compared to the Lagrangian ones
used in (de Oliveira 1986), for instance. Numerical results in Section 5 show
that the family NCs, NC,,... is clearly more costly than the Lagrangian one
and that this additional cost is not always compensated by an equivalent in-
crease in accuracy. However, the NC, element is potentially interesting, since
it yields an improved accuracy compared to LL,, sometimes close to PLg but
at a lower cost. Relatively recent research about this element, including 3-D
generalization has been performed in other fields (Douglas et al. 1999). This
will be the subject of further research. Note also that the triangular equivalent
of the NC} element exists in the literature under the name of Crouzeix-Raviart
element (Crouzeix and Raviart 1973). It would be interesting to couple these
two non-conforming elements together to treat various geometries. Also, expe-
rience with nodal methods lead us to think that the relaxation of the interface
continuity constraint should make non-conforming schemes particularly effi-
cient where a coarser mesh can be used. One could then think about coupling
non-conforming elements with conforming Lagrangian ones, each of them be-
ing used in selected areas.

For solving the linear system resulting from the non-conforming scheme, a
preconditioned conjugate gradient method has been used in this study. Multi-
level methods for non-conforming elements have been studied in the numerical
analysis community (Chen 1997; Chen and Oswald 1998). This will also be
the subject of further work.
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