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Abstract 

The PACTITER code derives from the PACTOLE code, developed by the CEA for 

predicting Activated Corrosion Products (ACPs) in PWR primary circuits. The 

operating conditions, material compositions and water chemistry of the various Primary 

Heat Transfer Systems (PHTS) of the International Thermonuclear Experimental 

Reactor (ITER) made mandatory the adaptation of the PACTOLE code.  

PACTITER was developed on the basis of dedicated experiments, namely devoted to 

determine copper solubility and stainless steel release in the ITER primary cooling 

systems conditions, which are rather different from those in PWR (i.e. water chemistry 

and temperatures). The PACTITER code has been extensively used in support of the 

ITER Generic Site Safety Report (GSSR) in the field of accident analysis and worker 

collective dose assessment. 
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1. Introduction 

For almost 30 years, the PACTOLE code has been developed by the Commissariat à 

l'Energie Atomique (CEA) to predict the formation, activation, migration and deposition 

of corrosion products in the PWR primary system [1, 2]. The other main purpose of the 

code application is estimating the effects of changes in primary system design and 

operating parameters. The PACTOLE code has been validated by comparison between 

simulations and more than 30 years of contamination measurements on PWRs [3, 4]. 

After an initial use of PACTOLE code, made by simply adapting the input to the ITER 

Primary Heat Transfer System (PHTS) characteristics, it was necessary to modify it and 

develop PACTITER to take into the presence of Cu-alloy as a new material in contact 

with water in the divertor cooling circuit. Afterwards, the modified PACTOLE code, 

called PACTITER, has been used in support of the Non-Site Specific Safety Report -2 

(NSSR-2) (1996-1998) and to the Generic Site Safety Report (1998-2003) for accident 

analysis and worker collective dose assessment. Indeed, the Activated Corrosion 

Products (ACPs) in the ITER PHTS can be of some concern as contributor to the source 

term of potential released activity to the environment in case of accident (LOCA for 

instance) and to the Occupational Radiological Exposure (ORE) during the normal 

operation of ITER. 

Some dedicated experiments have been performed to acquire physical-chemical input 

data and validation data in PHTS conditions, particularly, in order to determine the 

corrosion product release term into the fluid due to the stainless steel corrosion in PHTS 

conditions, and the copper solubility in the ITER water chemistry conditions. 
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2. PACTOLE/PACTITER phenomenological model description 

 

In a PWR primary system or an ITER PHTS, the formation process of ACPs is very 

complex. It involves many different mechanisms that react among each other. The first 

mechanism is the uniform and generalized corrosion of metallic alloys. For stainless 

steel materials, this leads to the generation of a dual oxide layer: an inner compact layer 

(chromite) and an outer porous layer (ferrite). The inner layer is a passive oxide layer, 

which limits ion exchanges between metallic alloys and primary coolant but does not 

eliminate them: ions are released in the primary coolant. The quantities of released 

materials are small (of about several mg/dm²/month) and do not alter component 

soundness. 

The primary coolant transports ions generated by the corrosion-release phenomenon or 

by oxide dissolution. When the coolant becomes supersaturated in corrosion products, 

ions can precipitate on the walls or in the bulk of the fluid to form particles. Particles are 

also generated by erosion processes. Transported by the primary coolant, particles are 

deposited inside the circuits or they can agglomerate. Dissolution and precipitation 

depend on the corrosion product equilibrium concentrations, which depend on coolant 

chemical treatment (pH, H2 concentration (or Redox potential), temperature). 

Two types of radioactive corrosion product formation coexist. On the one hand, the 

activation of corrosion products occurs when they are deposited on surfaces under 

neutron flux. On the other hand, the corrosion of structural materials under neutron flux 

is accompanied by a release of radioactive corrosion products. 
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The PACTOLE and the PACTITER codes are based on a control volume approach, the 

primary circuit is represented by an arrangement of several volumes in which transient 

mass balance equations are solved : 
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∂
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&&                                     (1) 

 

Where mi is the mass of the ith isotope in a considered medium defined as a form for the 

corrosion products, t is the time, es mm && − is the convective term (balance between input 

and output) and except for nuclear reactions, which are mass production/loss within the 

considered medium, Jm is the exchange mass rate between two different media. 

Seven different media are taken into account in a control volume and depicted in Figure 

1. The transfer mechanisms, which are modelled in the mass balance equations, between 

all the considered media, are summarised in Figure 2. 

The corrosion and release processes are formulated in the mass balance equations as 

functions of their time production rates.  This formulation yields results on the 

consequences of material surface treatments, on the corrosion and release processes and, 

thus on the circuit contamination. 

 

3. Application of PACTOLE to ITER: the development of the PACTITER code 

The PACTITER code is currently being used for predicting the Activated Corrosion 

Product (ACP) inventory in the various ITER (International Thermonuclear 

Experimental Reactor) Primary Heat Transfer System (PHTS) circuits of the Tokamak 

Cooling Water System (TCWS) for accident analysis and personnel safety (ORE 

assessment). 
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At the very beginning (1994-1996), the PACTOLE code was used for predicting 

activated corrosion products inventory and distribution in the first wall/shielding blanket 

cooling loops of the ITER PHTS [5, 6], by simply adjusting the input deck to the case. 

The major modifications in the PACTOLE input deck were directed at simulating the 

particular ITER PHTS operating conditions, which are quite different from those of 

PWRs. In PWRs, the coordinated B-Li chemistry is used to control a constant pH300 °C 

to a target value of 7.2 characterized by the use of boric acid (H3BO3) and Li hydroxide 

(LiOH) differently from ITER PHTS whose chemistry is closer to a Boiling Water 

Reactor water chemistry mainly controlled by its conductivity (less than 0.3 µS/cm). 

The other main difference is the temperature range, which is 50-240 °C for ITER 

operation. 

The other peculiarity of the ITER PHTS is the presence of copper alloys in the divertor 

cooling loops, that forced to consider a new element, copper, which was not included in 

PACTOLE.  That required the realization of the new code PACTITER to include copper 

as the sixth element in addition to Fe, Ni, Cr, Co and Mn. 

The three following nuclear reactions involving Cu, found to be the most important ones 

for safety analysis, were then included in PACTITER: 

− 63Cu(n, γ) 64Cu; 

− 65Cu(n, 2n) 64Cu; 

− 63Cu(n, α) 60Co. 

First, a Cu solubility curve as a function of temperature was defined on the basis of data 

from a survey of the existing literature [7]. 

In parallel, an experimental campaign, performed by CEA Fontenay-aux-Roses, was 

launched in early 1996 to obtain Cu solubility data for ITER divertor PHTS conditions 

[8]. 
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The ACP assessment for all ITER cooling loops were completed in early 1998 in 

support to NSSR-2, Volume III “Radiological and Energy Source Terms”.  The ACP 

assessment was then repeated to take into account design modification in the PHTS 

design (e.g. the heat exchangers with primary coolant on the shell side) [9]. The 

comparison with experimental corrosion data related to ITER operating conditions and 

Cu-alloys provided a satisfactory result [8].  

Further to the decision taken to update the ITER Final Design Report defined in 1998 

(ITER FDR) to reduce size and cost of the machine still satisfying the overall 

programmatic objective of the ITER EDA (Engineering Design Activity), the machine 

design was reviewed including that of PHTS during the extension (1998-2001) of the 

EDA phase. The number of cooling loops of the PHTS was reduced from a total of 20 to 

6. Again, the code PACTITER was applied to estimate the ACP inventory of the ITER 

PHTS according to the new design in support of accident analysis and worker collective 

dose assessment, with results documented in the Generic Site Safety Report (GSSR) 

[10]. 

 

4. ITER safety requirements for ACPs 

ACPs will be present in ITER in the various in-vessel and vacuum vessel coolant loops 

as well as in any coolant loops related to test blanket modules, auxiliary heating or 

diagnostics equipment. These products impact occupational exposure, routine effluents 

to the environment, and potential releases during accidents. That has made the ACP 

inventory evaluation an important task for ITER public and occupational safety. ACPs 

present in fission reactors cooling loops do not pose a significant public hazard in these 

installations, however they are a significant hazard to site personnel. In fact, in case of 

severe accidents in LWRs, ACPs are negligible in terms of radioactive inventory, 
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mobilisable inventory and environmental source term, compared to the analogous 

inventories from the reactor core (fission products and actinides). On the contrary for 

fusion devices such as ITER, ACPs could be important in terms of the whole 

mobilisable inventory in case of accidents compared to other major source terms, 

tritium and dust. 

The enveloping ACPs inventory adopted for ITER accident analyses [11] was assumed 

to be 10 kg/loop as deposit and 0.6% of deposit mass in the suspended forms (soluble 

ions or crud particulates), irrespective of the cooling loop type, first wall//shielding 

blanket, divertor or vacuum vessel. 

The other important safety requirements are the project release guidelines for the ACPs, 

tritium and dusts as shown in Table 1. For the occupational radiation exposure (ORE) 

doses, the limits and project guidelines have been adopted [12] as shown in Table 2. 

 

5. ITER ACP assessment by PACTITER 

Many calculations were carried out by the PACTITER code to assess ACP in the PHTS 

of ITER TCWS, following the several evolutions of the design. 

The PACTITER geometric model of one first wall/shielding blanket cooling loop of the 

ITER PHTS (according to the Final Design Report 2001) is depicted in Figure 3. 

The ACP assessment carried out for a single First Wall/Shield cooling loop provided a 

value of 1.8 g of suspended cruds and 10.9 g of dissolved ions.  The total ACP deposit 

mass was 1.4 kg/loop. The hazard of the ACP is typically dominated by Mn-56 that 

arises from Mn and Fe in the base alloy steel, by Co-57 and Co-58, that arise from Ni in 

the base steel and by Co-60 that arises principally from Co in the base steel. The ACP 

deposit inventory is more than seven times lower than the limit of 10 kg/loop while the 

ACP inventory in the suspended forms is about 5 times lower than the limit.  The ACP 
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assessment for the divertor cooling loop provided values closer to the limits, 8.9 kg for 

the deposit mass and 42 g in the suspended forms.  The ACP inventory for VV loops 

was estimated to be 6 kg/loop for mass deposit and 25.6 g/loop in the suspended forms.  

The estimated base metal release rates for the different cooling loops of the ITER PHTS 

are shown in Table 3. 

Mass release rates of the VV loop stainless steels are lower due to the lower coolant 

operating temperature (100 – 103 °C) and to the lower coolant velocity (< 0.5 m/s) in 

most regions of the loop. 

ACP mass and activity inventory were used in accident analyses involving LOCA with 

consequent releases to the environment. Among several accident sequences analysed 

[13], a large DV ex-vessel coolant pipe break provided the largest ACP environmental 

release, equal to 1.2 % of the project release guidelines (see Table 1). 

The ACP radioactive inventory distribution, assessed by the PACTITER code for ITER 

PHTS, was used to determine the dose rates around its system components (e.g. piping, 

main pumps, valves, heat exchangers) during scheduled and unscheduled maintenance.  

Starting from the radiation field and taking into account the anticipated work effort, the 

related annual collective ORE was estimated to be 65 pers·mSv [14] for the first 

wall/shield loops (30 pers·mSv) and divertor loop (35 pers·mSv).  The contribution from 

VV loops was not estimated being the related ACP radiation hazard negligible 

compared to the other loops, as written before. 

 

6. Experimental activity in support of PACTITER development and validation 

Two main experimental activities were set up and carried out aiming at the development 

and validation of PACTITER.  
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The first one, launched in 1996 was performed at CEA Fontenay-aux-Roses, to get Cu 

solubility data in the ITER divertor PHTS conditions. 

The second one was carried out at CEA Cadarache in two phases (2001 and 2004) to 

study the ACP release mechanism in close ITER coolant chemistry, temperature and 

velocity conditions.  Both are described in more detail in the following sections. 

 

7. Copper solubility data in ITER divertor PHTS conditions 

The experimental campaign, performed by CEA Fontenay-aux-Roses, was launched in 

early 1996 to get Cu solubility data in the ITER divertor PHTS conditions [15].  This 

experimental study was devoted to determine the valence states of the copper (Cu0, Cu+ 

or Cu++) and to obtain solubility in steady state conditions. In order to check the stable 

phases of Cu in ITER divertor coolant conditions, autoclave tests were performed on 

copper and copper oxides. These included four tests at 100 and 250 °C on CuO and 

Cu2O, pure copper and Cu-Cr-Zr (the reference Cu alloy for ITER divertor high heat 

flux components). 

The major findings of this part of the study were: 

• In reducing conditions, stable phase is Cu0, dissolution can occur according to 

the chemical reaction:  

  Cu0
(s) + H+

(aq) ⇔ Cu+
(aq) + 1/2 H2(g); 

• Kinetics of reduction from CuI and/or CuII to Cu0 is very slow. 

 

The other part of the experimental campaign was devoted to determine the total 

concentration of soluble copper in equilibrium with Cu-Cr-Zr alloy in chemical 

conditions close to those of the ITER divertor primary coolant.  The solubility 
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measurements were carried out in a flow device made of titanium. The measured pH 

during all the tests was in the range of 6.4 ±0.2.   

The solubility measurements, illustrated in Figure 4 [8], are quite different from those 

obtained from the literature [7]. The copper concentrations determined by tests are four 

or five orders of magnitude larger than the copper solubility obtained by thermodynamic 

data. Such difference could be explained by: 

• the formation of copper colloids during tests; 

• the presence of another Cu species, such as copper oxides previously formed during 

the exposure to vapours at room temperature or before establishing reducing 

conditions; 

• the oxidation of Cu due to the existence of oxygen traces in water (copper is known 

as a very good getter of oxygen). 

 

 

8. ITER ACP release mechanism 

In order to get realistic values of release kinetics and thus to improve the understanding 

of ACP generation, experiments have been carried out in 2001 and 2004 using the 

CORELE loop (see Figure 5) in thermalhydraulics operating conditions envisaged for 

ITER PHTS and with the chemistry given in Table 4. 

Having circulated in the irradiated tubes, the coolant (deionized water) is purified by 

passing through mixed beds of ion-exchange resins (Figure 5). No release can exist in 

the loop [cold part in polypropylene, hot part in zircaloy], except in the test sections. 

Then, all the released ions are radioactive and trapped in the measurement ion-exchange 

resins. The nature and quantity of  these radio nuclides are then determined by gamma 

spectrometry of the resins.  
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All the tubes considered in this study are made of 316 L Stainless Steel whose 

composition (given in Table 5) is close to an ITER Grade 316L SS. 

The detected 58Co, 59Fe, 54Mn and 51Cr radio nuclides are then assumed to be 

representative of the main elements of the steel from whom they are generated (see 

Table 6).  In the case of 59Fe and 54Mn, both can be considered as tracers of iron 

justifying the fact that the release rate of Fe is taken as the mean value of the 59Fe 

release rate and the 54Mn release rate. 

For each chemical species, the release rate R (mg/dm²/month) is calculated using the 

following expression: 

TSA
wAR

w ⋅⋅
⋅

=       (2) 

where : 

• A : Activity (Bq) of radionuclide in measurement resin at time t 

corresponding to the beginning of the experiment i.e. when the temperature in 

CORELE is reached and the coolant flows through the test sections. Actually, 

this activity is measured at the end of the experiment by disconnecting the 

measurement resins from the circuits of the loop and placing them in a 

dedicated device. This device enables the gamma spectrometry of the resins 

in a low environmental background. The measured activity is then corrected 

from the radioactive decay in order to correspond to time t. 

• w : weight % of the element in the tube (mg/mg of tube) (manufacturer’s 

data). 

• Aw : specific activity of tracing radionuclide in the tube at time t (Bq/mg of 

tube). This activity is deduced from the measurement at the date of irradiation 

corrected from the radioactive decay in order to correspond to time t. 

• S : Exchange surface of tube with primary coolant (dm²). 
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• T : Duration of the test (month). 

 

The global release rate is the sum of the different release rates relative to each 

radionuclide measured in the resins. They are summarized for each test in Table 7. 

The two first tests were performed with the same irradiated tubes although the last one 

was performed with new freshly irradiated pair of tubes. The Li content, introduced as 

LiOH, was required due to the fact that the used water was not perfectly deionized and 

slightly acidic. 

 

 

8.1 Release of chromium 

Chromium was detected during the first test and was only trapped in measurement resin, 

thus indicating the presence of a soluble form of chromium. This detection could thus 

be linked to the temperature of the test (150°C) and to the slight presence of oxygen 

which could favor the formation of a chromite layer (Cr2O3 or MCr2O4, where M= Fe, 

Ni). The existence of such MCr2O4 layer is coherent with experimental results 

indicating the release of Fe and Ni (upon the assumption that 58Co is representative of 

Ni). It is worth noting that when the temperature is lower (100°C), no soluble chromium 

is detected when the O2 content in the fluid is less than 24 ppb. 

 

8.2 Influence of temperature  

Globally, it can be seen that the lower the temperature, the lower the release rate in the 

tested range. These results could be explained by the existence of a diffusion barrier 

(possibly as a chromite) at the interface fluid/stainless steel. At low temperature (say 

less than 100°C), the solid diffusion of atomic oxygen in this layer could be 
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considerably reduced, thus limiting the further formation of oxides (corrosion), and then 

the associated releases. As an example, the thickness of a Cr2O3 layer is commonly of 

the order of a nanometer (L=10-9 m). Considering a solid diffusion coefficient, D, of 10-

21 m²/s (common value) leads to a characteristic diffusion time (L²/D) of 20 minutes 

compared to more than 300 hours of duration of the tests. Dividing D by 1000 when T 

is decreased from 150°C (423 K) to 100°C (373 K) could be possible if the activation 

energy would be higher than 180 kJ/mol. 

 

8.3 Influence of velocity 

From the comparison of the different tests conducted at about 1 m/s and 4 m/s (at the 

same temperature), one can conclude that the lower the velocity, the slightly higher the 

release rate. Note that the difference in velocity is obtained by a reduction in the 

hydraulic diameter thanks to an insert inside the test section. 

The velocity is a key parameter in the release global process as it is responsible for 

erosion of the deposits and for mass transfer limitation in the hydraulic diffusion layer. 

The erosion depends directly on the velocity whatever the temperature and the wall 

roughness in the tests conditions. No particles having been detected: one must conclude 

that, in these last 2004 tests conditions, erosion is not a relevant mechanism. On another 

hand, the mass transfer coefficient in the diffusion layer is given through the Nusselt 

number calculated, for instance, by the Dittus-Boelter correlation (see Table 8). It 

appears that an increase in coolant velocity due to the reduction in the hydraulic 

diameter globally decreases the mass transfer - and then the release rate. 

 

Finally, two types of mass transfer limitations can be put forward in these ITER-like 

PHTS conditions : 
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 the thermally activated solid diffusion of oxygen in a surface barrier (possibly as 

a chromite) which reduces the potential source of release by corrosion, 

 the hydraulic diffusion which depends solely on Reynolds number instead of the 

velocity.  

 

9. Conclusions 

The application of the PACTITER code to the prediction of ACP for fusion reactors has 

been ongoing for more than 10 years. The extensive work of development, qualification 

and validation through dedicated experiments, and application of PACTITER to ACP 

assessment, mainly for ITER safety analyses (release in accident conditions and 

occupational dose to the staff), has produced valuable results. The ultimate aim is to 

further reduce the uncertainties in the source terms considering the specific material and 

operating scenarios of ITER machine. This effort will also fulfill some of the 

requirements for ITER licensing in Europe. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1 – ITER project release guidelines [10] 

Events or Conditions Project Release Guideline(*) 

Normal Operation  

event sequences and plant conditions planned and 

required for ITER normal operation, including 

some faults, events or conditions which can occur 

as a result of the ITER experimental nature 

< 1 g-T as HT and 0.1g-T as HTO 

and 1 g-metal as AP and 5 g-metal 

as ACP per year. 

Incidents  

deviations from normal operation, event 

sequences or plant conditions not planned but 

likely to occur due to failures one or more times 

during the life of the plant but not including 

Normal Operation 

 < 1 g-T as HT or 0.1 g-T as HTO 

or 1 g-metal as AP or 1 g-metal as 

ACP or equivalent combination of 

these per event 

Accidents  

postulated event sequences or conditions not 

likely to occur during the life of the plant. 

< 50 g-T as HT or 5 g-T as HTO or 

50 g-metal as AP or 50 g-metal as 

ACP or equivalent combination of 

these per event. 

Note: (*) HT: elemental tritium (including DT); HTO: tritium oxide (including DTO); AP: divertor or 

first-wall activation products; ACP: activated corrosion products. 
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Table 2 – ITER limits and project guidelines for ORE doses 

Dose Limits 

ICRP recommended limit for annual 

individual worker doses 

20 mSv averaged over 5 years not to 

exceed 50 mSv in any year 

Project Guidelines 

Annual individual worker doses  5 mSv/year 

Individual worker dose for any given 

shift  

0.5 mSv/shift 
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Table 3 – ITER PHTS cooling loop material average release rate 

Cooling loop type Scenario 
duration 
[days] 

SS316L 
release rate 
[µm/year] 

SS304L (°) 
release rate 
[µm/year] 

Cu-alloy 
release rate 
[µm/year] 

FW/shield 3681 0.16 0.07 (*) 

Divertor 3681 0.16 0.11 2.18 

VV 3681 0.008 0.047 (*) 

(°) material in the non-irradiated zones (*) no Cu-alloy in this cooling loop 
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Table 4 – Operating conditions for simulated ITER tests in the CORELE loop 

Operating conditions 150 °C / 150 bar 100 °C / 150 bar 100 °C / 120 bar 

Velocity V (m/s) 4.12 1.02 3.96 0.95 3.82 1.01 

Duration (hours) 353 332 335 

O2 concentration 

(ppb) 
4.15 <O2< 22.5 9<O2<24 3 <O2< 4 

H2 concentration 

(cm3/kg) 
23.7<H2<26 23.5<H2<25.5 23.5<H2<25 

Li (ppm) 0.21 0.195 0.23 

pH25°C measured 6.6 6.85 6.6 
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Table 5 – CORELE test – composition of the used SS316L tubes 

weight %  Fe Ni Co Cr Mn Mo Cu S C N Si P 

From 
manufacturer 

67.4 11.2 0.093 16.77 1.640 2.06 0.29 0.007 0.012 0.070 0.440 0.031
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Table 6 – CORELE test – Activation products of the main element of the tubes 

Element Abundance 
(%) 

Natural 
isotope 

Reaction Activation products Half-life 
(days) 

Ni 68 58Ni (n, p) 58Co 71 

Cr 4.35 50Cr (n, γ) 51Cr 28 

0.3 58Fe (n, γ) 59Fe 45 Fe 
5.8 54Fe (n, p) 54Mn 313 
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Table 7 – CORELE test - Measured release rates 

Temperature  

°C 

Velocity 

m /s 

Species Release rate 

( mg / dm² / month ) 

Global release rate 

( mg / dm² / month ) 

Ni 4.7 ±  0.9 

Fe 16. ±  3 4.15 

Cr 1 ± 0.4 

22 ±  3 

Ni 8.1 ±  0.7 

Fe 27 ± 5 

150 

1.03 

Cr 0.27 ± 0.12 

35 ± 5 

Ni < DL  

3.98 Fe < DL 
< DL 

Ni 0.25 ± 0.1 
100 

 

0.99 Fe 2.30 ± 1.3 
2.6 ± 1.3 

Ni 0.5 ± 0.3  

3.96 Fe 0.27 ± 0.03 
0.8 ± 0.3  

Ni < DL 

 

 

 

100 

 

 

1.01 Fe 2.7 ± 1.5 2.7 ± 1.5 

DL : Detection Limit
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Table 8 – CORELE test - Thermal-hydraulic parameters 

Inox tube inner diameter de (m) 0.0169 0.0169 0.0169 0.0169 
zircaloy insert outer diameter di (m) 0.0140  0.0140  
Hydraulic Diameter Dh (m) 0.0029 0.0169 0.0029 0.0169 
Surface S (m²) 7.04E-05 2.24E-04 7.04E-05 2.24E-04 
Flow rate (30°C) Q (m3/h) 0.972 0.768 0.972 0.768 
Test temperature T (°C) 150 150 100 100 
Density  ρ @[test temperature / 150 bar] (kg/m3) 925 925 965 965 
Flow rate [@ test temperature] Q' (m3/h) 1.05 0.83 1.01 0.80 
Velocity V (m/s) 4.15 1.03 3.98 0.99 
Dynamic viscosity η (Pa⋅s) 1.86E-04 1.86E-04 2.86E-04 2.86E-04 

Reynolds Number (Re) Re = ρ V Dh/ η 5.98E+04 8.64E+04 3.89E+04 5.62E+04

Prandtl Number (Pr ) Pr = η Cp/ λ 1.15 1.15 1.74 1.74 

Nusselt Number (Nu) with 
annular correction 

Nu0 = 0.023 Re0.8 Pr0.4  and 
 

140 216 118 181 
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