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Abstract - This paper describes a new technique for determining the pin power in 

heterogeneous 3D calculations. It is based on a domain decomposition with overlapping 

subdomains and a component mode synthesis technique for the global flux determination. 

Local basis functions are used to span a discrete space that allows fundamental global mode 

approximation through a Galerkin technique. Two approaches are given to obtain these local 

basis functions: in the first one (Component Mode Synthesis method), the first few spatial 

eigenfunctions are computed on each subdomain, using periodic boundary conditions. In the 

second one (Factorized Component Mode Synthesis method), only the fundamental mode is 

computed, and we use a factorization principle for the flux in order to replace the higher 

order eigenmodes. These different local spatial functions are extended to the global domain 

by defining them as zero outside the subdomain. These methods are well-fitted for 

heterogeneous core calculations because the spatial interface modes are taken into account 

in the domain decomposition. Although these methods could be applied to higher order 

angular approximations - particularly easily to a  approximation - the numerical results 

we provide are obtained using a diffusion model. We show the methods’ accuracy for reactor 

cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques 

are known to perform poorly. Furthermore, we show that our methods are highly and easily 

parallelizable. 
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I. INTRODUCTION 

 

Cell-by-cell homogenized transport calculations of the entire core are currently too 

expensive for industrial applications, even if a simplified transport ( ) approximation is 

used. A standard technique to obtain the local pin power consists in superposing a large scale 

diffusion calculation with a fine mesh pre-calculated function coming from a local transport 

calculation. Unfortunately, this method does not work well for MOX reloaded cores due to 

the interface modes between UOX and MOX assemblies. 

NSP

We propose here a new approach based on modal synthesis approximation. The global 

flux is expanded on a finite set of local basis functions obtained on overlapping subdomains. 

The global exact cell-by-cell problem is solved in the finite space spanned by the different 

local functions. We propose two methods to obtain these basis functions:  

• The first one is based on the component mode synthesis (CMS, Ref. 1) method with 

overlapping subdomains (Ref. 2): the basis functions are several eigenfunctions 

(modes), solutions of a local problem on each subdomain.  

• The second one computes only the fundamental mode on each subdomain, which 

leads to an important reduction of calculation time and memory storage. We then 

enlarge the basis using an asymptotic homogenization theorem on a periodic core 

(Ref. 3): the flux eigenfunctions are factorized as ψϕ ×≈ u , with ψ  the rapidly 

varying solution of the problem on each assembly with infinite medium boundary 

conditions, and u the smooth shape function solution of a homogenized diffusion 

problem on the whole core.  

We will refer to the first method as the CMS method, and to the second one as the factorized 

CMS (FCMS) method. 
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We implement here our methods in the framework of the existing MINOS solver (Ref. 4). 

The mixed dual finite element method is used in this solver for the resolution of the  

equations in 3D cartesian homogenized geometries. Even if the CMS and the FCMS methods 

could be applied to any angular approximation – particularly easily to a  approximation, 

we here demonstrate their accuracy for the diffusion model. In this view, we give 2D and 3D 

results obtained on a 900 MWe power plant with UOX and MOX assemblies, comparing our 

new methods to a direct cell-by-cell calculation obtained by MINOS. The overlapping 

subdomains are chosen in order to capture the assembly modes as well as the interface 

modes. Our new solver has the advantage to be highly parallelizable, and we show its 

efficiency in terms of computing time and memory storage on parallel computers. 

NSP

NSP

The paper is organized as follows: in Section II we recall  equations and describe the 

MINOS solver. In Section III we introduce the CMS method; in the next one we give 

theoretical explanations and numerical results for the extension of this method to the mixed 

dual formulation of the diffusion equation. Section V is dedicated to the FCMS method and 

its numerical results. After the study of the parallelization efficiency of the code in Section 

VI, we finally conclude and give perspectives for these new methods.  

NSP

 

 

II. THE MINOS SOLVER 

 

The MINOS solver is one of the main core computational tools of the CRONOS2 system 

(Refs. 4, 5). This solver is reported in the new generation neutronic system DESCARTES and 

has therefore been rewritten in the C++ language (Refs. 6, 7).  

MINOS solves the diffusion or  multigroup equations. It is based on a mixed-dual 

formulation of these problems. This formulation uses simultaneously scalar functions (

NSP

ϕe , 
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the even components) and vector functions (
G

ϕo , the odd components). The first even 

component corresponds to the scalar flux. 

If R is a bounded domain with boundary R∂ , the  transport equations written in the 

mixed (odd-even) form read as follows for each group of the multigroup equations: 

NSP
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The dual variational formulation of the  equations is obtained by projecting the odd and 

even equations on two different functional spaces, and applying the Green formula to the odd 

equation. We obtain the variational problem for each group:  
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More details on variational formulations and functional spaces are given in Ref. 8.  

The Raviart-Thomas-Nedelec (RTN) elements (Ref. 9) are used to discretize the 

different functional spaces. To ensure consistency, the divergence of the vector space lies 

within the scalar space. Then it can be shown that the discrete solution converges to the exact 

continuous one. The use of these elements yields sparse matrices with coupling terms 

oriented only along each considered axis. Various boundary conditions can be taken into 

account in MINOS such as zero flux, reflection, void, albedo, translation and rotation. 

Discontinuity conditions on the scalar flux can also be taken into account. 

 

 

III. THE COMPONENT MODE SYNTHESIS METHOD 

 

The CMS method for the computation of partial differential equations’ eigenmodes has 

been used for a long time in structural analysis as well as in the asymptotic analysis of time 

dependent problems. This method provides a powerful tool for computing the eigenmodes of 

large domains thanks to its high accuracy and its high degree of parallelization. The main 
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idea of this method lies in the decomposition of the global structure in subdomains: a finite 

number of local eigenmodes of the same operator over each subdomain are chosen, and 

constitutes a finite basis of functions for approximating the global problem with a Galerkin 

method. The subdomains can be overlapping (Ref. 2) or not (Ref. 1). Here, we choose 

overlapping subdomains, as motivated by Ref. 2. Note that CMS with non-overlapping 

subdomains has already been briefly considered in Ref. 10 for the diffusion equation. 

To explain the CMS method, we consider a general variational formulation of the steady 

state neutronic equations: ∈∈ 00 and  find λVu RI  such that 

 

 ( ) ( ) Vvvubvua ∈∀= ,1, 0
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0 λ
,    (3) 

 

where a and b are bilinear forms describing the problem. For the sake of simplicity we 

specify neither these forms nor the V space. To determine the first global eigenpair ),( 00 λu , 

we construct an overlapping subdomain decomposition of R such that: .  k
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where  are restrictions to kkk Vba and, kR  of a, b and V respectively, with reflective 

boundary conditions on interfaces , and the actual boundary conditions on RR ∂∂ \k R∂ . 

Now, in order to work with functions defined on the whole domain, we extend the local 
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solutions by zero and denote by k
iu~  these extended functions (we explain in the next section 

why this extension yields conformal basis functions in our case). Then, we look for an 

approximate solution of problem (3) in the space spanned by all the k
iu~  functions: find 

I  such that ∈= ∑∑
= =

0
1 1
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IV. EXTENSION OF THE CMS METHOD TO THE MIXED DUAL FORMULATION 

 

We now extend the CMS method to mixed-dual variational approximations (Ref. 11). In 

this case, the prolongation by zero of the local functions is consistent with the different 

functional spaces. Indeed, the even space  allows for discontinuous functions, thus 

their prolongation by zero is permissible. As for the odd space 

hNRL )]([ 2

[ ] hNRdivH ),(
2,0 Γ , conformity 

requires the normal trace of the odd fluxes to be continuous, and the natural way to proceed is 

to build local functions with reflection conditions on  any subdomain boundary (except on the 

boundary , where the prescribed boundary conditions are always applied), and to extend 

them by zero outside the subdomain. 

R∂
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IV.A. Detailed presentation in the monocinetic diffusion case 

 

Although the method we now describe remains valid in the  multigroup general 

case, for the sake of simplicity we detail the monocinetic  case with  (the so-called 

diffusion equation), using homogeneous Dirichlet boundary conditions: 
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where  and 1
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These local eigenmodes on each kR  extended on R by zero give global functions on R 

(denoted by ~) in the appropriate spaces, thanks to the infinite medium boundary conditions. 

We define 
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where the subscript d denotes a given space direction: only the d-component of k
dip ,

~G  is non 

zero. 

The global discretized problem reads: ∈×∈ δδδδδ λϕ and),(find VWpG RI  such that 
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We underline the fact that we do not require cross-section homogenization in the global 

problem. 

Unfortunately this problem is not well-posed in the general case because the inf-sup 

condition for the spaces  is not always verified (for more explanation see Ref. 12.). 

One technique to enforce this condition is to increase the number of current (odd) modes with 

respect to the flux (even) ones. 

δδ VW and
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The unknowns of the problem (10) can be written: ∑∑∑
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D

∩  is defined as the interior of lk RR ∩ , the superscripts k and l correspond to 

subdomains, while the subscripts i and j correspond to eigenmodes.  are sparse 

since their constituting blocks vanish as soon as . Moreover,  and  are 

symmetric positive definite. 
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For example in the 2D case, if we denote [ ]Tyx ppp ,=δ
G  and δϕϕ = , the global system 

reads: such thatand),,(find δ  λϕyx pp  
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The global matrix H is sparse and symmetric but not positive definite.  

 

IV.B. Application to neutronic PWR core calculations 

 

In order to validate the method for neutronic core calculations, we use a realistic model of 

a PWR 900 MWe core loaded with a set of UOX and MOX assemblies (Fig. 1a). Each 

assembly contains 289 cells (17 in each radial direction). Fig. 1b and 1c represent the 

proposed decomposition of the core along four different subdivisions, yielding a total of 201 

overlapping subdomains. As shown in these figures, we have chosen the internal subdomains 

boundaries \  on the middle of the assemblies, where the infinite medium boundary 

condition is believed to be close to the real value. Furthermore, with this decomposition we 

avoid the interface problem between UOX and MOX assemblies, because such interfaces lie 

within a subdomain, not on its boundary. 

kR∂ R∂

The implementation of the CMS method for core calculations is based on the existing  

MINOS solver. We present here diffusion results with two energy groups and zero-flux 

boundary conditions, in 2D and 3D. In the multigroup case, with g groups, one has to solve g 

coupled equations similar to Eq. (7), with an additional source term appearing in the right-

NSP

  



13 

hand-side of the equations, due to the other groups. We always take the number of current 

modes larger than the number of flux modes for the above mentioned reason (inf-sup 

condition verified in this case). 

 

IV.C. Numerical results in 2D 

 

The core grid used for both direct (done by MINOS) and CMS calculations is made 

out of  assemblies subdivided into 1717 × 1717 ×  cells. Each cell (where cross-sections are 

constant) is itself subdivided into 4 sub-cells. We use a  approximation. This amounts to 

334,084 flux unknowns. Fig. 2 gives graphical representations of the power on the whole 

core (2a) and of the scalar flux for the thermal (2b) and fast groups (2c).  

0RT

We made two tests:  4 flux and 6 current modes on each subdomain in the first case, 9 flux 

and 11 current modes in the second case. Fig. 3, 4 and Table I present numerical differences 

between the direct MINOS calculation and our CMS method with the domain decomposition 

presented on Fig. 1b and 1c. As shown, we obtain a good converged and accurate calculation 

even with only a few modes: the - Norm and the -Norm of the power difference 

between the two calculations are small, and the Keff difference is smaller than 5 pcm. As 

could be expected, the results are better in the second case (9 flux – 11 current modes): we 

have more eigenfunctions in the flux and current bases, that is, the approximation spaces are 

bigger. Fig. 3 presents a map of the power difference between the direct MINOS calculation 

and our method: we can see lines parallel to the X- and Y-axis, corresponding to the jump of 

the flux at the interface between two subdomains. However the accuracy of the local cell 

power is good (Fig. 4): for 95% of the cells, the power gap between our method and the direct 

MINOS calculation is less than 1% in the 4 flux mode case, and less than 0.1% in the 9 flux 

mode case. 

2L ∞L
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IV.D. Numerical results in 3D 

 

The core is split into 20 planes in the Z-axis: the first and the last one are reflectors, 

the other ones use the same grid as in 2D (see Fig. 1a). Now we have 6,681,680 flux 

unknowns. We use the same domain decomposition as in 2D (Fig. 1b and 1c): we do not 

make a decomposition of the core in the Z-axis (the Z-size of the subdomains is equal to the 

one of the core). 

We obtain results similar to the 2D ones, in two cases: 4 flux and 6 current modes in 

the first case, 8 flux and 10 current modes in the second case.  The accuracy of the local cell 

power is satisfactory (Fig. 5): for 95% of the cells, the power gap between our method and 

the direct MINOS calculation is less than 1% in the 4 flux mode case, and less than 0.1% for 

90% of the cells in the 8 flux mode case. The Keff difference is smaller than 10 pcm in the 

two cases (Table II). 

 

 

V. THE FACTORIZED COMPONENT MODE SYNTHESIS METHOD 

 

The determination of multiple eigenfunctions on each subdomain is expensive in terms of 

computing time and memory storage. Our goal in this section is to perform only the 

fundamental mode calculation on each subdomain, and to replace the higher order modes by 

suitably chosen functions. The idea, coming from homogenization results, is to factorize the 

higher order modes (Refs. 3, 13, 14). In this view, we mention the following factorization 

principle proved in Ref. 3: in a periodic core, the i-th eigenmode solution of the diffusion 

problem (6) can be asymptotically written ψϕ ×≈ ii u  with ψ  the fundamental rapidly 

varying solution of the problem on each assembly with infinite medium boundary conditions, 
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and  the i-th smooth shape eigenfunction solution of a homogenized diffusion problem on 

the whole core which reads 

iu
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multigroup diffusion problems: the homogenized equation (13) remains monogroup. 
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This problem can be solved analytically: solutions are sines or cosines. We obtain our new 

local flux basis functions )(~ 2 RLk
i ∈ϕ : 
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Unfortunately, we have no such factorization property for the current. At this time we 

define the current basis functions in the d direction according to: 
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Since ),(~havewe,\  on0n.and0 , RdivHpRRp
n

u k
di

kk
k
i ∈∂∂==

∂
∂ GGG . 

We plan to later improve the current basis by using the factorized flux in Fick’s law. 

Finally, the resolution of the global system is exactly the same as in Subsection IV.A: 

we modify only the basis functions, replacing the higher order local eigenmodes by the 

functions (15) for the flux and (16) for the current. 
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V.B. Numerical results in 2D 

 

We use here the same test case as in Subsection IV.C: same core, same grid, and same 

domain decomposition. In order to illustrate the determination of the smooth functions  

with (14) and  with (16), we take for example an internal subdomain 

k
iu

k
dip ,

kR  (i.e. 

): we use infinite medium boundary conditions on all the boundaries of ∅=∂∩∂ RRk kR .  

If the size of the subdomain is , the solutions of (14) and (16) on ),( yx hh kR  (except for a 

multiplicative coefficient) are:  
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   (17) 

 

Table III lists the couples of coefficients  we use, since they appear to be the best 

choices in our experimental results. 

),( yx ii

We present the results of the FCMS method with 6 flux and 11 current modes on each 

subdomain. Fig. 6, 7 and Table IV present numerical differences between the direct MINOS 

calculation and our FCMS method. It appears that the ratio current mode on flux mode has to 

be higher for the FCMS method compared to the CMS method: the determination of the 

current is more difficult, probably because we have no factorization technique for the current. 

We expect to obtain better results with an improved current basis definition, as briefly 

mentioned above. However, we obtain a very good accuracy in this test: the - Norm and 2L
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the -Norm of the power difference between the two solutions are small, and the Keff 

difference is smaller than 5 pcm (Table IV). Furthermore, for more than 97% of the cells, the 

power gap between our method and the direct MINOS calculation is less than 1% (Fig. 7).  

∞L

In order to illustrate the need for the fundamental mode, we give in Table IV the 

results with only the smooth functions (17) as basis functions. It clearly appears that the 

results are much better with the fundamental mode than without. 

 

V.C. Numerical results in 3D 

 

We use the same core, grid and domain decomposition as in Subsection IV.D. Since 

the variation of the flux in the Z-axis is small, we do not introduce a Z-dependence into 

 in (17). However, we do introduce a suitably defined . k
yi

k
xi pp ,, and k

zip ,

We choose for the numerical test 6 flux modes and 11 current modes. As shown in Table 

V, the FCMS method yields high accuracy. The difference with the direct MINOS calculation 

is very small: near 5 pcm for the Keff, the maximum power difference on the whole core is 

equal to 2.3%, and for more than 98% of the cells the power difference is smaller than 1% 

(Fig. 8). 
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VI. PARALLELIZATION 

 

The CMS and FCMS methods are easily parallelizable: each local calculation on a 

subdomain can be performed independently by different processes without communication. 

The matrix calculations need exchanges of messages, but it can also be parallelized on groups 

and directions. For example, in a 2-group case, if a given process does the calculation of the 

current matrix  for the fast group, this process needs to get from all the other processes the 

local currents for the fast group in the Z-direction, for all the subdomains. 

zA

We illustrate the efficiency of the parallelization in Fig. 9. The computer used is a 4 AMD 

Opteron 2.2 GHz processor server with 32 GB of shared memory. We compare the computing 

time between the direct MINOS calculation and our FCMS method with 1, 2 and 4 

processors. We use the same numerical test as in Subsection V. C. The efficiencya of the 

parallel code is close to the maximum value 1 (0.85 with 2 processors, 0.8 with 4 processors). 

Most of the time is spent in local solves and matrix calculations. The FCMS global solve is 

not parallelized, but the corresponding time is very small. The computing time with our 

method becomes comparable to the direct MINOS calculation if 4 processors are used, and 

would become smaller if more processors could be used. Moreover, the code is not optimized 

yet, and we can expect to decrease the computation time, in particular for the matrix 

calculations. In terms of memory storage, the direct MINOS calculation requires about 1.7 

GB for this calculation, whereas our method only needs 1.1GB. 
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VII. CONCLUSIONS AND PERSPECTIVES 

 

The numerical results show that the applications of the component mode synthesis 

method to cell-by-cell core calculations give a good accuracy for the Keff as well as for the 

local cell power. For the same accuracy, the FCMS method based only on the fundamental 

mode is more efficient in terms of calculation time and memory storage than the CMS 

method which spends most of the computing time in determining several eigenfunctions on 

each subdomain. The total independence of the local mode calculations gives methods very 

well-fitted for parallel computers. 

Presently the tests have been done only in the diffusion approximation. The next step will 

be to perform 3D  calculations. The size of the mesh is not limited to the cell, and we can 

refine it for pin-by-pin calculations. Our methods could have a great interest for the 

calculations of future generation reactors with complex geometries, for which the mesh must 

be very fine (EPR, HTR, VHTR…). Another interesting application is the time dependent 

problems: we can keep the same basis functions for several time steps, and do only a few 

“updates” of the local fine functions in order to decrease the calculation time. Furthermore 

our methods are not related to the  or diffusion models, and we intend to apply them to 

some transport models (the factorization principle used in the FCMS method holds true also 

in the transport case, see Ref. 15). Also we can consider coupling a transport or a  model 

for local calculations, and a diffusion model for the global resolution. 

NSP

NSP

NSP

In conclusion these methods offer interesting prospects for large 3D calculations with an 

important potential gain on parallel computers. 
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FOOTNOTES 

 

a) The efficiency of a parallel algorithm is defined by 
NTN

TEff
×

= 1 , with N the number of 

processors,  the sequential algorithm execution time and  the parallel one with N 

processors. 

1T NT
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FIGURE CAPTIONS 

 

Fig. 1. PWR core and subdomain decomposition along four different subdivisions. 

Fig. 2. Power and scalar flux representation. 

Fig. 3. Graphical representation of the power gap between CMS and direct MINOS solutions 

in 2D.  

Fig. 4. Histogram of the power cell difference between CMS and direct MINOS solutions in 

2D.  

Fig. 5. Histogram of the power cell difference between CMS and direct MINOS solutions in 

3D.  

Fig. 6. Graphical representation of the power gap between FCMS and direct MINOS 

solutions in 2D. 

Fig. 7. Histogram of the power cell difference between FCMS and direct MINOS solutions in 

2D. 

Fig. 8. Histogram of the power cell difference between FCMS and direct MINOS solutions in 

3D. 

Fig. 9. Comparison of the computing time for a 3D calculation between FCMS method and 

direct MINOS calculation with 1, 2 and 4 processors.  
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FIGURE 1 
 
 
 

 
a. PWR core b. First two subdivisions c. Other two subdivisions 

 
 

Fig. 1. PWR core and subdomain decomposition along four different subdivisions. 
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FIGURE 2 
 
 
 

a. Power on the core b. Thermal flux c. Fast flux 
 
 

Fig. 2. Power and scalar flux representation. 
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FIGURE 3 
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Fig. 3. Graphical representation of the power gap between CMS and direct MINOS solutions 

in 2D. 
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FIGURE 4 
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Fig. 4. Histogram of the power cell difference between CMS and direct MINOS solutions in 

2D. 
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FIGURE 5 
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Fig. 5. Histogram of the power cell difference between CMS and direct MINOS solutions in 

3D. 

  



31 

FIGURE 6 
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FIGURE 7 
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Fig. 7. Histogram of the power cell difference between FCMS and direct MINOS solutions in 

2D. 
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FIGURE 8 
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Fig. 8. Histogram of the power cell difference between FCMS and direct MINOS solutions in 

3D. 
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FIGURE 9 
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Fig. 9. Comparison of the computing time for a 3D calculation between FCMS method and 

direct MINOS calculation with 1, 2 and 4 processors.  
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Table I. Keff difference,  and  Norm of the power difference between CMS and direct 

MINOS solutions in 2D. 

2L ∞L

180.1≈Keff . 

 

 
4 flux modes, 

6 current 
modes 

9 flux modes, 
11 current 

modes 

∆ Keff 
(pcm) 4.4 1.4 

2
P∆  33.8 10−×  45.2 10−×  

∞
∆P  2100.5 −×  3102.9 −×  
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Table II. Keff difference,  and  Norm of the power difference between CMS and direct 

MINOS solutions in 3D. 

2L ∞L

017.1≈Keff . 

 

 
4 flux modes, 

6 current 
modes 

9 flux modes, 
11 current 

modes 

∆ Keff 
(pcm) 7.3 2.5 

2
P∆  3107.3 −×  4109.7 −×  

∞
∆P  2101.5 −×  2100.1 −×  
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Table III. Eigenmodes indices in 2D for an internal subdomain. 

 

i xi  yi  
1 0 0 
2 1 0 
3 0 1 
4 2 0 
5 0 2 
6 1 1 
7 3 0 
8 0 3 
9 4 0 
10 0 4 
11 2 2 
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Table IV. Keff difference,  and  Norm of the power difference between FCMS and 

direct MINOS solutions in 2D. Comparison with the smooth modes only. . 

2L ∞L

180.1≈Keff

 

 
6 flux modes, 

11 current 
modes  

Smooth modes 
only 

∆ Keff 
(pcm) 2.2 61 

2
P∆  3108.2 −×  1101.1 −×  

∞
∆P  2104.2 −×  1100.8 −×  
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Table V. Keff difference,  and  Norm of the power difference between FCMS and direct 

MINOS solutions in 3D. 

2L ∞L

017.1≈Keff . 

 

 6 flux modes, 11 current 
modes 

∆ Keff (pcm) 5.77 

2
P∆  3106.2 −×  

∞
∆P  2103.2 −×  
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