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Abstract

A new space-angle multi-grid technique has been developed to accelerate the free inner transport

iterations based upon the Method of Characteristics (MOC). We present a two-level scheme: it consists

of a �ne level on which the MOC transport calculation is performed and a more coarsely discretised phase

space in which a low-order problem is solved as an acceleration step. A �ux-volume homogenisation

technique is employed to de�ne the coarse-level cross sections. This entails the non-linearity of the

scheme. Restriction and prolongation operators are de�ned between the two levels. After each �ne

transport iteration, a low-order transport problem is iteratively solved on the homogenised grid. A

coarser angular representation is used within a MOC-like framework. We employ discontinuity factors

to reconstruct the scalar incoming and outgoing currents on each region of the coarse discretisation. The

solution of the above-mentioned low-order problem is used to correct the angular moments of the �ux

resulting from the previous free transport sweep. A complete description of the low-order operator and

of the grid-to-grid transfer operators is given. A further application of the method to the acceleration of

outer transport iterations is also presented. In order to test the e�ectiveness of our method, numerical

tests for given benchmarks geometries have been performed. Results are discussed.
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1 Introduction

Transport problems for nuclear reactors are multi-group k -eigenvalue problems, usually with up-

scattering. The multi-group formalism yields a system of one-group �xed-source equations coupled via

�ssion and group-to-group transfer sources. The Method of Characteristics (MOC), implemented in

the TDT solver for the APOLLO2 code [1], provides an iterative solution for the discrete ordinate

formulation of the one-group linear transport equation [2]. In the MOC approach, the phase space is

discretised as follows: the geometrical domain D is decomposed into a set of homogeneous regions {Di}

on which a �at-source approximation is done; a set of discrete angular directions and associated weights

{Ωn, ωn}n=1,N is chosen. Then, a set of parallel trajectories is tracked for each direction. The method

essentially consists of two main equations: a balance equation for the angular �ux on each region i, and

a propagation equation giving the angular �ux leaving the region i in terms of the incoming angular �ux

and the internal source. The MOC has proved to be an advantageous tool for the solution of transport

equation in unstructured meshes and, therefore, for realistic application to reactor analysis [3, 4, 5].

However, since reactor transport problems are often characterised by collision-dominated regimes, any

iterative solution of the transport equation - including MOC - generally requires a great number of

iterations to converge [6]. This is why the e�cient use of MOC needs acceleration techniques. The main

idea of a multi-grid approach to speed up the convergence of transport iterations is to build a hierarchy

of low-order problems, each solved in a more coarsely discretised phase space and consequently involving

fewer unknowns. The solution of a given low-order problem provides a correction to accelerate the �ux

moments resulting from the previous iteration on the immediately higher level.

In this paper, a new non-linear space-angle multi-grid acceleration method dealing with full anisotropy

of scattering is proposed. We extend and generalise some previous results for a spatial multi-grid

method [7]. To illustrate our acceleration, we focus upon a two-level scheme. This choice is not re-

strictive, as the algorithm can be extended to any number of levels with no signi�cant complications.

The �rst step is to de�ne a more coarsely discretised phase space. Coarsening a�ects both spatial and

angular variable. For the spatial variable we act as follows. From the MOC spatial discretisation, that

we will henceforth call �ne grid, an associated coarse grid is obtained from the previous via a simple

agglomeration procedure (see Fig. 1), in which each coarse mesh DI is obtained by fusing together ad-

jacent �ne meshes. Consequently, the measure of each macro-region is given by the sum of the measures

of all the �ne regions in it:

DI = ∪
i∈I
Di ⇒ VI =

∑
i∈I

Vi . (1)
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This requires a table of correspondences between the two spatial grids, and the implementation of a

homogenisation technique in order to derive the material properties for the coarse meshes (typically

the cross sections). In our case, the coarse-mesh total cross sections are obtained from a �ux-volume

homogenisation procedure. An immediate consequence of the latter is the non-linearity of the scheme.

For the angular variable, a low-order set of discrete angular directions and associated weights is employed:

{Ωm, ωm}m=1,M with M < N. (2)

On the coarse level, isotropic sources are used. The latter are derived from the high-order ones by an

appropriate projection procedure which eliminates the angular dependence of the sources on the coarse

level. Consequently, no table of correspondences between the two angular sets is needed. The scheme here

presented involves a MOC-based transport sweep followed by an acceleration step consisting in iteratively

solving a low-order transport problem for the zero-th �ux moment. This problem is de�ned in order to

provide, in a reference situation, the same result as the original high-order heterogeneous problem as

far as averaged scalar properties are concerned. The MOC formalism is kept: outgoing angular �uxes

are computed using the same propagation equation as for the �ne case. However, discontinuity factors

(DFs) are introduced in the balance equation in order to reconstruct outgoing and incoming currents on

each macro-region. Finally, a prolongation operator, using shape factors depending on the �ne �ux, is

employed to reconstruct the �ux moments on the �ne grid. This method was initially meant to speed up

convergence of inner iterations. Afterwards, it has been extended to the acceleration of outer iterations.

Both applications are presented here.

The paper is structured as follows: in section 2 the basic MOC equations are reviewed; in section 3

we give the operators of restriction and prolongation, and discuss the introduction of DFs; the low-order

operator is introduced in section 4, where a complete discussion of the equations is given; in section 5

we present the application of our acceleration scheme to outer iterations; tests are given in section 6 for

eigenvalue problems for a realistic BWR assembly and for the C5G7MOX Benchmark; closing conclusions

are presented in the last section.

2 Method of Characteristics

The basis for reactor core, assembly-level transport calculations is the one-group linear Boltzmann

equation. The most straightforward method to iteratively solve it is the source iteration (SI) which
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computes updated angular �uxes assuming that the emission density is known:


(Ω · ∇+ σ)ψ(n+1) (x) = q(n) (x) x ∈ X,

ψ(n+1) (x) = ψ(n)
_ (x) x ∈ ∂_X .

(3)

In this equation, n denotes the iteration index, X = {x : r ∈ D, Ω ∈ 4π} is the phase space with its

boundary ∂_X, and σ is the total cross section. The emission density reads as follows:

q = Hψ + S (4)

where S stands for the external source (including �ssion contributions and transfers from the other

groups), and

(Hψ) (x) =
K∑
k

σsk
(r)

∑
l≤|k|

Akl (Ω)φkl (r) (5)

is the within-group-scattering term, written using the classical expansion of the collision term on spherical

harmonics Akl (Ω).

In this section we brie�y review the basics of the method of the characteristics for unstructured

meshes. More details about the angular and spatial approximations as well as the derivation of the

equations can be found in [3, 8].

2.1 Approximations

The method is based upon two main spatial approximations. First a �at-source approximation is

made on each region:

q (r,Ω) =
∑

i

χi (r) qi (Ω) , (6)

where χi (r) is the characteristic function of region i. Further, the angular �ux is assumed to be constant

across sectional area associated to each trajectory

ψ (r,Ω) =
∑
tqΩ

χt (r⊥)ψt (z,Ω) , (7)

where χt (r⊥) is the characteristic function associated to the cross sectional area of trajectory t, z is the

coordinate along the trajectory, and ψt (z,Ω) is the angular �ux along the trajectory.
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The phase space in which the discretised transport problem is to be solved is de�ned as

X = {Di} × {Ωn} . (8)

2.2 Basic Equations

MOC balance and propagation equations are obtained by a projective technique involving Eq. (3)

and its integral form. The propagation equation is given by the integral transport equation across a

region i and along a trajectory t parallel to the discrete direction Ωn:

ψ+,i (t,Ωn) = ψ−,i (t,Ωn) + βi (t,Ωn) [qi (Ωn)− σiψ−,i (t,Ωn)] , (9)

where the escape coe�cient is

βi (t,Ωn) =
1− e−σiRi(t,Ωn)

σi
, (10)

and Ri (t,Ωn) is the length of the trajectory within the region. The average emission density qi (Ωn) is

written as:

qi (Ωn) = Ci (Ωn) + Si (Ωn) , (11)

where Si (Ωn) is the average external source and Ci (Ωn) is the within-group transfer. The latter is given

by:

Ci (Ωn) =
Ki∑
k=0

σsk,i

∑
l≤|k|

Akl (Ωn)φkl
i , (12)

where Ki is the degree of anisotropy in region i. The moments φkl
i of the angular �ux are obtained as

follows:

φkl
i =

∑
n

wnA
kl (Ωn)ψi (Ωn) . (13)

The balance equation is obtained by integration of Eq. (3) over the volume of a region i:

∑
tqΩn,t∩i

w⊥ (t,Ωn) [ψ+,i (t,Ωn)− ψ−,i (t,Ωn)] + σiψi (Ωn)Vi = qi (Ωn)Vi , (14)

the sum in t being done for all trajectories with direction Ωn that intersect region i, and the weight

w⊥(t) represents the orthogonal area associated with the trajectory.
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2.3 Boundary Conditions

We consider two kinds of boundary conditions that are used for numerical solutions of the transport

equation in the TDT solver:

• geometrical motions (e.g. translation, rotation or planar symmetry) are used to reduce the size of

a domain that has these symmetries. They may be thought as "exact" boundary conditions. For

this case, a special set of periodic trajectories, often called cyclic trajectories is used.

• albedo conditions introduce a physical approximation to represent the spatial and angular distri-

bution of the particles re-entering the geometrical domain D.

For the albedo cases, the general approach in TDT is the following. The boundary ∂D is decomposed

into a set of surfaces {α} and the entering and exiting angular domains {2π}± into a set of angular

subdomains {ρ}±. The current of particles leaving (-) each surface α through angular domain ρ is

evaluated. In the iterative scheme, the latter is used to compute the entering (+) current with the help

of an albedo condition:

Jρ
α,+ ⇒

albedo
Jρ

α,− . (15)

For a trajectory t entering through surface α with angular direction Ω ∈ ρ, the incoming �ux is given

by:

ψ_ (t,Ω) =
1
cρα
Jρ

α,− , (16)

where

cρα =
∫

α

dS

∫
ρ

dΩ |Ω · n| . (17)

In the following part of the paper, we will consider only isotropic albedo cases. In this case we have:

ψ_ (t,Ω) =
1
cα
Jα,− , (18)

with

cα =
∫

α

dS

∫
2π+

dΩ |Ω · n| =
∑

n

ωn

∑
tqΩn,t∩α

w⊥ (t,Ωn) . (19)

3 General Framework

In this section we present the prolongation and restriction procedures and discuss the introduction

of the discontinuity factors.
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3.1 Prolongation and Restriction

In classical linear multi-grid methods [9, 10], the low-order problem is commonly solved for an additive

error to the high-order calculation. Here, instead, the acceleration step consists in solving a simpli�ed

transport problem providing a scalar �ux {φh
I } on the coarse level. This �ux is directly used to reconstruct

the �ne angular moments resulting from the previous transport iteration (n+ 1). The �ne moments are

consequently accelerated as follows:

(
φkl

i

)(n+1)

acc
=

(
γkl

i

)(n+1) (
φh

I

)(∞)
, ∀ i ∈ I . (20)

To do this, we employ shape factors {γkl
i } depending on the unaccelerated �ux. They are de�ned as:

γkl
i =

φkl
i

φ̄I
, (21)

where φ̄I is the volume-averaged scalar �ux:

φ̄I =
1
VI

∑
i∈I

φiVi . (22)

The prolongation procedure (21) is equivalent to applying a multiplicative correction to the high-order

calculation [11]. We note that, in a reference situation where the converged �ne �ux is available, the

solution of the low-order problem must preserve the integral of the scalar �ux on each mesh of the coarse

spatial grid, i.e.

φh
I = φ̄I . (23)

This requirement is fundamental for the scheme to converge. Indeed, our choice for homogenisation and

the introduction of the DFs are strictly tied to the ful�lment of this condition.

On the coarse level, isotropic sources are used. They are obtained from the high-order ones by

a space-angle restriction procedure. The latter is applied whether to the emission density qi when

computing the DFs, or to the external source Si when solving the low-order problem. Let be ui one of

the above-mentioned sources, we have:

ūI =
1
4π

∑
n

ωn

∑
i∈I

ui (Ωn)Vi . (24)

For the spatial variable, this projection consists in volume-averaging on each mesh of the coarse grid.
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Further, the integration over all directions eliminates the angular dependence on the coarse level. This

permits to avoid building a table of correspondences between the two angular grids. We note that, by

construction, the scalar source are preserved on both levels.

3.2 Homogenisation

This part has been inspired by Koebke's earlier works [12, 13] on homogenisation. The main idea is

that an equivalent homogenised problem can be built for a given heterogeneous problem by introduc-

ing additional degrees of freedom such as discontinuity factors. Koebke's method dealt with a nodal

approximation of the transport equation, and discontinuity factors were applied to the interface scalar

�uxes in order to ful�l the so-called equivalence theorem. Following an approach analogous to Koebke's,

we explain why the DFs have been introduced into our acceleration, and how this permits to respect

condition (23).

The availability of an accurate heterogeneous solution of Eq. (3) is assumed in the following discussion.

The heterogeneous solution satis�es the integral neutron balance equation on whatever coarse mesh DI :

∫
∂DI

J (r) · dS +
∫
DI

σ (r)φ (r) dr =
∫
DI

Q (r) dr . (25)

We write an analogous equation for the homogenised low-order problem:

∫
∂DI

Jh (r) · dS +
∫
DI

σh (r)φh (r) dr =
∫
DI

Qh (r) dr . (26)

Let the scalar source Qh be de�ned as the volume-averaged �ne one. The homogenised total cross section

is taken piece-wise constant:

σh (r) =
∑

I

χI (r)σh
I . (27)

If the leakage term is preserved, we are able to ensure the preservation of the total reaction rate as well,

for any arbitrary value of the homogenised total cross sections σh. Thus, we are allowed to choose a

�ux-volume weighting procedure:

σh
I =

∫
DI

σφdr∫
DI

φdr

, (28)

which yields the preservation of the integral of the scalar �ux and, therefore the ful�lment of condi-

tion (23). However, once homogenised total cross sections are chosen as in Eq. (28), additional degrees
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of freedom are necessary to preserve the leakage term. Some approaches can be found in litterature.

As an example, one can consider the coarse mesh �nite di�erence (CMFD) method [11, 14] that acts as

follows: the leakage is expressed in terms of the net currents on each surface of a rectangular homogenised

region, di�usion is used as a low-order operator and coupling correction coe�cients on each surface are

introduced in order to match the average net currents. The novelty in this work is that a transport-like

operator is employed for the homogenised problem. Furthermore, we decided to write the leakage in

terms of the outgoing (+) and the incoming (-) currents as follows:

∫
∂DI

J (r) · dS = J+,I − J−,I , (29)

and to ensure the preservation of each one of them. We indicate with {Ĵ±,I} the currents given by the

low-order transport operator and with {Jh
±,I} the corrected ones. A discontinuity factor is de�ned for

each one of them, in order to ensure the following:

J±,I = Jh
±,I = f±,I · Ĵ±,I . (30)

The discontinuity factors {f±,I} are calculated as the ratio between a reference value and the value

produced by the low-order operator in a reference situation.

Summarising, the introduction of the DFs as additional degrees of freedom permits to de�ne an

equivalent low-order problem which is able to reproduce the same result as for the reference heterogeneous

problem when considering averaged properties. However, the problem in practical applications is that

these factors, as the di�usion-like coupling coe�cients for the CMFD formulation, should be computed

a priori, since we do not have access to the converged �ne �ux before the iterative procedure is achieved.

This is why a dynamic calculation of the DFs is performed: DFs are computed after each �ne iteration,

taking the latter as a reference situation.

3.3 V-cycle scheme

Our two-level method can be well described as a V-cycle. A general sketch is given in Fig. 2. After each

�ne transport iteration, an associated low-order problem is iteratively solved on the coarse grid, using

the homogenised parameters derived from the previous transport sweep on the �ne level. A maximum

number Mn of iterations may be �xed a priori. The coarse solution is used to reconstruct the �ne �ux

moments with the help of the shape factors. Then, the source is updated for the next transport sweep.

10



4 Acceleration of Inner Iterations

At each transport sweep, the region-averaged angular �uxes are computed in terms of sources and

boundary conditions:

ψ(n)
_ (t,Ω) , q(n)

i (Ω) → ψ
(n+1)
i (Ω) . (31)

Then, an associated low-order problem is solved in order to speed up the convergence of the inner

iterations. In this section we point out the main aspects of our acceleration. The low-order problem and

its iterative solution are discussed.

4.1 Low-Order Problem

On the homogenised coarse grid, we consider a transport problem analogous to the �ne case. The

MOC-formalism is used to iteratively solve it. Let be p the iteration index, we have:


(
∇ ·Ω + σh

)
ψ̂(p+1) = qh,(p) in X ′

ψ̂(p+1) = ψ̂(p)
_ on ∂_X ′ .

(32)

In this equation qh is the coarse emission density and σh is the homogenised total cross section obtained

as:

σh
I =

1
VI

∑
i∈I

σiγ
(n+1)
i Vi , (33)

where γi is the shape factor for the scalar �ux as in Eq. (21). The more coarsely discretised phase space

is written as X ′ = {DI} × {Ωm}.

As earlier mentioned, because of homogenisation and source projection, the currents computed by

the low-order transport operator are not consistent with those resulting from the high-order calculation.

In particular, in a reference situation where the converged �ux is available, the leakage term is not

preserved on the two levels. Thus, we cannot directly employ ψ̂ to compute the scalar �ux needed

for prolongation in Eq. (20). Nevertheless, this drawback can be overcome by modifying the iterative

approach for the low-order problem. Unlike for the �ne level, each iteration is performed to compute

the global incoming and outgoing currents per macro, without evaluating region-averaged angular �uxes.

The same sweep philosophy is used. Continuity of the interface angular �uxes along each trajectory

is still valid. Afterwards, the scalar �ux {φh
I } is computed in a post-treatment phase involving the

discontinuity factors previously computed.
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The same spatial approximations as for the �ne level are made. Thus, the source is assumed to be

�at on each homogenised mesh:

qh (r,Ω) =
∑

I

χI (r) qh
I (Ω) , (34)

where χI (r) is the characteristic function of region I. Further, we make the assumption that the angular

�ux is constant across sectional area associated to each trajectory as in Eq. (14):

ψ̂ (r,Ω) =
∑
tqΩ

χt (r⊥) ψ̂t (z,Ω) . (35)

4.2 Equations

A MOC-like formalism is kept on the coarse grid. Indeed, like for the �ne case, two main equations

are employed: a propagation equation giving the outgoing (+) angular �ux along each trajectory in

terms of the incoming (-) angular �ux and the internal source, and a balance equation for the scalar �ux.

The propagation equation is obtained by the integral transport equation across a macro-region I and

along a trajectory t parallel to the discrete direction Ωm:

ψ̂+,I (t,Ωm) = ψ̂−,I (t,Ωm) + βh
I (t,Ωm)

[
qh
I − σh

I ψ̂−,I (t,Ωm)
]
. (36)

The escape coe�cient is de�ned in an analogous way to the �ne case:

βh
I (t,Ωm) =

1− e−σh
I RI(t,Ωm)

σh
I

, (37)

where σh
I is the homogenised total cross section de�ned in Eq. (33), and RI (t,Ωm) is the length of the

chord intersected in the macro-region I by the trajectory t. By analogy to the �ne level, the coarse

emission density qh
I is written in terms of an external source S̄I , which is obtained by restriction (24),

and a collision term Ch
I :

qh
I = Ch

I + S̄I . (38)

We will come back later to the collision term. Total outgoing and incoming currents are built up at each

coarse iteration as follows:

Ĵ±,I =
∑
m

ωm

∑
tqΩm

ω⊥ (t) ψ̂±,I (t,Ωm) . (39)
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These currents are corrected with the help of the discontinuity factors, and then used in the balance

equation giving the coarse scalar �ux:

f+,I · Ĵ+,I − f−,I · Ĵ−,I + σh
I φ

h
IVI = Qh

IVI , (40)

where the scalar source Qh
I is obtained by integration of the emission density qh

I over all directions as

follows:

Qh
I =

∑
m

ωmq
h
I . (41)

It remains to explain how the collision term is de�ned and how the emission density is updated.

4.3 Collision Term

As already mentioned, the low-order problem is de�ned in a reference situation where the �ne con-

verged �ux is used and the source on the coarse level is obtained by projection:

qh
I = q̄I . (42)

Now, in our iterative scheme, the coarse emission density is written in terms of the within-group scattering

contribution and the external source as in Eq. (38). This means that, in the above-mentioned reference

situation, further iterations must not modify the value of the coarse scalar �ux in order not to compromise

the convergence of the scheme, which entails:

Ch
I = C̄I =

1
VI

∑
i∈I

CiVi . (43)

This can be achieved by choosing a �ux-volume homogenisation procedure for the scattering cross sec-

tions:

σh
sI

=
1
VI

∑
i∈I

σs0,iγiVi , (44)

and simply de�ning the within-group collision term as:

Ch
I =

1
4π
σh

sI
φh

IVI . (45)
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As a consequence, the coarse emission density is iteratively updated as follows:

q
h,(p)
I =

1
4π
σh

sI
φ

h,(p)
I + S̄I , (46)

where p is the iteration index for the coarse level calculation.

4.4 Boundary Conditions

Like for the �ne case, two kinds of boundary conditions have been considered: geometrical motions

using cyclic trajectories, and isotropic albedo conditions.

In the case of geometrical motions, the same approach as for the traditional MOC [8] is kept. There-

fore, the angular �ux ψ̂ (x) along a periodic compound trajectory requires the simultaneous computation

of the two angular �ux de�ned by a unit incoming angular �ux in the absence of volumetric sources,

ψ̂bd (x), and by the volumetric sources with zero incoming angular �ux, ψ̂q (x). Once these two �uxes

have been computed, the �nal angular �ux is given by:

ψ̂ (x) =
ψ̂q (x)

1− ψ̂bd (x)
ψ̂bd (x) + ψ̂q (x) . (47)

In the albedo condition case, the boundary is decomposed into a set of surfaces {β}, and table of

correspondences is established between the �ne and the coarse surfaces. In particular we have:

Sβ =
∑
α∈β

Sα . (48)

By analogy with the �ne level, the incoming �ux associated to a trajectory t entering through surface β

with angular direction Ωm is given by:

ψ̂_ (t,Ωm) =
1
cβ
Jh

β,− (49)

where

cβ =
∫

β

dS

∫
2π+

dΩ |Ω · n| =
∑
m

ωm

∑
tqΩm,t∩β

w⊥ (t,Ωm) . (50)

For the �rst iteration we take:

J
h,(0)
β,− =

1
Sβ

∑
α∈β

SαJ
(n+1)
α,− , (51)

then, the incoming currents through each macro surface β are updated with an albedo condition derived
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from the �ne level:

Jh
β,+ ⇒

albedo
Jh

β,− . (52)

4.5 Computing DFs

Here we focus upon the leakage term. We discuss how discontinuity factors (DFs) are computed in

the implementation of our scheme. Their evaluation is situated between a �ne iteration and the solution

of the associated low-order problem. After a transport sweep, the incoming (-) and the outgoing (+)

currents on each coarse-mesh DI are available:

J
(n+1)
±,I =

∑
n

wn

∑
tqΩn,t∩I

w⊥ (t)ψ(n+1)
±,i∈∂I (t,Ωn) , (53)

where ψ(n+1)
±,i∈∂I is the angular �ux entering (-) or leaving (+) a portion of a �ne region's boundary ∂Di

having a non-null intersection with the boundary ∂DI of the coarse region DI . It is worth noting that, in

practice, a modi�cation of the implementation of the �ne transport iterations in TDT code is needed to

compute these currents. More details about this point can be found in appendix A. We remind the reader

that, when de�ning DFs, we want to preserve the leakage term on each coarse-mesh DI for a reference

situation. In this work, we chose to achieve it by preserving the total incoming and outgoing currents.

The reference is given by the currents at iteration (n + 1) obtained from the emission density and the

boundary conditions at iteration (n). Consequently, we consider the following �xed-source problem:


(
Ω · ∇+ σh

)
ψ̂ = q̄ on X ′

ψ̂ = ψ̂_ on ∂_X ′

(54)

where the source is given by projecting {q(n)
i } as in Eq. (24) and the incoming �ux is obtained as shown

in subsection 4.4 using {J (n)
α,−}. The total cross section is given by Eq. (33), and the more coarsely

discretised phase space X ′ is the same as in Eq. (32). Within the MOC framework, only one sweep is

needed to solve Eq. (54). Starting from the boundary of the domain the angular �ux leaving a macro-

region DI is computed for a characteristic trajectory t via Eq. (36), in which q̄I is used. The outgoing

�ux is used as incoming �ux for the following region along the above-mentioned trajectory. The total

incoming (-) and outgoing currents (+) are given by Eq. (39). Then, the DFs are given as the ratio
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between the heterogeneous and the homogeneous currents as follows:

f±,I =
J±,I

Ĵ±,I

∣∣∣∣∣
ref

. (55)

These coe�cients are taken as constant in the low-order calculation and, after each coarse iteration, the

incoming and outgoing currents are corrected as follows:

J
h,(p)
±,I = f±,I · Ĵ (p)

±,I , (56)

where p is the iteration index.

4.6 Note on Albedo Conditions - Boundary DFs

As above mentioned, on the coarse level the boundary is decomposed into a coarser set of surfaces

{β}. The outgoing current through each surface α is reconstructed and updated as follows:

(Jα,+)(n+1)
acc = ζ(n+1)

α

(
Jh

β,+

)(∞)
, ∀ α ∈ β . (57)

The shape factors {ζα} are de�ned using the unaccelerated leaving currents as:

ζα =
Jα,+

J̄β,+
, (58)

where J̄β,+ is the average current on the macro surface β:

J̄β,+ =
1
Sβ

∑
α∈β

SαJα,+ . (59)

We note that if the converged �ne �ux is available, the partial currents through surfaces β must be

preserved on both levels, i.e. the following condition must be ful�lled:

Jh
β,+ = J̄β,+ . (60)

Now, the introduction of DFs ensures the preservation of the global incoming and outgoing currents on

each region of the coarse discretisation. However, this does not entail that the current of particles leaving

the boundary of the domain is preserved as well. Boundary discontinuity factors are therefore introduced
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for each macro surface β and the corrected currents are given as follows:

Jh
β,+ = fβ Ĵβ,+ . (61)

This permits to respect condition (60). Like for the DFs, the computation of fβ is performed between a

transport sweep and the solution of the associated low-order problem. Reference values are represented

by averaged currents at the �ne iteration (n+ 1) and sources at iteration (n):

ψ(n)
_ (t,Ω) , q(n)

i (Ω) → J̄
(n+1)
β,+ . (62)

After each transport �ne iteration, the currents for each macro surface β are available. The low-order

operator provides Ĵβ,+. Then, the boundary discontinuity factors are computed as follows:

fβ =
J̄β,+

Ĵβ,+

∣∣∣∣∣
ref

. (63)

These coe�cients are taken as constant in the low-order calculation and, after each coarse iteration, the

currents leaving the domain through surface β are corrected as follows:

J
h,(p)
β,+ = fβ Ĵ

(p)
β,+ , (64)

where p is the iteration index for the coarse-level calculation.

5 Acceleration of Outer Iterations

In the previous part of our work, we focused upon the one-group problem. A spatial-angle multi-grid

acceleration for the inner iterations has been presented. In this section, an extension of the low-order

problem equations to the k -eigenvalue multigroup problem is proposed.

5.1 Criticality Calculations

The multi-group formulation of Boltzmann equation for multiplying systems is typically solved by

the method of the power iteration [2, 15, 16] as follows:

F (p+1) (r) =
1

k
(p)
eff

AF (p) (r) . (65)
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In this equation F (r) is the spatial distribution of �ssion neutrons produced in the reactor:

F (r) =
∑
g′

(νσf )g′
(r)φg′ (r) , (66)

and A is the scalar multi-group transport operator. Power iteration is often referred to as outer iteration.

In TDT code, the eigenvalue is updated as follows:

k
(p+1)
eff = k

(p)
eff

∫
D
F (p+1) (r) dr∫
D
F (p) (r) dr

. (67)

Each power iteration requires the iterative solution of a �xed-source multi-group upscattering problem

for the angular �ux. Let be l the iteration index, we have:

Lgψ(l+1)
g = Hg→gψ(l+1)

g +
∑
g′<g

Hg′→gψ
(l+1)
g′ +

∑
g′>g

Hg′→gψ
(l)
g′ +

1
4π
Qg

f , (68)

In this equation, Lg .= Ω · ∇+ σg is the one-group transport operator, while Hg′→g is the slowing-down

operator from group g′ to group g, and Qg
f is the �ssion source for group g. This problem is solved using

a Gauÿ-Seidel iterative procedure. If no up-scattering is present, which is the case for fast groups, only

one iteration is needed. Neglecting the iteration index, on each region Eq. (68) reads:

Jg
+,i (Ωn)− Jg

−,i (Ωn) + σg
i ψ

g
i (Ωn)Vi = Cg

i (Ωn)Vi +
∑
g′ 6=g

Cg′→g
i (Ωn)Vi +

1
4π
Qg

f,iVi , (69)

where Cg′→g
i is the group-to-group collision contribution which is written as follows:

Cg′→g
i (Ωn) =

∑
k

σg′→g
sk,i

∑
l<|k|

Akl (Ωn)φkl,g′

i , (70)

and the �ssion source per group Qg
f,i is written as:

Qg
f,i =

1
keff

∑
x∈i

χg
xFi,x , (71)
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the sum being done over all the isotopes in i. The �ssion source Fi,x for an isotope x in a mesh i is

de�ned as follows:

Fi,x =
∑
g′

(νσf )g′

x φg′

i . (72)

5.2 Extension of the Low-Order Equations

The basic idea is to exploit the coarse scalar �uxes computed while accelerating inner iterations,

before performing a new power iteration on the �ne level. To do this, after each �ne outer iteration, we

de�ne an associated low-order eigenvalue multi-group problem on the coarse level. The solution of this

problem {φh,g
I } is then used, together with the previously computed shape factors per group {γkl,g

i }, to

reconstruct the �ux moments on the �ne level:

(
φkl,g

i

)
acc

= γkl,g
i φh,g

I , ∀ i ∈ I . (73)

The so-obtained scalar �ux is used to correct the �ssion source:

(Fx,i)acc =
∑
g′

(νσf )g′

x

(
φg′

i

)
acc

, (74)

and consequently to accelerate the multiplication eigenvalue. The low-order problem must be de�ned so

that, in a reference situation where the converged �ne solution is available, the scalar balance equation

per macro-region DI and per group g is respected on both levels. On the coarse level, the balance

equation reads:

fg
+,I · Ĵ

g
+,I − fg

−,I · Ĵ
g
−,I + σh,g

I φh,g
I VI = Qh,g

I VI . (75)

The DFs {fg
±,I} come from the previous �ne outer iteration, as well as the homogenised total cross

sections. The source Qh,g
I is obtained by integrating the coarse isotropic emission density qh,g

I over all

directions {Ωm}. The latter term is written as:

qh,g
I = Ch,g

I +
∑
g′<g

Ch,g′→g
I +

∑
g′>g

Ch,g′→g
I +

1
4π
Qh,g

f,I , (76)

respectively in terms of the within-group, the down-scattering, the up-scattering terms and the �ssion

source per group g. By analogy with the within-group case, the group-to-group collision term is written

as:

Cg′→g,h
I =

1
4π
σg′→g,h

sI
φg′,h

I VI , (77)
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with

σg′→g,h
sI

=
1
VI

∑
i∈I

σg′→g
s0,i

γg′

i Vi . (78)

On the other hand, the �ssion term is expressed as follows:

Qh,g
I =

1
kh

eff

∑
x∈I

χg
xF

h
x,I , (79)

where the sum is done over all isotopes x in I. The �ssion source is de�ned as:

Fh
x,I =

∑
g′

(νσf )h,g′

x φh,g′

I , (80)

with

(νσf )h,g′

x =
1
VI

∑
i∈I

(νσf )g′

x γg′

i Vi . (81)

Finally, kh
eff is the eigenvalue of the low-order multigroup problem. This value is computed as in Eq. 65.

A particular case of this method is the acceleration of thermal iterations. This consists in solving the

Eq. (68) only for thermal groups with �ssion source derived from the last �ne outer iteration as follows:

Qh
f,I = Q̄f,I =

1
VI

∑
i∈I

Qf,iVi . (82)

In this case only the thermal �uxes are reconstructed on the �ne level.

6 Tests and Results

The aim of an acceleration method is to diminish, for a given class of problems, the overall compu-

tational cost, i.e. to reduce the total number of transport sweeps and the total computing time. Now,

there is a trade-o� between the accuracy and the computational cost of the low-order problem. An

accurate approximation of the transport operator on the coarse level may drastically cut o� the number

of iterations but require an excessive cost in terms of computational e�ort and memory storage. On

the other hand, a too poor approximation, which is easily solved, may not su�ciently reduce the global

computational cost.

In order to test the e�ectiveness of our method, some tests have been performed. Results are presented

in this section. All the calculations have been run on a DEC-Alpha 1000 MHz machine.
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6.1 Atrium Benchmark

The case of a BWR assembly benchmark [17] is here presented. For our �ne level MOC calculation,

we use a 3052-region discretisation and a 6-group P1 cross sections library [18]. Because of the enforced

specular boundary conditions on all sides, cyclic trajectories have been used. The trajectories have been

tracked for all the directions in a product angular quadrature formula comprising 20 uniformly spaced

azimuthal angles in (0, π) and 3 polar angles derived from a Bickley-Naylor formula [19] in (0, π/2). The

tracking parameters for the �ne level can be found in Table I. On the coarse level we have 136 meshes,

with a ratio of �ne to coarse meshes of ∼ 22.4. Two angular quadrature formulae have been considered

on this level. All tracking parameters can be found in Table II. In the �rst row we employ the same

angular set as on the �ne spatial grid, which is equivalent to consider a spatial multigrid acceleration. In

the second row, a low-order angular approximation is used. All the calculations have been converged to

the same solution (eigenvalue keff = 1.12854) with a relative precision of 10−5 on inner iterations and

eigenvalue, and a relative precision of 10−4 on thermal iterations and �ssion rates. For all the accelerated

calculations, the following iterative strategy has been adopted: only one transport iteration per group

is performed for each outer iteration, and the maximum number of inner and thermal iterations for the

low-order problem is a priori �xed to 15 and 4 respectively. The results are shown in Tables III and IV.

Those tables give global computation parameters such as the total computing time and the total number

of transport sweeps. Total calculation time is divided into the di�erent phases of the calculation: building

(which includes reading geometry, tracking, and computing MOC parameters), initialisation (if present),

and the solution of the k -eigenvalue multi-group problem. For the latter, the contributions from �ne-

level and coarse-level calculation are given between parenthesis. All the calculations are compared to the

free-iteration results.

Table III refers to the case with the same set of trajectories on both levels: the number of transport

sweeps is drastically reduced (ratio∼ 13.62), while the gain for the total computing time is not great

(ratio ∼ 3.83). In fact, the computation cost required to solve the acceleration equations is signi�cant.

Therefore, our gain in time does not show much in the overall calculation. This aspect is more evident

when accelerating the thermal iterations. In this case, the further reduction of the total number of inner

iterations is not followed by a consistent computing time gain. The total calculation time is greater

than for the case without thermal acceleration (156.35 vs 146.30 sec). This is due to the nature of

our low-order problem. In fact, since it employs a MOC-like iterative solution, its computational cost

depends upon the total number of tracks. Therefore, although the number of regions on the coarse level
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is signi�cantly reduced, the ratio between the number of tracks on the �ne level and those on the coarse

one is only ∼ 5.9. This is why the acceleration is expensive in terms of computing time.

In Table IV we give some results for the case using a coarser tracking for the acceleration. An

initialisation-like procedure has been also implemented. The initialisation consists in performing a pre-

liminary multi-grid-accelerated transport calculation using the low-order parameters (set of angular di-

rections and spacing between parallel trajectories) for tracking on both levels. The same above-mentioned

iterative strategy is kept for the initialisation problem although this calculation is not necessarily con-

verged to the same precision since the maximum number of outer iterations is a priori �xed to 5. The

so-obtained approximated �ux is then used as an initial guess. For results in Table IV, the ratio between

the number of tracks on the �ne level and those on the coarse one is ∼ 84.46. Consequently, the com-

puting time for solving the acceleration equations is signi�cantly diminished, e.g. for the non-initialised

case, with thermal acceleration, it passes from 89.52 to 4.59 sec. Moreover, the use of a signi�cantly

reduced number of tracks on the coarse level permits to diminish the memory storage needs. Finally,

the fastest calculation is obtained for the initialised case in which both inner and thermal iterations are

accelerated.

6.2 C5G7MOX Benchmark

Here some results for the C5G7MOX Benchmark [20] are presented. We compare our results to an

APOLLO2 calculation using a DP1 acceleration [21] for the inner iterations and a synthetic acceleration

for the outer iterations [22]. The MOC calculation uses a 19188-region discretisation for the geometrical

domain, and the trajectories have been tracked for all the directions in a product angular quadrature

formula comprising 8 uniformly spaced azimuthal angles in (0, π) and 2 polar angles derived from a

Bickley-Naylor formula in (0, π/2). On the coarse level we employ a 1414-mesh discretisation and a

low-order angular representation. All tracking parameters for both levels can be found in Table V, while

results are given in Table VI. The following iterative strategy has been adopted for both methods:

one transport sweep per group followed by an acceleration step for each outer iteration. Then, the

acceleration for the outer iterations requires to solve a multigroup k-eigenvalue problem on the coarse

level. The initialisation step consists in performing an unconverged multigrid-accelerated transport

calculation by using the coarser angular representation on both levels, then we employ the solution of

this problem as an initial guess. With reference to Table VI, we note that our method is slightly less

e�ective than DP1 for this benchmark: one more outer iteration is needed, which entails more transport

sweeps (35 vs 28). On the other hand, the total computing times are comparable. It is worth noting that
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the two methods have a di�erent allocation of the total computing time. In fact, the implementation

of our method does not require extra-time in the building phase, di�erently from the DPN technique.

However, the solution of the multigroup problem by our two-level method is more expensive (103.22 vs

37.50 sec). In this phase the most time consuming part is found to be the sweeping on the coarse level

(64.34 over 103.22 sec). This is mostly due to the acceleration of the outer iterations which requires, as

already mentioned, the solution of a low-order multigroup k-eigenvalue problem on the coarse level after

performing an outer iteration on the �ne level.

7 Conclusions and Future Work

In this work, we have presented a space-angle two-level acceleration for the MOC numerical solution

of the neutron transport equation. Unlike the classical linear multi-grid methods for which a low-order

problem is solved for the error at a given transport iteration, in our approach the acceleration step

supplies a coarse homogenised scalar �ux, which is used to reconstruct the moments of the �ne angular

�ux. In a reference situation where the converged �ne �ux is available, the coarse solution must be

able to reproduce the same averaged properties as the �ne one. The implementation of our method has

required a homogenisation/dehomogenisation technique, which has led us to the main approximations

of our scheme: the discontinuity factors and the shape factors. Some parallels and distinctions with

the CMFD approach proposed in literature have been drawn. Furthermore, we note that, since our

method uses a MOC-like formalism to solve the low-order problem, no constraints stand against the

fact of considering an unstructured grid on the coarse level. This is a clear advantage with respect to

CMFD or other non-linear di�usion-like acceleration techniques which generally require to superimpose a

rectangular acceleration mesh on the heterogeneous geometry. This aspect makes our method attractive,

for example, to whole core transport calculations. For the latter, an accurate geometrical description

of elements close to the boundary (e.g. ba�e/re�ector representation) requires indeed an unstructured

grid. Finally, a transport-like operator is employed on the coarse level, the correction provided by our

acceleration step can be more accurate than that provided by CMFD for a class of reactor transport

problems in which di�usion modes are not dominant and transport e�ects due to higher modes become

more important (e.g. accident situations).

Tests performed for the Atrium assembly have given encouraging results. They showed that our

approach may be very e�ective in cutting o� the number of transport sweeps. However, the solution of

the acceleration problem may be too expensive if using the same set of trajectories on both �ne and coarse
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levels. This is because the acceleration step is still based upon a MOC-like approach and, consequently,

its cost depends on the number of tracks (i.e. the total number of intersections of trajectories with

regions where the number of trajectories depends upon the angular quadrature formula and the spacing

between the trajectories). Then a space-angle method, making use of a low-order tracking, permits to

signi�cantly reduce the computing time and the memory storage needs for acceleration. Nevertheless, as

a general consideration, we note that this further approximation of the transport operator on the coarse

level may lightly worsen the total number of transport sweeps.

Furthermore, tests performed for the C5G7MOX benchmark showed that our method can perform

well for reactor transport problems. It does not need extra work in the building phase, which is a clear

advantage. However, the computational e�ort for solving the acceleration equations still remains high

for such a case. The aim of this paper was to introduce a new method and show that it can be e�ective

for a class of transport problems. Further work is needed for improving and optimisation.

Work is under way to investigate the extension of the method to more levels for reactor-core-size

transport problems. We note that the use of more grids will not further diminish the number of transport

sweeps, but only the computational e�ort needed for the acceleration phase. In this case, one can imagine

to employ, on the �rst coarse level, an accurate approximation of the transport operator and the phase

space in order to drastically cut o� the number of iterations, and use more coarsely de�ned problems on

the lower levels in order to reduce the computation time.
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A Modifying MOC on the Fine Grid

Within the general framework of MOC, the tracking is built by computing and storing a set of

geometrical data. In practical applications, a record is created for each trajectory:

{ri, li | i = 1,M} , (83)

where M is the number of intersections with regions; and ri, li are the order number of region i and the

track length of the trajectory across this region, respectively. Therefore, sweeping a trajectory consists

in covering, in the order given by record (83), the M chords given by intersection of the trajectory with

the �ne regions. This approach has been kept to solve the low order problem, with the creation of an

analogous record for each trajectory:

{rI , lI | I = 1,M ′} , (84)

where M ′ is the number of intersections with macro regions; and rI , lI are the order number of region I

and the track length of the trajectory across this region, respectively.

In the implementation of MOC, one free iteration consists in computing the average angular �ux ψi

on each region Di and, if needed, the currents leaving the domain through the discretised boundary α.

However, in our scheme, global incoming and outgoing currents on each macro region J±,I have to be

evaluated in order to compute DFs with Eqs. (53) and (55). In practice, the aim is to know when the

boundary of a coarse mesh is crossed. This means that the �ne discretisation has to know the coarse

one, and that the tracking on the �ne grid has to be reformulated to take into account both grids and

the table of correspondence between them. To do this, we have introduced two more records for the

trajectory on the �ne grid:

• a coarse record giving, for each macro region I crossed by the trajectory, its order number:

{rI | I = 1,M ′} , (85)

• a record giving, for each of these macro-regions, the number of �ne regions in it:

{nI | I = 1,M ′} . (86)

Consequently, the sweeping of a trajectory on the �ne grid is modi�ed. In fact, instead of a single cycle
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over the M �ne chords, a double cycle is performed: a cycle over the M ′ coarse chords, and for each

one of them an inner cycle over all the �ne chords in it. This allows us to know when the boundary of a

coarse mesh is crossed, and to compute the currents we are interested in. Note that, if the same set of

trajectories is employed on both grids, record (85) is derived directly from record (84).
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D = ∪
i
Di Vi = µ (Di) D = ∪

I
DI VI = µ (DI)

Figure 1: Fine and coarse spatial discretisations of a given domain D. The coarse discretisation is
obtained from the �ne one by an agglomeration procedure. Each macro-region DI is de�ned as the union
of a number of �ne regions Di.
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Figure 2: Visualisation of V-Cycle scheme for the acceleration of the inner iterations.
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Table I: Atrium Benchmark. Tracking parameters for the �ne level. The number of tracks is the total
number of intersections of trajectories with regions.

Regions Azimuthal angles Polar angles Spacing (cm) Trajectories Tracks
3052 20 (uniform) 3 (Bickley) 0.02 1084 954,466
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Table II: Atrium Benchmark. Tracking parameters for the coarse level. Two cases are presented. In the
�rst the same set of trajectories as on the �ne level is used. In the second a coarser angular representation
and a bigger spacing between parallel trajectories are used.

Case Regions Azimuthal angles Polar angles Spacing (cm) Trajectories Tracks
Spatial MG 136 20 (uniform) 3 (Bickley) 0.02 1084 161,222

Space-Angle MG 136 4 (uniform) 2 (Bickley) 0.06 113 11,301
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Table III: Results for the Atrium assembly benchmark with the same set of trajectories on both levels.
All times are expressed in seconds.

keff = 1.12854 Free Space MG
Only Inner Inner & Thermal

building time
solving time
(�ne+coarse+other)
total time

# transport sweeps

5.85
555.24

561.09

1403

7.33
138.97

(54.44+48.11+36.42)
146.30

103

7.27
149.08

(30.78+89.52+28.78)
156.35

64
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Table IV: Results for the Atrium assembly benchmark using the space-angle two-level acceleration
method. All times are expressed in seconds. Two batches of results are presented: for the not-initialised
and the initialised case.

keff = 1.12854 Free Space-Angle MG
Only Inner Inner & Thermal

Not initialised

building time
solving time
(�ne+coarse+other)
total time

# transport sweeps

5.85
555.24

561.09

1403

4.22
62.39

(46.05+2.36+13.98)
66.61

103

4.25
45.93

(28.61+4.59+12.74)
50.18

64

Initialised

building time
initialising time
solving time
(�ne+coarse+other)
total time

# transport sweeps

4.11
3.33
45.12

(30.24+2.68+12.20)
52.56

64

4.15
4.80
27.65

(18.64+4.93+4.08)
36.60

40
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Table V: C5G7MOX Benchmark. Tracking parameters for �ne and coarse levels.

Level Regions Azimuthal angles Polar angles Spacing (cm) Trajectories Tracks
Fine 19188 8 (uniform) 2 (Bickley) 0.03 5492 2,378,011
Coarse 1414 2 (uniform) 1 (Bickley) 0.09 934 49,400
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Table VI: Results for C5G7MOX Benchmark. Our space-angle acceleration method is applied to both
inner and outer iterarions. We compare our results with an APOLLO2 reference calculation. All times
are expressed in seconds.

APOLLO2 Reference Space-Angle MG
keff

building time
initialisation time
solving time
(�ne+coarse+other)
total time

# transport sweeps
# outer iterations

1.18647

85.89
15.86
37.50
�

139.25

28
4

1.18637

17.70
21.74
103.22

(23.94+64.34+14.94)
142.66

35
5
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