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Abstract

For the assessment of an under-clad defect in a vessel submitted to a cold pressurized thermal 

shock, plasticity is considered through the amplification β of the elastic stress intensity factor KI in the 

ferritic part of the vessel. An important effort has been made recently by CEA to improve the 

analytical tools in the frame of R&D activities funded by IRSN. The current solution in the French 

RSE-M code has been developed from fitting  F.E. calculation results. A more physical solution is 

proposed in this paper. This takes into account two phenomena : the amplification of the elastic KI due 

to the plasticity in the cladding and a plastic zone size correction in the ferritic part.  

The first correction has been established by representing the cladding plasticity by an imposed 

displacement on the crack lips at the interface between the cladding and the ferritic vessel. The 

corresponding elastic stress intensity factor is determined from the elastic plane strain asymptotic 

solution for the opening displacement. Plasticity in the ferritic steel is considered through a classical 

plastic zone size correction. 



The application of the solution to axisymmetric defects is first checked. The case of semi-

elliptical defects is also investigated. For the correction determined at the interface between the 

cladding and the ferritic vessel, an amplification of the correction proposed for the deepest point is 

determined from a fitting of the 3D F.E. calculation results. It is also shown that the proposition of 

RSE-M which consists in applying the same β correction at the deepest point and the interface point is 

not suitable. 

The applicability to a thermal shock, eventually combined with an internal pressure has been 

verified. For the deepest point, the proposed correction leads to similar results to the RSE-M method, 

but presents an extended domain of validity (no limit on the crack length are imposed). 
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Nomenclature 

A crack tip in the ferritic vessel – deepest point for a semi-elliptical defect 

a Crack depth 

B crack tip in the cladding 

2c Crack width at the interface 

C semi-elliptical defect point at the cladding-ferritic vessel interface 

Cp Specific heat 

h Thickness of the ferritic vessel 

H Heat transfer coefficient (W/m²/°C) 

J Rice integral (kJ/m²) 



KI Elastic stress intensity factor (MPa.m0.5) 

KI,A Crack tip A elastic stress intensity factor (MPa.m0.5) 

KJ Elastic-plastic stress intensity factor (MPa.m0.5), deduced from J 

km shape function relating imposed membrane stress to δel

r Cladding thickness 

ryA, ryB Plastic zone size at crack tip A and B 

Re Outer radius of vessel 

Ri Inner radius of vessel 

R0 Radius of the interface 

sB ligament size in the cladding 

uy Opening displacement along the crack lip 

uy,elastic Elastic opening displacement profile along the crack lip 

uy,el_max Maximum opening displacement for the elastic profile along the crack lip 

uy,pl(x=0) Opening displacement at the interface related to the cladding plasticity 

x Radial position 

β Stress intensity factor amplification due to plasticity 

βΑ, βC β for the defect deepest point and the interface point of a semi-elliptical defect 

∆Τ1 temperature linear through thickness variation in the vessel 

δel 2uy,el_max

λ Thermal conductivity 

ν Poisson’s ratio 

σm  Imposed membrane stress 

σyB  Cladding yield stress 

 



1 Introduction 

For Reactor Pressure Vessel (RPV) integrity demonstration, a defect assessment has to be 

performed considering a Pressurized cold Thermal Shock (PTS). The RPV is a ferritic vessel with an 

austenitic cladding inside. Several approaches are proposed in different reference codes and standards. 

Usually, the analyses are based on analytical methods. An important effort has been made recently by 

CEA to improve these tools in the frame of R&D activities funded by IRSN. A complete analytical 

solution has been developed for the through-thickness temperature and thermal stresses in a cladded 

vessel submitted to a thermal shock [1]. A relation for internal pressure stresses has been proposed in 

[2]. These stress equations have been linearised close to the interface between the cladding and the 

ferritic part of the vessel [2]. An elastic stress intensity factor compendium has also been proposed [2] 

for under-clad and through-clad defects. The expression of the elastic stress intensity factor is based on 

a polynomial representation of the through-thickness opening stress up to the 4th order in the ferritic 

vessel. Corresponding influence functions are tabulated as functions of a/c and a/r ratios : due to the 

important curvature radius, the compendium has been developed from 3D F.E. elastic calculations 

considering only cracked plates. The difference of behaviour between the cladding and the vessel is 

taken into account in the tables through the Young’s modulus ratio. 

 

This paper deals with the influence of plasticity: in the RSE-M code [3], plasticity is 

represented through an amplification of the elastic stress intensity factor for underclad defects. This β 

amplification depends on the plastic zone radius in the cladding and the cladding thickness. This 

correction has been fitted from 2D axisymmetric F.E. calculations and is valid for a limited range of 

defect sizes [3,4]. The influence of the defect length is also not taken into account in the expression of 

the correction. A new formulation is proposed in this paper for axisymmetric and semi-elliptical under-

clad defects. This amplification is based on the identification of the different effects of the plasticity 



and is first developed for axisymmetric defects. The transferability of the correction to semi-elliptical 

defects is then adresses and a modification is proposed for the point in the ferritic part at the interface. 

2 The Kβ RSE-M method 

2.1  DOMAIN OF VALIDITY   

The RSE-M method [3] adresses an underclad defect located in a ferritic steel vessel with an 

austenitic clad submitted to : 

- a thermal shock applied to the internal surface of the vessel, with limited internal pressure 

- an internal pressure only. 

The method is valid if 2,0
r
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where r is the cladding thickness and sB is the ligament length in the cladding (figure 1). 

 

2.2 CONTINUOUS UNDERCLAD DEFECTS   

For a circumferential axisymmetric or a continuous longitudinal defect, the elastic-plastic stress 

intensity factor is calculated following these equations : 

The plastic zone radius rB defined at the crack tip B in the cladding (see figure 1) is given by : 
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where KelB is the elastic stress intensity factor at point B and σyB is the cladding yield stress. 

During the load history, the elastic stress intensity factor at crack tip A increases and can reach a 

maximum value. Up to this maximum value, the corrected stress intensity factor Kep is deduced from : 
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Once the maximum value of Kel reached, the corrected stress intensity factor Kep is then obtained 

from : 

- at point A :  wheremaxelAepAelAepA )KK(KK −+= maxelAepA )KK( − is the value of 

 when the maximum K)KK( elAepA − elA is reached. 

- at point B :  wheremaxelBepBelBepB )KK(KK −+= maxelBepB )KK( − is the value of 

 when the maximum K)KK( elBepB − elB is reached. 

 

2.3 FINITE LENGTH UNDERCLAD DEFECTS 

For circumferential or longitudinal semi-elliptic defects with a defect characterized by its depth a 

and total length 2c (with c ≥ a), the same correction is applied at the interface of the vessel-cladding 

(point C) as at the deepest point (point A) : 
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when the maximum value of KelC has been reached during the load history, KepC is deduced from 

 maxelCepCelCepC )KK(KK −+=

 



3 F.E. calculation data base 

To support this work, a F.E. calculation data base has been compiled. This includes 2D and 3D 

F.E. calculation results. 

3.1 PRESENTATION OF MODELS 

2D models correspond to a circumferential axisymmetric defect. The crack tip B (in the cladding) is 

located at the interface. A fine mesh is used around the defect to obtain accurate results. For thermal 

shock analysis, the geometry is an academic case, far from the sizes relevant to an RPV : Ri = 10000 

mm, h = 250 mm and r = 10 mm. The defect length, normalised by the cladding thickness, is between 

0.625 and 2.5. 

3D defects have a semi-elliptical shape (figure 2) with a longitudinal orientation. Particular attention 

has been paid to the crack front mesh (figure 2). Several ratios of a/r and c/a have been considered. 3 

geometries have been defined : 

- G1 : Ri = 10000 mm, h = 250 mm and r = 10 mm, 

- G2 : Ri = 2500 mm, h = 250 mm and r = 10 mm, 

- G3 : Ri = 2500 mm, h = 250 mm and r = 6 mm. 

 

3.2 MATERIAL PROPERTIES 

For thermal characteristics, 2 sets of values have been used. For 2D analyses, no temperature 

dependence is considered. Table 1 gives the thermal constants for the 2D calculations. For 3D F.E. 

analyses, thermal properties are functions of the temperature. Table 2 gives the variations, in which a 

linear interpolation is performed by the F.E. code. In all calculations the density is 7600 kg/m3. 

For mechanical properties, 3 combinations are considered : 



- M1 : cladding and ferritic steel have the same material properties, temperature independent 

with a bilinear stress-strain curve (Table 3). 

- M2 : cladding and ferritic steel show different bilinear behaviour, also temperature 

independent (Table 3). 

- M3 : the behaviour of the materials is bilinear and depends on temperature (Table 4). Only 

the tangent modulus ET is constant and is the same for the two materials 

(2000 MPa.mm/mm). 

 

3.3 LOADING CONDITIONS 

For 2D calculations, only a thermal shock is considered. 3 scenarii have been used : 

- An increasing linear through-thickness thermal gradient ∆T1. 

- A ‘smooth’ conventional linear thermal shock : the fluid temperature decreases from 286°C 

to 7°C in 2000 seconds with a constant heat transfer coefficient H =  20000 W/m².°C. 

- A ‘fast’ conventional linear thermal shock : the fluid temperature decreases from 286°C to 

7°C in 50 seconds with a constant heat transfer coefficient H =  20000 W/m².°C. 

 

For 3D configurations, only one quarter of the vessel is modelled. A thermal shock alone or 

thermal shock combined with a constant internal pressure is modelled. 2 scenarii are used for the 

thermal loading  : 

- A linear thermal shock with a constant heat transfer coefficient H = 20000 W/m².°C (thermal 

shock ‘CL’, Figure 3), 

- A realistic thermal shock with a time dependant heat transfer coefficient H (thermal shock 

‘S’, Figure 4) 



 

3.4 CALCULATION MATRIX 

The different configurations in terms of geometry, material and loading have been described in 

section 3.1-3.3. Tables 5 and 6 present all combinations available in the data base for 2D and 3D F.E. 

calculations. This represents 18 2D cases and 42 3D cases. 

 

4 Amplification of the elastic stress intensity factor in the ferritic vessel due to 

cladding plasticity 

A simplified representation of the elastic problem is to consider a surface crack subjected to two 

superposed loadings: the nominal loading and an imposed displacement on the part of the crack lips 

corresponding to the ligament in the cladding. This closure displacement reduces the ferritic crack tip 

loading. The superposition of these two loadings is taken into account in the elastic stress intensity 

factor compendium [2]. 

The elastic-plastic J value at the crack tip in the ferritic part results from two main phenomena 

which should be considered to estimate accurately the plastic amplification : 

- In the real problem, the cladding shows a significant plasticity when the ferritic part remains 

nearly elastic. This plasticity could be represented by an opening displacement imposed on 

the crack tip located at the interface, which increases the ferritic crack tip loading, and of 

course the corresponding elastic stress intensity factor. 

- Even if the ferritic vessel remains globally elastic, the crack tip in this domain is in small 

scale yielding which induces a second well-known amplification. 

 



4.1 SIMPLIFIED PROBLEM 

First, to determine easily the amplification of the elastic stress intensity factor in the ferritic part 

related to the plasticity in the cladding, an axisymmetric under-clad defect is considered, subjected to a 

nominal uniform membrane stress. 

The vessel is 250 mm thick and the internal radius is 2500 mm (without the cladding). The 

cladding thickness is 5, 10 or 20 mm and the total defect depth varies between 3.125 mm (a/h = 

0.0125) to 100 mm (a/h = 0.4). 

2D F.E. calculations are performed considering elastic behaviour for the two materials, or an 

elastic ferritic vessel and an elastic-plastic cladding (bi-linear stress-strain curve with a yield stress at 

360 MPa). 

This simple configuration aims to check if the amplification in the ferritic part could effectively 

be represented by an imposed opening displacement on the crack lips. For different cases (elastic or 

elastic-plastic cladding) and load levels, the crack opening displacement along the crack lips is 

determined. Figure 5 presents the variations obtained for a 20 mm thick cladding and a crack length of 

50 mm. The corresponding nominal stress level is 871 MPa. 

The elastic profile uy,elastic is as expected close to an elliptical shape. The elastic-plastic profile 

uy,elastic-plastic is consistent with the assumption of an opening displacement imposed at the location of 

the crack tip at the interface, related to the plasticity in the cladding. Figure 5 shows also the difference 

between these two variations, which appears to be close to a r0.5 law. To complete these observations, 

the elastic profile of the plane strain asymptotic solution, added to the elastic profile obtained from the 

F.E. analysis (uy,elastic), is also drawn (uy,simplified(x)), using an optimised value of the opening 

displacement at the interface uy,pl(x=0)  to minimize the difference with the F.E. elastic-plastic curve : 

 uy,simplified(x) = uy,elastic(x)+uy,pl(x=0).(50-x)0,5 (5) 



where x represents the distance to the interface between the ferritic vessel and the cladding. For 

the configuration presented in Figure 5, uy,pl(x=0) = 0.21 mm. This simplified profile appears to be in 

very good agreement with the F.E. elastic-plastic profile. Then, if we are able to estimate uy,pl(x=0), the 

corresponding stress intensity factor KI,A_upl could be deduced from the plane strain asymptotic 

solution, and then the amplification of the elastic stress intensity factor KI,A in the ferritic part due to 

the cladding plasticity. 

This result has been confirmed on all other configurations tested. 

 

4.2 CALCULATION OF THE OPENING DISPLACEMENT DUE TO CLADDING PLASTICITY 

First a search is made for an analytical solution for the opening displacement profile for the full 

elastic configuration. Taking into account the vessel dimensions, the problem could be compared to the 

case of a plate containing a sharp slot.  

For the plane strain situation, with a centre cracked plate subjected to a nominal membrane stress 

σm, appendix A16 [5] of the RCC-MR code proposes a solution considering an elliptical opening 

profile. If the total length of the slot is 2.cL, the maximum total opening displacement  δel is given by : 

 mm
L

el k
E
c4

σ⋅⋅
⋅

=δ  (6) 

In our problem, 2.cL=a. If we neglect the fact that the crack is off-centre and consider small 

defects (a/h < 0.4), km can be simplified to 1 (according to values proposed in appendix A16 [5]). The 

maximum opening displacement here uy,el_max (= δel/2) is then deduced from : 
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and the elastic profile is represented by the classical ellipse equation : 
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Figure 6 compares successfully this equation to the F.E. profile obtained with the full elastic 

model. 

To estimate the opening displacement related to cladding plasticity, we first consider that the 

cladding is in small scale yielding. An extended crack length is then taken into account using the 

plastic zone size ry,B in plane strain: 
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where KI,B is the elastic stress intensity factor for the crack tip at the interface and σy,cladding is the 

cladding yield stress. We propose then to consider a dilation of the opening displacement profile. Only 

the half part near the cladding is concerned, as shown in Figure 7. The equation of this extended 

profile is then : 
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The searched opening displacement is then given by equation (10) for x = 0, which corresponds 

to the interface : 
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The determination of uy,pl is based on the calculation of uy,el_max. When the loading condition is 

more complex than an uniform stress, it is proposed to determined an equivalent uniform membrane 

stress σm from the stress intensity factor KI,A in the ferritic part : 
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4.3 STRESS INTENSITY FACTOR AMPLIFICATION AT THE CRACK TIP IN THE FERRITIC PART 

Knowing the imposed displacement at the distance a from the crack tip in the ferritic side related 

to cladding plasticity, the corresponding stress intensity factor KI,A_uy,pl is easily determined for the 

asymptotic plane strain solution : 
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The amplification β of the elastic stress intensity factor KI,A related to the cladding plasticity is 

then : 
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In contrast to the RSE-M solution [3], the amplification proposed here depends on crack length. 

It is also interesting to note that the maximum value of the proposed solution is [1+0.5/(1-ν²)] and 

equals 1.55 for ν=0.3, which is very near to the fitted limit value proposed by the RSE-M relation : 1.5. 

The correction is only a function of the crack length and the plastic zone size in the cladding, which is 

a representation of the ratio between the stress intensity factor calculated for the crack tip at the 

interface and the cladding yield stress. The assumption about the stress distribution (uniform nominal 

stress) is not clearly visible in this final relation, but the transferability of the results to the thermal 

shock situation has to be checked. 

 

4.4 VERIFICATION OF THE PROPOSED SOLUTION 

To check the validity of the proposed equation, the stress intensity factor KI,A for the ferritic 

crack tip has been calculated for the previous 2D F.E. calculations with  elastic behaviour of the 

ferritic steel and elastic-plastic behaviour for the cladding. For these calculations, the load is an 

increasing nominal uniform stress. 

Some results are presented in Figure 8, representative of the application of the proposed solution, 

validated on a larger number of configurations : 

- 20 mm thick cladding, relative crack depth a/h =0.0125, 0.025, 0.05, 0.1, 0.2 and 0.4, 

- 1 mm thick cladding, relative crack depth a/h =0.0125, 0.025, 0.05, 0.1 and 0.2, 

- 5 mm thick cladding, relative crack depth a/h =0.0125, 0.025, 0.05, 0.1 and 0.2. 

The proposed solution provides a good estimate of the amplification. In particular, the 

amplification becomes conservative when the defect size (or cladding thickness) decreases for a given 

cladding thickness (or defect size), as shown in Figures 8-c and d. This is related to the opening 



displacement being overestimated when there is a significant plasticity in the cladding : this stage is 

reached faster for a small cladding thickness or a small defect depth for a given load level.  

 

5 Pressurised thermal shock analysis  

This section deals with the applicability of the proposed solution to the thermal shock problem, 

eventually with an internal pressure. In this case, the behaviour of the ferritic vessel is also elastic-

plastic.  

5.1 AMPLIFICATION DUE TO SMALL SCALE PLASTICITY AT THE FERRITIC CRACK TIP 

As noted previously, the proposed amplification is only related to the cladding plasticity. It is 

suggested that a plastic zone size correction is added to account for plasticity at the crack tip in the 

ferritic part, which is assumed to remain in small scale yielding. The final new β correction is then : 
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where ry,A and ry,B are the plane strain plastic zone radii in the ferritic part and in the cladding, 

respectively, calculated from the elastic stress intensity factors for the complete elastic problem. 

5.2 THERMAL SHOCK APPLIED TO A VESSEL CONTAINING AN AXISYMMETRIC DEFECT 

In this section, the proposed solution is checked for a more complex configuration : the loading 

is a realistic thermal shock and elastic-plastic behaviour is considered for both the cladding and the 

ferritic steel. The cases investigated are summarised in Table 5. Only the increasing phase of the stress 

intensity factor KJ deduced from the J integral calculation is considered. 



Figures 9-a and b present some typical results for an homogenous vessel, and Figure 9-c and d 

for a bi-material vessel. No influence of the material properties combination is noted on results 

obtained with the proposed method. For the RSE-M solution [3], the homogeneous case is always 

overestimated. A better agreement with the F.E. results is obtained for the bi-material configurations. 

Figures 9-a and c presents results in the case of a smooth thermal shock (small dT/dt) : the 

proposed solution gives in these case accurate predictions. For hard thermal shock (high dT/dt), the 

proposed solution is slightly pessimistic : this is probably due to the a uniform imposed stress 

assumption (equation 12) which is not valid : for hard thermal shock, the temperature gradient (and 

then the related stress gradient) is strong near the cladding, at least at the beginning of the shock. 

5.3 CORRECTION FOR SEMI-ELLIPTICAL DEFECTS 

For a semi-elliptical under-clad defect, according to the RSE-M methodology [3], the same 

correction is applied at the deepest point and the point at the interface. 

Figure 10 shows an example of the necessary correction from the ratio of the stress intensity 

factors from the elastic and elastic-plastic 3D F.E. calculations for the deepest point and the point at 

the interface. It is shown that the necessary β correction at the interface (βc) is larger than the β 

correction at the deepest point (βA). 

For all 3D F.E. results available in the data base, the ‘ideal’ βc correction is determined : this 

correction is calculated for the maximum value of KJ at the interface. Figure 11 presents the variation 

of the ratio (βc/ βA)² with the ratio c/a. It appears that the ratio βc/ βA is nearly independent of the 

cladding size or the behaviour of the materials. This information are already taken into account in βA. 

βc / βA can then be given by : 
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The application of the two corrections βC and βA gives good predictions, as illustrated in 

Figure 12. Conclusions for the predictions at the deepest point are similar to those for an axisymmetric 

defect. When the defect has a small c/a ratio, predictions overestimate the F.E. results (Figure 13-a). 

This case, the RSE-M solution leads to a good prediction of the correction at the deepest point. In our 

model, the correction is determined assuming an elliptical profile of the opening displacement, 

governed by the relation for an axisymmetric defect. When, the defect is too small, the defect is 

constrained by the surrounding material and shows a smaller opening displacement than given by the 

model : the correction is then too strong. When the ratio c/a increases, a comparable amplification to 

that for the axisymmetric defect is quickly obtained. 

For the proposed solution same conclusion are obtained for the interface point : the predictions 

are in good agreement with the F.E. results (Figure 12-b), except when the defect is too small where 

the amplification is too severe (Figure 13-b). Whatever the case, the RSE-M solution leads to a too low 

value of the amplification at the interface point (Figures 12-b and 13-b). 

 

5.4 APPLICATION TO THE PRESSURIZED THERMAL SHOCK 

The application to combined thermal shock and internal pressure should not present specific 

difficulties (Figure 14), if small scale yielding condition is verified in the ferritic part, which 

corresponds to the real industrial problem. Indeed, if plasticity is too large, in particular due to the 

pressure, an interaction between the mechanical loading and the thermal loading has to be taken into 

account as reference [6] shows. The RSE-M solution seems to be also suitable in this situation for the 

deepest point. For the interface point, this solution is still too low. 



 

6 Conclusions 

This paper deals with the cold PTS analysis in a RPV containing an underclad defect, and more 

precisely with the plastic amplification of the elastic stress intensity factor in the ferritic vessel. 

The RSE-M code [3] proposes a correction β : this parameter is an amplification of the elastic 

stress intensity factor, developed from fitting of F.E. results. A more physical correction is proposed in 

this work : it takes into account the influence of the plasticity development in the cladding and the 

direct plastic amplification at the crack tip in the ferritic part. 

The first correction has been established by representing the cladding plasticity by an imposed 

displacement on the crack lips at the interface between the cladding and the ferritic vessel. The 

corresponding elastic stress intensity factor is then determined from the elastic plane strain asymptotic 

solution for the opening displacement. Plasticity in the ferritic steel is considered through a classical 

plastic zone size correction. 

The application of the solution obtained to axisymmetric defects is first checked. The case of 

semi-elliptical defects is then investigated. For the correction at the interface point of the defect, an 

amplification of the correction proposed for the deepest point is determined from a fitting of the 3D 

F.E. calculation results. It is also shown that the proposal in the RSE-M which applies the same β 

correction at the deepest point and the interface point is not suitable.  

The applicability to a thermal shock, eventually combined to an internal pressure has been 

verified. For the deepest point, the proposed correction leads to similar results to the RSE-M method 

except for semi-elliptical defects with a small c/a ratio where the method overestimate the 

amplification.  



The analysis of all cases allows a first idea of the domain of validity of the proposed solution : 

For axisymetric defect, the proposed method appears correct for a wide range of crack depth in the 

case of an ideal imposed nominal stress (good agreement has obtained up to ratio a/h = 0.4). The 

solution becomes slightly conservative when the defect depth becomes small. It is also the case for 

small cladding thickness. Thermal shock loading has been tested and confirms to relevance of the 

solution, at least up to a/h = 0.1. Realistic semi-elliptical defect has also been tested. When the ratio c/a 

is large (up to 8), the predictions are in good agreement with the F.E. results. On the contrary, the 

solution is conservative when the defect ratio c/a is small, due to the influence of the surrounding 

material on the crack opening displacement. 
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Table Captions 

 

 

Table 1 : material thermal properties for the 2D F.E. calculations. 

 

Table 2 : thermal properties for the 3D F.E. calculations. 

 

Table 3 : mechanical properties for the configurations M1 and M2. 

 

Table 4 : mechanical properties for the configuration M3. (*)Thermal expansion coefficient α  

between  & T ( )  20 Co 6 110 K− −

 

Table 5 : F.E. calculation matrix for 2D axisymmetric configurations. 

 

Table 6 : F.E. calculation matrix for 3D configurations. 

 

 



 

 

 

 

 

 

 

 Ferritic steel cladding 
λ  (W.m-1.K-1)  45.8 18.6 

pC   ( )1 1. .J kg K− − 569 569 

 

 

 

 

 

 

 

 

Table 1 



 
 
 
 
 
 
 
 
 
 

Temperature T  ( )  Co 20 100 200 300 400 

Ferritic vessel : λ  ( )  1 1. .W m K− − 44 44 43 41 39 

Ferritic vessel :  ( )  pC 1 1. .J kg K− − 460 490 520 560 610 

Cladding : λ   ( )1 1. .W m K− − 15 16 17 19 20 

Cladding :   pC ( )1 1. .J kg K− − 500 500 520 540 590 

 

 

 

 

 

Table 2 
 



 
 
 
 
 
 
 

Material Ferritic steel Cladding 
(M1) 

Cladding 
(M2) 

Young modulus  ( )E MPa  199000 199000 186000 
Poisson’s ratio ν  0,3 0,3 0,3 
Yield stress σ0 (MPa) 360 360 167 
Tangent modulus ET (MPa.mm/mm) 2000 2000 2000 
Thermal expansion coefficient α  between  & T  20 Co ( )6 110 K− −  10,9 10,9 16,4 

 

 

 

 

 

 

Table 3 
 

 

 



 

 

 

 

 

 
 
 
 Temperature T  (°) 20 100 200 300 400 
 Young modulus  ( )E MPa  211000 206000 199000 192000 184000 

ferritic  Poisson’s ratio ν  0,3 0,3 0,3 0,3 0,3 
vessel Yield stress σ0 (MPa) 390 370 360 350 320 

 Thermal expansion coefficient α  11,7 12,7 13,2 13,6 14 
 Young modulus  ( )E MPa  200000 194000 186000 179000 172000 
cladding Poisson’s ratio ν  0,3 0,3 0,3 0,3 0,3 
 Yield stress σ0 (MPa) 206 177 167 136 125 
 Thermal expansion coefficient α  15 16 17 17 18 

 

 

 

 

Table 4 



 
 
 
 
 
 
 
 
 

Thermal loading geometry Material properties a/r 
Increasing ∆T1: 6 

Smooth thermal shock: 6 
Sharp thermal shock :6 

 

 
G1 : 18 

 

 
M1 : 9 
M2 : 9 

 

 

0.625 : 6 
1.25 : 6 
2.5 : 6 

 
 
 
 
 
 
 

Table 5 
 



 
 
Loading geometry Material properties ( a/r ; c/a ) 

 

M3 
 

 (1 ; 2) (1 ; 4) (1 ; 8) (2 ; 1) (2 ; 
2) 

(2 ; 4) (2 ; 8) 

 

G2 
 

 
 

M1 
 

 (1 ; 1) (1 ; 2) (1 ; 4) (1 ; 8) (2 ; 
1) 

(2 ; 2) (2 ; 4) (2 ; 8) 

 
 
 

Linear thermal shock 
‘CL’ 

20 

 

G3 
 

M3 
 

 (0.5 ; 1) (1 ; 2) (1 ; 4) (2 ; 2) 
(2 ; 4) 

 

G2 
 

M3 
 

 (0.5 ; 2)  (1 ; 2)  
Representative thermal 

shock ‘S’ 
12 

 
G3 

 
M3 

 

(0.5 ; 2) (1 ; 1) (1 ; 2) (1 ; 8) 
(2 ; 1)  

(2 ; 2) (2 ; 4) (2 ; 8) (3 ; 2) (3 ; 
4) 

    

Thermal shock + 
internal pressure 
(P = C) & CL : 6 

 
(P = C) & S : 5 

 
 

G3 : 12 
 

 
 

M3 

 
(0.5 ; 2) (1 ; 2) (1 ; 4) (2 ; 2) 

(2 ; 4)  
 

(0.5 ; 2) (1 ; 2) (1 ; 8) (2 ; 8) 
(3 ; 2) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6 



 
Figure Captions 

 

Figure 1 : underclad defect description 

Figure 2 : semi-elliptical defect mesh. 

Figure 3 : Fluid temperature and heat transfer coefficient, H, variations for the loading sequence ‘CL’. 

Figure 4 : Fluid temperature and heat transfer coefficient, H, variations for the loading sequence ‘S’. 

Figure 5 : Opening displacement variations from F.E. calculation for a 20 mm thick cladding, a crack 

length of 50 mm and an imposed nominal uniform stress of 871 MPa. 

Figure 6 : Prediction  of the elastic opening displacement along the crack lip for a 20 mm thick 

cladding, a crack length of 50 mm and an imposed nominal uniform stress of 871 MPa. 

Figure 7 : Illustration of the way to take into account the cladding plasticity to calculate imposed 

displacement related to the amplification of the stress intensity factor at the crack tip in the ferritic part. 

Figure 8 : Stress intensity factor amplification in the ferritic part due to cladding plasticity : 

comparison between F.E. results and the proposed analytical method. 

Figure9 : Prediction of the stress intensity factor variation for a thermal shock in a pipe with an 

axisymmetric internal defect. 

Figure 10 : Comparison of the stress intensity factor amplification due to plasticity at the deepest point 

and the interface point of the defect, deduced from F.E. elastic and elastic-plastic calculations -(a/r = 3, 

c/a = 4, r = 6 mm – two-material vessel with a realistic thermal shock ‘S’). 

Figure 11 : Variation of the ratio of the amplification at the interface and the deepest points versus 

defect shape. 



Figure 12 : Application of the proposed method to the case of a thermal shock in a vessel including a 

semi-elliptical circumferential defect. 

Figure 13 : c/a = 1 Application of the proposed method to the case of a small semi-elliptical defect (a/r 

= 1, c/a =1). 

Figure 14 : Application of the proposed method to the case of a thermal shock with constant internal 

pressure of 15 MPa in a vessel including a semi-elliptical circumferential defect (a/r = 3, c/a = 2, r =6, 

thermal shock ‘S’). 
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Figure 4 
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Figure 5 
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Figure 7 
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c) r = 5 mm - a/h = 0.2
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d) r = 5 mm - a/h = 0.025

0

50

100

150

200

250

0 500 1000 1500

Nominal imposed stress (MPa)

K
I (

M
Pa

.m
0.

5 )

F.E. elastic calculation
F.E. calculation with plasticity in cladding
Analytical method

 
 

 

 

 

 

Figure 8 



 

 

 

 

 

0

10

20

30

40

50

60

0 50 100 150 200 250 300

-1 * Fluid temperature variation (°C)

K J
 (M

Pa
.m

0.
5 )

Elastic F.E. calculation
Elastic-plastic F.E. calculation
RSE-M method
Proposed method

a) homogenous vessel
a/h = 0.1

smooth linear thermal shock

-10

10

30

50

70

90

110

130

150

170

0 50 100 150 200 250 300

-1 * Fluid temperature variation (°C)

K J (
M

Pa
.m

0.
5 )

Elastic F.E. calculation
Elastic-plastic F.E. calculation
RSE-M method
Proposed method

b) homogenous vessel
a/h = 0.1

fast linear thermal shock

 

0

10

20

30

40

50

60

0 50 100 150 200 250 300

-1 * Fluid temperature variation (°C)

K J
 (M

Pa
.m

0.
5 )

Elastic F.E. calculation
Elastic-plastic F.E. calculation
RSE-M method
Proposed method

c) bi-material vessel
a/h = 0.1

smooth linear thermal shock

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

-1 * Fluid temperature variation ( °C)

K J
 (M

Pa
.m

0.
5 )

Elastic F.E. calculation
Elastic-plastic F.E. calculation
RSE-M method
Proposed method

d) bi-material vessel
a/h = 0.1

fast linear thermal shock

 
 

 

 

 

 

 

 

Figure 9 
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Figure 11 
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Figure 12 
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