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Abstract The global sensitivity analysis method, used to
quantify the influence of uncertain input variables on the
response variability of a numerical model, is applicable to
deterministic computer code (for which the same set of in-
put variables gives always the same output value). This pa-
per proposes a global sensitivity analysis methodology for
stochastic computer code (having a variability induced by
some uncontrollable variables). The framework of the joint
modeling of the mean and dispersion of heteroscedastic data
is used. To deal with the complexity of computer experi-
ment outputs, non parametric joint models (based on Gen-
eralized Additive Models and Gaussian processes) are dis-
cussed. The relevance of these new models is analyzed in
terms of the obtained variance-based sensitivity indices with
two case studies. Results show that the joint modeling ap-
proach leads accurate sensitivity index estimations even when
clear heteroscedasticity is present.
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1 Introduction

Many phenomena are modeled by mathematical equations
which are implemented and solved by complex computer
code. These computer models often take as inputs a high
number of numerical variables and physical variables, and
give several outputs (scalars or functions). For the devel-
opment of such computer models, its analysis, or its use,
the global Sensitivity Analysis (SA) method is an invalu-
able tool (Saltelli et al., 2000; Kleijnen, 1997; Helton et al.,
2006). It takes into account all the variation ranges of the in-
puts, and tries to apportion the output uncertainty to the un-
certainty in the input factors. These techniques, often based
on the probabilistic framework and Monte-Carlo methods,
require a lot of simulations. The uncertain input variables
are modeled by random variables and characterized by their
probabilistic density functions. The SA methods are used
for model calibration (Kennedy and O’Hagan, 2001), model
validation (Bayarii et al., 2007), decision making process
(De Rocquigny et al., 2008), i.e. all the processes where it is
useful to know which variables mostly contribute to output
variability .

The current SA methods are applicable to the determin-
istic computer code, i.e. for which the same set of input vari-
ables always gives the same output values. The randomness
is limited to the model inputs, whereas the model itself is
deterministic. For example in the nuclear engineering do-
main, global sensitivity analysis tools have been applied to
waste storage safety studies (Helton et al., 2006), and pollu-
tant transport modeling in the aquifer (Volkova et al., 2008).
In such industrial studies, numerical models are often too
time consuming for applying directly the global SA meth-
ods. To avoid this problem, one solution consists in replac-
ing the time consuming computer code by an approximate
mathematical model, called metamodel (Sacks et al., 1989;
Fang et al., 2006). This function must be as representative as
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possible of the computer code, with good prediction capabil-
ities and must require a negligible calculation time. Several
metamodels are classically used: polynomials, splines, neu-
ral networks, Gaussian processes (Chen et al., 2006; Fang
et al., 2006).

In this paper, we are not concerned by deterministic com-
puter models but by stochastic numerical models - i.e. when
the same input variables set leads to different output values.
The model itself relies on probabilistic methods (e.g. Monte-
Carlo) and is therefore intrinsically stochastic because of
some “uncontrollable variables”. For the uncertainty analy-
sis, Kleijnen (1997) has raised this question, giving an exam-
ple concerning a queueing model. In the nuclear engineer-
ing domain, examples are given by Monte-Carlo neutronic
models used to calculate elementary particles trajectories,
Lagrangian stochastic models for simulating a large num-
ber of particles inside turbulent media (in atmospheric or
hydraulic environment). In our study, “uncontrollable” vari-
ables correspond to variables that are known to exist, but
unobservable, inaccessible or non describable for some rea-
sons. It includes the important case in which observable vec-
tor variables are too complex to be described or synthesized
by a reasonable number of scalar parameters. This last situ-
ation might concern the code for which some simulations of
complex random processes are used. For example, one can
quote some partial differential equation resolutions in het-
erogeneous random media simulated by geostatistical tech-
niques (e.g. fluid flows in oil reservoirs, Zabalza et al., 1998,
and acoustical wave propagation in turbulent fluids, Iooss
et al., 2002), where the uncontrollable variable is the sim-
ulated spatial field involving several thousand scalar values
for each realization. Of course, in this case, behind this un-
controllable variable stands a fully controllable parameter:
the random seed. However, the effect of the random seed on
the computer code output is totally chaotic because a slight
modification of the random seed leads to a very different
random medium realization. For simplicity and for general-
ity, we use the expression “uncontrollable variable” in this
paper.

For stochastic computer models, classical metamodels
(devoted to approximate deterministic computer models) are
not pertinent anymore. To overcome this problem, the com-
monly used Gaussian process (Gp) model (Sacks et al., 1989;
Marrel et al., 2008) can include an additive error component
(called the “nugget effect”) by adding a constant term into
its covariance function. However, it supposes that the error
term is independent of the input variables (homoscedasticity
hypothesis), which means that the uncontrollable variable
does not interact with controllable variables. This hypoth-
esis limits the use of Gp to specific cases even if recently,
some authors (e.g. Kleijnen and van Beers, 2005) demon-
strated the usefulness of Gp for stochastic computer model
in heteroscedastic cases.

To construct heteroscedastic metamodels for stochastic
computer code, Zabalza et al. (1998) have proposed another
approach by modeling the mean and the dispersion (i.e. the
variance) of computer code outputs by two interlinked Gen-
eralized Linear Models (GLMs). This approach, called the
joint model, has been previously studied in the context of
experimental data modeling (Smyth, 1989; McCullagh and
Nelder, 1989).

Modeling the mean and variance of a response variable
in function of some controllable variables is of primary con-
cern in product development and quality engineering meth-
ods (Phadke, 1989): experimentation is used to determine
the factor levels so that the product is insensitive to po-
tential variations of environmental conditions. This can be
summarized, in the framework of the robust design, as the
optimization of a mean response function while minimiz-
ing a variance function. In this context, Vining and Myers
(1990) propose to build polynomial models for the mean
and the variance separately, while Lee and Nelder (2003)
consider the joint GLM approach. A recent and complete
review on this subject can be found in Bursztyn and Stein-
berg (2006). Dealing with computer experiments instead of
physical ones, Bates et al. (2006) propose different strate-
gies for designing and analyzing robust design experiments.
In this case, the noise factors are fully controllable. Thisal-
lows the authors to provide a powerful stochastic emulator
strategy.

Following the work of Zabalza et al. (1998), Iooss and
Ribatet (2006, 2009) have recently introduced the joint model
to perform a global sensitivity analysis of a stochastic com-
puter code. Results show that a total sensitivity index of all
the uncontrollable variables can be computed using the dis-
persion component of the joint model. However, the para-
metric form of the GLM framework provides some limita-
tions when modeling complex computer code outputs. To
bypass this hurdle, this paper suggests the use of non para-
metric models. Due to its similarity with GLMs, General-
ized Additive Models (GAM) are considered (Hastie and
Tibshirani, 1990; Wood and Augustin, 2002), even though
Gp or other non parametric models should also be a relevant
solution.

This paper starts by describing the joint model construc-
tion, firstly with the GLM, secondly with the GAM. We
will also show how other models, like Gp, can be used to
model the mean and dispersion components. The third sec-
tion describes the global sensitivity analysis for determinis-
tic models, and its extension to stochastic models using joint
models. Particular attention is devoted to the calculationof
variance-based sensitivity indices (the so-called Sobol in-
dices). Considering a simple analytic function, the perfor-
mance of the proposed approach is compared to other com-
monly used models. Next, an application on an actual indus-
trial case (groundwater radionuclide migration modeling)is
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given. Finally, some conclusions synthesize the contribu-
tions of this work.

2 Joint modeling of mean and dispersion

2.1 Using the Generalized Linear Models

The class of GLM allows to extend the class of the tradi-
tional linear models by the use of: (a) a distribution which
belongs to the exponential family; (b) and a link function
which connects the explanatory variables to the explained
variable (Nelder and Wedderburn, 1972). Let us describe the
first component of the model concerning the mean:
{

E(Yi) = µi , ηi = g(µi) = ∑ j xi j β j ,

Var(Yi) = φiv(µi) ,
(1)

where(Yi)i=1...n are independent random variables with mean
µi ; xi j are the observations of the variableXj ; β j are the re-
gression parameters which have to be estimated;ηi is the
mean linear predictor;g(·) is a differentiable monotonous
function (called the link function);φi is the dispersion pa-
rameter andv(·) is the variance function. To estimate the
mean component, the functionsg(·) andv(·) have to be spec-
ified. Some examples of link functions are given by the iden-
tity (traditional linear model), root square, logarithm, and
inverse functions. Some examples of variance functions are
given by the constant (traditional linear model), identityand
square functions.

Within the joint model framework, the dispersion pa-
rameterφi is not supposed to be constant as in a traditional
GLM, but is supposed to vary according to the model:
{

E(di) = φi , ζi = h(φi) = ∑ j ui j γ j ,

Var(di) = τvd(φi) ,
(2)

wheredi is a statistic representative of the dispersion,γ j are
the regression parameters which have to be estimated,h(·) is
the dispersion link function,ζi is the dispersion linear pre-
dictor, τ is a constant andvd(·) is the dispersion variance
function.ui j are the observations of the explanatory variable
U j . The variables(U j) are generally taken among the ex-
planatory variables of the mean(Xj), but might differ. To
ensure positivity,h(φ) = logφ is often taken for the disper-
sion link function while the statisticd representing the dis-
persion is generally taken to be the deviance contribution -
which is approximatelyχ2 distributed. Therefore, as theχ2

distribution is a particular case of the Gamma distribution,
vd(φ) = φ2 andτ ∼ 2.

The joint model is fitted using the Extended Quasi Log-
likelihood (EQL, Nelder and Pregibon, 1987) maximization.
The EQL behaves as a log-likelihood for both mean and dis-
persion parameters. This justifies an iterative procedure to

fit the joint model. First, a GLM is fitted on the mean; then
from the estimate ofd, another GLM is fitted on the disper-
sion. From the estimate ofφ , weights for the next estimate of
the GLM on the mean are obtained. This process can be re-
iterated as many times it is necessary, and allows to entirely
fit our joint model (McCullagh and Nelder, 1989).

Statistical tools available in the GLM fitting are also
available for each component of the joint model: deviance
analysis and Student test. It allows to make some variable se-
lection in order to simplify model expressions. The residuals
graphical analysis (which have to be normally distributed)
and the q-q plots can be used as indicators of the correct-
ness of the link function for the mean component (Lee and
Nelder, 2003). In practice, some evidence can lead to an ad-
equate choice of the link function (McCullagh and Nelder,
1989). For example, a binomial-type explained variable leads
to the use of the logit function. However, if a natural choice
is not possible and if the identity link function does not pro-
vide satisfactory residuals analysis, plotting the adjusted de-
pendent variable versus the linear predictor might help in
choosing a more appropriate link function (McCullagh and
Nelder, 1989).

In conclusion, all the results obtained on the joint GLM
are applicable to the problem of stochastic computer ex-
periments. The novelty proposed in our paper concerns the
global sensitivity analysis issue (section 3.2). Moreover, in
the following section we extend the joint GLM to the non
parametric framework. This kind of model is necessary for
the computer experiment outputs which tend to be rather
complex and need non parametric modeling.
Remark: A simpler approach consists in building polyno-
mial models for the mean and the variance separately (Vin-
ing and Myers, 1990; Bursztyn and Steinberg, 2006). This
approach, called dual modeling, consists in repeating cal-
culations with the same sets of controllable variables (which
is not necessary in the joint modeling approach). The dual
modeling approach has been successfully applied in many
situations, especially for robust conception problems. How-
ever for our purpose (accurate fitting of the mean and dis-
persion components), it has been shown that this dual model
is less competitive than the joint model (Zabalza et al., 1998;
Lee and Nelder, 2003): the dual modeling approach fits the
dispersion model given the mean model and this approach
does not always lead to optimal fits.

2.2 Extension to the Generalized Additive Models

Generalized Additive models (GAM) were introduced by
Hastie and Tibshirani (1990) and allow a linear term in the
linear predictorη = ∑ j β jXj of equation (1) to be replaced
by a sum of smooth functionsη = ∑ j sj (Xj). Thesj (.)’s are
unspecified functions that are obtained by fitting a smoother
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to the data, in an iterative procedure. GAMs provide a flexi-
ble method for identifying nonlinear covariate effects in ex-
ponential family models and other likelihood-based regres-
sion models. The fitting of GAM introduces an extra level
of iteration in which each spline is fitted in turn assuming
the others known. GAM terms can be mixed quite generally
with GLM terms in deriving a model.

One common choice forsj is the smoothing spline, i.e.
splines with knots at each distinct value of the variables. In
regression problems, smoothing splines have to be penalized
in order to avoid data overfitting. Wood and Augustin (2002)
have described in details how GAMs can be constructed us-
ing penalized regression splines. Because numerical models
often exhibit strong interactions between input variables, the
incorporation of multi-dimensional smooth (for example the
bi-dimensional spline termsi j (Xi ,Xj)) is particularly impor-
tant in our context.

GAMs are generally fitted using penalized likelihood
maximization. For this purpose, the likelihood is modified
by the addition of a penalty for each smooth function, penal-
izing its “wiggliness”. Namely, the penalized loglikelihood
is defined as:

pℓ = ℓ+
p

∑
j=1

λ j

∫

(

∂ 2sj

∂x2
j

)2

dxj (3)

whereℓ is the loglikelihood function,p is the total number
of smooth terms andλ j are “smoothing parameters” which
compromise between goodness of fit and smoothness.

Estimation of these “smoothing parameters” is gener-
ally achieved using the GCV score minimization. The GCV
score is defined as:

SGCV =
nd

(n−DoF)2 (4)

wheren is the number of data,d is the deviance andDoF
is the effective degrees of freedom, i.e. the trace of the so-
called “hat” matrix. Extension to (E)QL models is straight-
forward by substituting the likelihood function and the de-
vianced for their (extended) quasi counterparts. In practice,
all the smoothing parameters are jointly updated at each iter-
ation of the fitting procedure of the joint model. To this aim,
on every iteration a GLM/GAM is fitted for each trial set of
smoothing parameters, and GCV scores are only evaluated
at convergence.

We have seen that GAMs extend in a natural way GLMs.
Therefore, it would be interesting to extend the joint GLM
model to a joint GAM one. Such ideas have been proposed
in Rigby and Stasinopoulos (1996) where both the mean and
variance were modeled using semi-parametric additive mod-
els (Hastie and Tibshirani, 1990). This model is restrictedto
observations following a Gaussian distribution and is called
Mean and Dispersion Additive Model (MADAM). Our model
is more general and relaxes the Gaussian assumption as now

quasi-distributions are considered: while the MADAM fit-
ting procedure relies on the maximization of the penalized
likelihood, the joint GAM maximizes the penalized extended
quasi-likelihood. In addition, Rigby and Stasinopoulos (1996)
only used cubic regression splines, while our framework al-
lows also the use of multivariate smoothers - e.g. thin plate
regression splines. As our model is based on GAMs and
by analogy with the denomination “joint GLM”, we call it
“joint GAM” in the following.

Lastly, it has to be noticed that, within the EQL maxi-
mization framework, a large number of models can be con-
sidered instead of GAMs. For instance, one can use a GAM
for the mean response and a GLM for the dispersion com-
ponent. In addition, more complex models can also be con-
sidered such as Gaussian processes - see Section 2.3.

2.3 Joint modeling with other models

For some applications, joint GAM could be inadequate, and
other models can be proposed. For example, for Gaussian
observations, Juutilainen and Röning (2005) have used a
neural network model for mean and dispersion. It is shown
to be more efficient than joint GLM and joint additive mod-
els in a context of numerous explanatory variables (25) and
of a large amount of data (100000). They perform an exten-
sive comparison for large data sets between joint neural net-
work model, MADAM, joint local linear regression model
and joint linear regression model. While our context of com-
puter experiments is different (we have small data sets), itis
interesting to recall their conclusion:

– the neural network joint model gives the best prediction
performance;

– MADAM requires a huge amount of memory;
– joint local linear model is extremely time consuming;
– joint linear model is appropriate when simplicity is re-

quired.

It is also possible to build a heteroscedastic model based
on the Gaussian process (Gp) metamodel (also known as the
kriging principle, Sacks et al., 1989). The Gp approach es-
sentially is a kind of linear interpolation built on the property
of the multivariate normal distribution. Gp metamodel gives
not only a predictor (which is the best linear unbiased pre-
dictor) of a computer experiment but also a local indicator
of prediction accuracy. For heteroscedastic data, a first ap-
proach, proposed by Ginsbourger et al. (2008), consists in
modeling the mean of the computer code with a Gp meta-
model for which the nugget effect is supposed to vary with
the inputs. From this fitted Gp, one can use the estimation of
the MSE (given by the Gp model) as the dispersion statistic
d introduced in Equation (2). This model does not require
any fitting of the dispersion component and we prefer to fo-
cus our attention on another method, the joint Gp model,
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which is coherent with our previous joint models. Boukou-
valas and Cornford (2009) have recently introduced a such
joint Gp model for the same purpose.

The first step of our methodology models the mean by
a Gp metamodel (having a nugget effect) estimated on the
learning sample. The second step consists in adjusting a sec-
ond Gp metamodel on the squared residuals. This process
can be iterated as in the joint GLM and joint GAM fitting
procedure. Due to the presence of a nugget effect in the
mean component, the mean Gp is not anymore an exact in-
terpolator and the learning sample residuals can be used for
the dispersion model. However, residuals could also be de-
rived from a cross validation method.

3 Global sensitivity analysis

3.1 Deterministic models

The global SA methods are applicable to deterministic com-
puter code, e.g. for which the same set of input variables
always leads to the same response value. This is considered
by the following model:

f : R
p → R

X 7→Y = f (X)
(5)

where f (·) is the model function (possibly analytically un-
known),X = (X1, . . . ,Xp) arep independent inputs andY is
the output. In our problem,X is uncertain and considered as
a random vector with known distribution which reflects this
uncertainty. Therefore,Y is also a random variable, whose
distribution is unknown. In this section, let us recall some
basic ideas on the variance-based sensitivity indices, called
Sobol indices, applied on this model.

Among quantitative methods, variance-based methods
are the most often used (Saltelli et al., 2000). The main idea
of these methods is to evaluate how the variance of an input
or a group of inputs contributes into the variance of output.
We start from the following variance decomposition:

Var[Y] = Var[E(Y|Xi)]+E [Var(Y|Xi)] , (6)

which is known as the total variance theorem. The first term
of this equality, named variance of the conditional expecta-
tion, is a natural indicator of the importance ofXi into the
variance ofY: the greater the importance ofXi , the greater is
Var[E(Y|Xi)]. Most often, this term is divided by Var[Y] to
obtain a sensitivity index in[0,1].

To express the sensitivity indices, we use the unique de-
composition of any integrable function on[0,1]p into a sum
of elementary functions (see for example Sobol, 1993):

f (X1, · · · ,Xp) = f0 +
p

∑
i

fi(Xi)+
p

∑
i< j

fi j (Xi ,Xj)

+ . . .+ f12..p(X1, · · · ,Xp) ,

(7)

wheref0 is a constant and the other functions verify the fol-
lowing conditions:
∫ 1

0
fi1,...,is(xi1, . . . ,xis)dxik = 0 (8)

∀k = 1, . . . ,s , ∀{i1, . . . , is} ⊆ {1, . . . , p}. If the Xis are mu-
tually independent, the decomposition (7) is valid for any
distribution functions for theXis.

From (7), the following decomposition of the model out-
put variance is possible (Sobol, 1993):

Var[Y] =
p

∑
i

Vi(Y)+
p

∑
i< j

Vi j (Y)+
p

∑
i< j<k

Vi jk(Y)

+ . . .+V12..p(Y) ,

(9)

whereVi(Y)= Var[E(Y|Xi)],Vi j (Y)= Var[E(Y|XiXj)]−Vi(Y)−

Vj(Y), . . . One can thus define the sensitivity indices by:

Si =
Var[E(Y|Xi)]

Var(Y)
=

Vi(Y)

Var(Y)
,

Si j =
Vi j (Y)

Var(Y)
, Si jk =

Vi jk(Y)

Var(Y)
, . . .

(10)

These coefficients are called the Sobol indices, and can be
used for any complex model functionsf . The second order
index Si j expresses sensitivity of the model to the interac-
tion between the variablesXi andXj (without the first order
effects ofXi andXj ), and so on for higher orders effects. The
interpretation of these indices is natural as their sum is equal
to one (thanks to equation (9)): the larger and close to one
an index value, the greater is the importance of the variable
or the group of variables linked to this index.

For a model withp inputs, the number of Sobol indices
is 2p−1; leading to an intractable number of indices asp
increases. Thus, to express the overall sensitivity of the out-
put to an inputXi , Homma and Saltelli (1996) introduce the
total sensitivity index:

STi = Si + ∑
j 6=i

Si j + ∑
j 6=i,k6=i, j<k

Si jk + . . . = ∑
l ∈#i

Sl , (11)

where #i represents all the “non-ordered” subsets of indices
containing indexi. Thus,∑l ∈#i Sl is the sum of all the sensi-
tivity indices containingi in their index. For example, for a
model with three input variables,ST1 = S1+S12+S13+S123.

The estimation of these indices can be done by Monte-
Carlo simulations or by alternative methods (Saltelli et al.,
2000). Recent algorithms have also been introduced to re-
duce the number of required model evaluations significantly.
As explained in the introduction, a powerful method con-
sists in replacing complex computer models by metamodels
which have negligible calculation time (e.g. Volkova et al.,
2008). Estimation of Sobol indices by Monte-Carlo tech-
niques with their confidence intervals (requiring thousandof
simulations) can then be done using these response surfaces.
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3.2 Stochastic models

In this work, models containing some intrinsic alea, which is
described as an uncontrollable random input variableε, are
called “stochastic computer models”. Let us recall the exam-
ple proposed in the introduction whereε is a random field
whose each realization is governed by a random seed value.
We consider the random fieldε as an uncontrollable vari-
able when this random field is too complex to be described
or synthesized by a reasonable number of scalar parameters.

In the following, the expectation and variance operators
involve averaging over the distribution of(X,ε), unless an-
other distribution is indicated. Similarly from equation (5),
consider the following (stochastic) model:

g : R
p → R

X 7→Y = f (X)+ ν(ε,X : ε)
(12)

whereX are thep controllable input variables (independent
random variables),Y is the output,f (·) is the deterministic
part of the model function andν(·) is the stochastic part of
the model function. LetEε (ν) = 0 which means thatν(·) is
centered relatively toε: we put insidef (·) a possible con-
stant term involved byν(·). The notationν(ε,X : ε) means
that ν depends only onε and on the interactions between
ε andX. The additive form of equation (12) is deduced di-
rectly from the decomposition of the functiong into a sum
of elementary functions depending on(X,ε) (like the de-
composition in Eq. (7)).

For a stochastic model (12), the joint models introduced
in section 2 enables us to recover two GLMs, two GAMs or
two Gps:

Ym(X) = E(Y|X) = Eε (Y|X) (13)

by the mean component (Eq. (1)), and

Yd(X) = Var(Y|X) = Varε (Y|X) (14)

by the dispersion component (Eq. (2)). If there is no uncon-
trollable variableε, it leads to a deterministic model case
with Yd(X) = Var(Y|X) = 0. By using the total variance the-
orem (Eq. (6)), the variance of the output variableY can be
decomposed by:

Var(Y) = VarX [E(Y|X)]+EX [Var(Y|X)]

= VarX [Ym(X)]+EX [Yd(X)] .
(15)

According to model (12),Ym(X) is the deterministic model
part, andYd(X) is the variance of the stochastic model part:

Ym(X) = f (X) ,

Yd(X) = Varε [ν(ε,X : ε)|X] .
(16)

The variances ofY andYm(X) are now decomposed ac-
cording to the contributions of their input variablesX. ForY,
the same decomposition than for deterministic models holds

(Eq. (9)). However, it includes the additional termEX [Yd(X)]

(the mean of the dispersion component) deduced from equa-
tion (15). Consequently,

Var(Y) =
p

∑
i

Vi(Y)+
p

∑
i< j

Vi j (Y)+
p

∑
i< j<k

Vi jk(Y)

+ . . .+V12..p(Y)+EX [Yd(X)] ,

(17)

whereVi(Y)= VarXi [E(Y|Xi)],Vi j (Y)= Var(Xi ,Xj )[E(Y|XiXj)]−

Vi(Y)−Vj(Y), . . . For the mean componentYm(X) that we
noteYm for easing the notation, we have

Var(Ym) =
p

∑
i

Vi(Ym)+
p

∑
i< j

Vi j (Ym)+
p

∑
i< j<k

Vi jk(Ym)

+ . . .+V12..p(Ym) .

(18)

By noticing that

Vi(Ym) = VarXi [EX(Ym|Xi)] = VarXi{EX [Eε(Y|X)|Xi ]}

= VarXi [EX,ε (Y|Xi)] = Vi(Y) ,

(19)

and from equation (10), the sensitivity indices for the vari-
ableY according to the controllable variablesX = (Xi)i=1...p

can be computed using:

Si =
Vi(Ym)

Var(Y)
, Si j =

Vi j (Ym)

Var(Y)
, . . . (20)

These Sobol indices can be computed by classical Monte-
Carlo techniques, the same ones used in the deterministic
model case. These algorithms are applied on the metamodel
defined by the mean componentYm of the joint model.

Thus, all terms contained in VarX [Ym(X)] of the equation
(15) have been considered. It remains to estimateEX [Yd(X)]
by a simple numerical integration ofYd(X) following the
distribution ofX. Yd(X) is evaluated with a metamodel, for
example the dispersion component of the joint model.EX [Ym(X)]

includes all the decomposition terms of Var(Y) (according to
X andε) not taken into account in VarX [Ym(X)] i.e. all terms
involving ε. Therefore, the total sensitivity index ofε is

STε =
EX [Ym(X)]

Var(Y)
. (21)

As Yd(X) is a positive random variable, positivity ofSTε is
guaranteed. In practice, Var(Y) can be estimated from the
data or from simulations of the fitted joint model:

Var(Y) = VarX [Ym(X)]+EX [Ym(X)] . (22)

If Var(Y) is computed from the data, it seems preferable to
estimateEX [Ym(X)] with Var(Y)− VarX [Ym(X)] to satisfy
equation (15). In our applications, the total variance willbe
estimated using the fitted joint model (Eq. (22)).
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Finally, let us note that we cannot quantitatively distin-
guish the various contributions inSTε (Sε , Siε , Si j ε , . . . ). In-
deed, it is not possible to combine the functional anova de-
composition ofYm(X) with the functional anova decomposi-
tion ofYd(X) in order to deduce the unknown sensitivity in-
dices. Finding a way to form some composite indices still re-
mains an open problem which needs further research. How-
ever, we argue that the analysis of the terms in the regression
modelYd and theirt-values give useful qualitative informa-
tion. For example, if an input variableXi is not present inYd,
we can deduce the following correct information:Siε = 0.
Moreover, if thet-values analysis and the deviance analysis
show that an input variableXi has a smaller influence than
another input variableXj , we can suppose that the interac-
tion betweenXi andε is less influential than the interaction
betweenXj andε.

In conclusion, this new approach, based on joint models
to compute Sobol sensitivity indices, is useful if the follow-
ing conditions hold:

– if the computer model contains some uncontrollable vari-
ables (the model is no more deterministic but stochastic);

– if a metamodel is needed due to large CPU times of the
computer model;

– if some of the uncontrollable variables interact with some
controllable input ones;

– if some information about the influence of the interac-
tions between the uncontrollable variables and the other
input variables is of interest.

4 Applications

4.1 An analytic test case: the Ishigami function

The proposed method is first illustrated on an artificial an-
alytical model with 3 input variables, called the Ishigami
function (Homma and Saltelli, 1996; Saltelli et al., 2000):

Y = f (X1,X2,X3) = sin(X1)+7sin(X2)
2 +0.1X4

3 sin(X1)

(23)

whereXi ∼U [−π ;π ] for i = 1,2,3. For this function, all the
Sobol sensitivity indices (S1, S2, S3, S12, S13, S23, S123, ST1,
ST2, ST3) are known. This function is used in most intercom-
parison studies of global sensitivity analysis algorithms. In
our study, the classical problem is altered by consideringX1

andX2 as the controllable input random variables, andX3 as
an uncontrollable input random variable. It means that the
X3 random values are not used in the modeling procedure;
this variable is considered to be inaccessible. However, sen-
sitivity indices have the same theoretical values as in the
standard case.

For this analytical function case, it is easy to obtain the
exact mean and dispersion models by deriving (via analyti-
cal integration) the analytical expressions of the mean com-
ponentYm(X1,X2) and dispersion componentYd(X1,X2):

Ym(X1,X2) = E(Y|X1,X2)

=

(

1+
π4

50

)

sin(X1)+7[sin(X2)]
2 ,

Yd(X1,X2) = Var(Y|X1,X2)

= π8
(

1
900

−
1

2500

)

[sin(X1)]
2 = Yd(X1) .

(24)

4.1.1 Metamodeling

For the model fitting, 1000 Monte Carlo samples of(X1,X2,X3)

were simulated leading to 1000 observations forY. No repli-
cation is made in the(X1,X2) plane because it has been
shown that repeating calculations with the same sets of con-
trollable variables is inefficient in the joint modeling ap-
proach (Zabalza et al., 1998; Lee and Nelder, 2003). There-
fore, we argue that it is better to keep all the possible experi-
ments to optimally cover the input variable space (which can
be highly dimensional in real problems). In practice, quasi-
Monte Carlo sequences will be preferred to pure Monte Carlo
samples (Fang et al., 2006).

In this section, the GLM, GAM and Gp model (with
their relative joint extensions) are compared (see Table 1).
To compare the predictivity of different metamodels, we use
the predictivity coefficientQ2, which is the determination
coefficientR2 computed from a test sample (composed here
by 10000 randomly chosen points). For each joint model,Q2

is computed on the mean component.
The simple GLM is a fourth order polynomial. Only the

explanatory terms are selected in our regression model us-
ing analysis of deviance and the Fisher statistics. The Stu-
dent test on the regression coefficients and residuals graphi-
cal analysis make it possible to judge the goodness of fit. We
see that it remains 39% of non explained deviance due to the
model inadequacy and/or to the uncontrollable variable. The
mean component of the joint GLM gives the same model as
the simple GLM. For the dispersion component, using anal-
ysis of deviance techniques, no significant explanatory vari-
able was found. Thus, the dispersion component is supposed
to be constant; and the joint GLM is equivalent to the simple
GLM approach - but with a different fitting process.

Studying now the non parametric modeling, we start by
the simple GAM fitting where we have kept some parametric
terms by applying a term selection procedure. The predictiv-
ity coefficient of the mean component of the joint GAM is
slightly better than the predictivity coefficient of the simple
GAM. However, the explained deviance given by the joint
GAM mean component is clearly larger than the one given
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Table 1 Results for the fitting of different metamodels for the Ishigami function.Dexpl (the explained deviance of the model) andQ2 (the
predictivity coefficient of the model) are expressed in percent. For the joint models,Dexpl andQ2 are those of the mean componentYm. In the

formulas for GAM,s1(·), s2(·) andsd1(·) are three spline terms.

Dexpl Q2 Formula

Simple GLM 61.3 60.8 Y = 1.92+2.69X1 +2.17X2
2 −0.29X3

1 −0.29X4
2

Joint GLM 61.3 60.8 Ym = 1.92+2.69X1 +2.17X2
2 −0.29X3

1 −0.29X4
2

log(Yd) = 1.73

Simple GAM 76.8 75.1 Y = 3.76−2.67X1 +s1(X1)+s2(X2)
Joint GAM 92.8 75.5 Ym = 3.75−3.06X1 +s1(X1)+s2(X2)

log(Yd) = 0.59+sd1(X1)

Simple Gp — 75.0 —
Joint Gp — 75.0 —

by the simple GAM approach. Even if this could be related
to an increasing number of parameters, as the number of
parameters remains very small compared to the data size
(1000), it is certainly explained by the fact that GAMs are
more flexible than GLMs. This demonstrates the efficiency
of the joint modeling of the mean and dispersion when het-
eroscedasticity is involved. Indeed, the joint procedure leads
to appropriate prior weights for the mean component. The
joint GAM improves both the joint GLM and simple GAM
approaches:
(a) due to the GAMs flexibility, the explanatory variableX1

is identified to model the dispersion component (the interac-
tion betweenX1 and the uncontrollable variableX3 is there-
fore retrieved);
(b) the joint GAM explained deviance (93%) for the mean
component is clearly larger than the simple GAM and joint
GLM ones (joint GLM: 61%, simple GAM: 77%).

For the Gp metamodel fitting, we use the methodology
of Marrel et al. (2008) which include in the model a lin-
ear regression part and a Gp defined by a generalized ex-
ponential covariance. We obtain for the simple Gp the pre-
dictivity coefficientQ2 = 75.0%, which is extremely close
to the one of the simple GAM (Q2 = 75.1%). The vari-
ance of the nugget effect (additional error with constant vari-
ance) introduced in the Gp model is estimated to 25.9%
of the total variance, which is close to the expected value
(1−Q2 = 25.0%). We can also fit, at present, a Gp model on
the squared residuals to obtain a joint Gp model (cf. section
2.3). In order to understand which inputs act in the disper-
sion component, we compute the Sobol sensitivity indices of
the dispersion component using a Monte Carlo algorithm:
SYd(X1) = 0.996 andSYd(X2) = 0.001. These results draw
the same conclusion than those obtained from the disper-
sion component equation of the joint GAM:X2 is not an
explanatory factor for the dispersion. This also leads to the
right conclusion that onlyX1 interacts with the uncontrol-
lable variableX3 in the Ishigami function (23).

Let us now perform some graphical analyses in order to
compare the results for the three joint models Joint GLM,
joint GAM and Joint Gp. Figure 1 shows the observed re-

sponse against the predicted values for the three models.
First, the advantage of the GAM and Gp approaches are
visible in the Figure 1 as the dispersion around they = x
line is clearly reduced compared to the joint GLM disper-
sion. Graphical comparisons between Joint GAM and Joint
Gp results do not provide any advantage for one particular
model: similar biases are shown. Second, using the GAM
model, Figure 2 compares the obtained residuals of a non
parametric simple model (homoscedastic) with the obtained
residuals of a non parametric joint model (heteroscedastic).
The deviance residuals for the mean component of the joint
GAM seem to be more homogeneously dispersed around the
x-axis; leading to a better prediction on the whole range of
the observations. Thus, the joint approach is more compet-
itive than the simple one. From this simple graphical anal-
yses, we conclude that a non parametric joint model (GAM
or Gp) has to be preferred to other models (simple and/or
parametric).

In order to make a finer comparison between GLM, GAM
and Gp models, we examine how well they predict the mean
Ym(X1,X2) at inputs for which we have no data. We can also
compare the different dispersion modelsYd(X1). The exact
analytical expressions ofYm andYd are given in Eq. (24).
Let us remark that we visualizeYd versusX1 only because,
for GLM and GAM dispersion models, there is no depen-
dence inX2 and, for the Gp dispersion model, there is an
extremely smallX2-dependence (we then takeX2 = 0). Fig-
ure 3 plots the theoreticalYm andYd surfaces (left panels)
and their estimates derived from the fitted joint GLM, joint
GAM and Joint Gp models. As shown before, the joint GLM
is irrelevant for the mean component and for the dispersion
component. The joint GAM fully reproduces the mean com-
ponent, while joint Gp gives a rather good approximation,
but with small noise. Indeed, spline terms of GAM are per-
fect smoothers while Gp predictor is impacted by residual
noise on the observations: the nugget effect does not allow
to suppress all the noise induced by the uncontrollable vari-
able. For the dispersion component, joint GP and joint GAM
give result of the same quality: these models correctly re-
produce the overall behaviour but with small inadequacies,
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Fig. 1 Observed response variable versus the predicted values forthe three joint models: Joint GLM, Joint GAM and joint Gp (Ishigami applica-
tion).
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Fig. 2 Deviance residuals for the simple and joint GAMs versus the fitted values (Ishigami application). Dashed lines correspond to local polyno-
mial smoothers.

probably caused by overfitting problems. For the two dis-
persion models, fitted observations have been taken from the
residuals of the mean component learning sample. It would
be convenient, in a future work, to test another solution by
taking predicted residuals, for example by applying a cross
validation procedure.

We conclude that the joint GAM and joint Gp both ade-
quately model the stochastic analytical model (the Ishigami
function (23)). We let some fine comparisons between joint
GAM and joint Gp for another study including a relevant an-
alytical application. For example, an analytical model with
strong and high order interactions will probably show the
superiority of the Gp joint model (because spline high or-

der interaction terms are difficult to include inside a GAM).
Therefore, in the industrial application of section 4.2, we
only use the models based on GLM and GAM, while Gp
could also be applied.

4.1.2 Sobol indices

Table 2 depicts the Sobol sensitivity indices for the joint
GLM, the joint GAM and joint Gp using equations (20)
and (21). The standard deviation estimates (sd) are obtained
from 100 repetitions of the Monte-Carlo estimation proce-
dure (which uses 104 model computations for one index es-
timation). When this Monte-Carlo procedure is used to es-
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Fig. 3 Mean component (up) and dispersion component (down) for theexact analytical model, Joint GLM, Joint GAM and Joint Gp (Ishigami
application).

timate the Sobol index, we report “MC” in the “Method”
column; while “Eq” (resp. “SYd”) indicates that the sensi-
tivity indices have been deduced from the joint model re-
gressive equations (resp. from the sensitivity analysis ofthe
dispersionYd). Therefore, no estimation errors (sd) are as-
sociated to these indices (except for total indicesSTi which
can be deduced fromSi). When no quantitative deduction on
the sensitivity index can be made with this process, we have
put a variation interval which borders the true value. These
variation intervals are deduced from the elementary relations
between sensitivity indices (e.g.S1 ≤ ST1, S13 ≤ ST3, etc).

The joint GLM gives only a good estimation ofS1, while
S2 and ST3 are badly estimated (errors greater than 30%).
S12 is correctly estimated to zero by looking directly at the
joint GLM mean component formula (see Table 1). How-
ever, some conclusions drawn from the GLM dispersion com-
ponent formula (which is a constant) are wrong. As no ex-
planatory variable is involved in this formula, the deduced
interaction indices are equal to zero:S13 = S23 = S123 = 0.
Thus,S3 = ST3 = 0.366 while the correct values ofS3 and
ST3 are respectively zero and 0.243.

Contrary to the joint GLM, the joint GAM and joint Gp
give good approximations of all the Sobol indices. Their
largest errors concernST3 for the joint GAM (7%-error) and
joint Gp (16%-error). Moreover, the deductions drawn from

the model formulas (see Table 1) are correct (ST2 = S2, S12 =

S23 = S123 = 0). The only drawback of this joint model-
based method is that some indices remain unknown due to
the non separability of the dispersion component effects.
However, it can be deduced thatS13 is non null due to the
explicative effect ofX1 in the dispersion component. The
deduced interval variations provide also useful information
concerning the potential influence of the interactions.

Table 3 gives the Sobol indices computed by the same
Monte-Carlo procedure using two classical metamodels as
the simple GAM and the simple Gp. To estimate the first
order Sobol indicesSi = Vi(Ym)/Var(Y) (for i = 1,2), the
metamodel is used to computeVi(Ym) and the observed data
(the 1000 observations ofY) to compute Var(Y). To estimate
the total sensitivity indexST3 of the uncontrollable variable,
the metamodel predictivity coefficientQ2 is used. In fact,
by supposing that the metamodels fit correctly the computer
code, one deduces that all the unexplained part of these meta-
models is due to the uncontrollable variable:ST3 = 1−Q2.
This is a strong hypothesis, which is verified here due to the
simplicity of the analytical function. However, it will not
be satisfied for all application cases: in practical and com-
plex situations, theQ2 estimation (usually done by a cross-
validation method) can be difficult and subject to caution.
For the Ishigami function,S1, S2, ST3 are correctly estimated.
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Table 2 Sobol sensitivity indices (with standard deviations) for the Ishigami function: exact and estimated values from jointGLM and joint
GAM. “Method” indicates the estimation method: MC for the Monte-Carlo procedure, Eq for a deduction from the model equations andSYd for a
deduction from the sensitivity analysis ofYd(X).

Indices
Exact Joint GLM Joint GAM Joint Gp
Values Values sd Method Values sd Method Values sd Method

S1 0.314 0.314 4e-3 MC 0.325 5e-3 MC 0.292 7e-3 MC
S2 0.442 0.318 5e-3 MC 0.414 5e-3 MC 0.417 7e-3 MC
ST3 0.244 0.366 2e-3 MC 0.261 2e-3 MC 0.205 1e-3 MC
S12 0 0 — Eq 0 — Eq 0.004 7e-3 MC
S13 0.244 0 — Eq ]0,0.261] — Eq ]0,0.205] — SYd
S23 0 0 — Eq 0 — Eq 0 — SYd
S123 0 0 — Eq 0 — Eq 0 — SYd
ST1 0.557 0.314 4e-3 Eq ]0.325,0.586] — Eq ]0.292,0.497] — SYd
ST2 0.443 0.318 5e-3 Eq 0.414 5e-3 Eq 0.417 7e-3 SYd
S3 0 0.366 2e-3 Eq [0,0.261] — Eq [0,0.205] — SYd

S12 can be deduced from the formula for the simple GAM
(see Table 1) and estimated by Monte-Carlo method for the
Gp model. However, any other sensitivity indices can be pro-
posed as no dispersion modeling is involved.
Remark: Estimating the nugget effect variance of the Gp
model mean component gives another estimation of the to-
tal sensitivity index of the uncotrollable variable. In this ex-
ample, the variance of the nugget effect has been estimated
to 25.9% of the total variance, which is close to the exact
value (24.4%). However, this estimation can be difficult in
more complex situations, because of a difficult optimization
step while fitting the Gp model (Fang et al., 2006; Marrel
et al., 2008).

In conclusion, this example shows that the joint non para-
metric models can adjust complex heteroscedastic situations
for which classical metamodels are inadequate. Moreover,
the joint models offer a theoretical basis to compute effi-
ciently global sensitivity indices of stochastic models.

4.1.3 Convergence study

In order to provide some practical guidance for the sam-
pling size issue, we perform a convergence study for the es-
timation of the joint GAM and the associated sensitivity in-
dices. Figure 4 shows some convergence results for a learn-
ing sample sizen varying between 30 to 200 by step of 5.
The learning points are sampled by the simple Monte Carlo
technique. The predictivity coefficientQ2 is obtained from
a test sample (composed of 1000 randomly chosen points).
The total sensitivity index of the uncontrollable variableST3

is obtained by averaging the dispersion componentYd (with
1e6 randomly chosen points). We can notice the rapid con-
vergence of the predictivity coefficientQ2 and the slower
convergence ofE(Yd). The convergence speed forS1 andS2

computed from the mean component are not shown here but
are similar to the one ofQ2.

From this particular case (low-dimensional but rather
complex numerical model due to non linearities and strong
interaction), we conclude that a 100-size sample is sufficient
for fitting the joint GAM and for obtaining precise sensitiv-

ity indices. Moreover, for the estimation of the total sensi-
tivity index of the uncontrollable variable, using the predic-
tivity coefficient of the mean component is highly recom-
mended (instead of using the dispersion component). With
additional experiments, Iooss and Ribatet (2009) have con-
firmed this result.

In practice, the way to ensure that the convergence has
been reached would be to visualizeQ2 and its confidence in-
terval (by a bootstrap technique for example) by resampling
in the learning sample and progressively increasing its size.

4.2 Application to an hydrogeologic transport code

The joint approach is now applied to a complex industrial
model of radioactive pollutants transport in saturated porous
media using the MARTHE computer code (developed by
BRGM, France). In the context of an environmental impact
study, MARTHE has been applied to a model of strontium
90 (90Sr) transport in saturated media for a radwaste tempo-
rary storage in Russia (Volkova et al., 2008). Only a partial
characterization of the site has been made and, consequently,
values of the model input variables are not known precisely:
20 scalar input variables have been considered as random
variables, each of them associated to a specified probabil-
ity density function. The model output variables of interest
concern the90Sr concentration values in different spatial lo-
cations. One of the main goals of this study is to identify the
most influential variables of the computer code in order to
improve the characterization of the site in a judicious way.
Because of large computing times of the MARTHE code,
the Sobol sensitivity indices are computed using metamod-
els (boosting regression trees model for Volkova et al., 2008
and Gaussian process model for Marrel et al., 2008).

As a perspective of the Volkova et al. (2008) work, Iooss
(2008) studies more precisely the influence of the spatial
form of an hydrogeologic layer. The method consists in per-
forming a geostatistical simulation of this layer (which isa
two-dimensional spatial random field), before each calcula-
tion of the computer model. This geostatistical simulation
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Table 3 Sobol sensitivity indices (with standard deviations) for the Ishigami function: exact and estimated values from simple GAM and simple
Gp model. “Method” indicates the estimation method: MC for the Monte-Carlo procedure, Eq for a deduction from the model equations andQ2
for the deduction of the predictivity coefficientQ2.

Indices
Exact Simple GAM Simple Gp
Values Values sd Method Values sd Method

S1 0.314 0.333 6e-3 MC 0.292 7e-3 MC
S2 0.442 0.441 6e-3 MC 0.417 7e-3 MC
ST3 0.244 0.249 — Q2 0.250 — Q2

S12 0 0 — Eq 0.004 7e-3 MC

50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size

Q
2

50 100 150 200

0.
0

0.
2

0.
4

0.
6

Sample size

S
T

3

Fig. 4 For the Ishigami function, mean and 90%-confidence interval(based on 100 replicates) of joint GAMQ2 andST3 in function of the learning
sample sizen.

is rather complex and the resulting spatial field cannot be
summarized by a few scalar values. Therefore, as explained
in our introduction, this hydrogeologic layer form has to
be considered as an uncontrollable variable of the computer
model. Additionally to the uncontrollable variable, 16 scalar
input variables remain uncertain and are treated as random
variables. It concerns the permeability of different geologi-
cal layers, the longitudinal and transversal dispersivitycoef-
ficients, the sorption coefficients, the porosity and meteoric
water infiltration intensities.

In order to keep coherence with Volkova et al. (2008)
previous study, the learning sample size has been chosen to
be the same:N = 300. This size is in adequation with the
heuristic recommandation of 10 observations per input di-
mension (Loeppky et al., 2008; Marrel et al., 2008), used
in most of the practical studies on deterministic computer
codes. The Latin Hypercube Sampling method is used to
obtained a sample ofN random vectors (each one of di-
mension 16). In addition,N independent realizations of the
spatial random field (noticed byε) are obtained by a spe-
cific geostatistical simulation algorithm (Iooss, 2008). Per-
forming independent realizations for each of the simulator
run has been imposed by the small number of available runs
(300) relatively to the high-dimensional model (20). More-
over, one of our primary concern was also to perform an

uncertainty propagation study, in which replicates have to
be avoided. In any case, more interesting designs should be
chosen, making replicates for example by changing the con-
trollable input factors while keeping fixed the geostatistical
realization. However, such ideas are well beyond the scope
of the current paper (see Anderson-Cook et al., 2009, for a
recent review about the design issue).

After 8 calculation days, we obtain 300 observations of
the output variable of the MARTHE model (90Sr concentra-
tion at the domain center). As two computer runs have given
incoherent values, we keep 298 observations. For the GLMs
and GAMs construction phase, the large data dispersion sug-
gests the use of logarithmic link functions forg andh (see
Eqs (1) and (2)). Due to the large number of inputs, a manual
term selection process has been applied. No interaction term
has been found to be explicative in the GLMs. However, a
bi-dimensional spline term has been added in the GAMs be-
cause of convincing deviance contribution and negligible p-
value. To find this significant interaction term, we have not
introduced in the model all the 120 interaction terms. We
have sequentially tested all the interaction terms involving
one significant first order term (kd1, kd2, per2 and per3)
and each other factor. Then, we keep the interaction terms
which show some explanatory contribution to the model.
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The results are summarized below by giving the explained
deviance and the explanatory terms involved in the formu-
las:

– Simple GLM: Dexpl = 60% with the termskd1, kd2,
per1, per2.

– Joint GLM:Dexpl(mean) = 66.4%, with the same terms
than the simple GLM,Dexpl(dispersion) = 8.7% with
the termskd1 andper3.

– Simple GAM:Dexpl= 81.8% withs(kd1), s(kd2), s(per3),
s(per2,kd2).

– Joint GAM: Dexpl(mean) = 98.1% with the same terms
than the simple GAM,Dexpl(dispersion) = 29.7% with
kd1, kd2.

kd1, kd2 andper1, per2, per3 are respectively the sorption
coefficients and the permeabilities of the different hydrogeo-
logic layers. One observes that the GAM models outperform
the GLM ones. The predictivity coefficient (computed by
the leave-one-out method) of the simple GAM givesQ2 =

76.4%, while for the simple GLMQ2 = 58.8%.
Figure 5 shows the deviance residuals against the fitted

values for the joint GLM, simple GAM and joint GAM mod-
els. For the joint GLM approach, some outliers are not visi-
ble to keep the figure readable. As a consequence, the GAMs
clearly lead to smaller residuals. Moreover, the joint GAM
outperforms the simple GAM due to the right explanation of
the dispersion component. It can be seen that the joint GAM
allows to suppress the bias involved by the heteroscedastic-
ity, while simple GAM residuals are affected by this bias.

Figure 6 shows the proportion∆ of observations that
lie within theα% theoretical confidence interval against the
confidence intervalα. By definition, if a model is suited for
both mean and dispersion modelings, the points should be
located around they = x line. As a consequence, this plot is
useful to compare the goodness of fit for the different mod-
els. It can be seen that the joint GAM is clearly the most
accurate model. Indeed, all its points are close to the theo-
reticaly = x line, while the joint GLM (resp. simple GAM)
systematically leads to underestimations (resp. overestima-
tions). Consequently, from the Figures 5–6, one deduces that
the joint GAM model is the most competitive one. On one
hand, the mean component is modeled accurately without
any bias. On the other hand, the dispersion component is
competitively modeled leading to reliable confidence inter-
vals.

Table 4 gives the main Sobol sensitivity indices for the
joint GLM, joint GAM and simple GAM (using 104 model
computations for one index estimation). The Sobol indices
of the interactions between controllable variables are not
given (except betweenkd2 and per2) because these inter-
actions are not included in the formulas of the two joint
models. Therefore, their Sobol indices are zero. The two
joint models give similar results for all first order sensitiv-
ity indices. The sorption coefficient of the second layerkd2

explained more than 52% of the output variance, while the
permeability of the second layerper2 explained more than
5%. Some large differences arise in the total influence of
the uncontrollable variableε: 38.2% for the joint GLM and
27.7% for the joint GAM. Moreover, the joint GLM shows
an influence of the interaction betweenper3 andε, while the
joint GAM shows an influence of the interaction between
kd2 andε. In this application, we consider the joint GAM
results more reliable than the joint GLM ones because the
joint GAM captures more efficiently the mean and disper-
sion components of the data than the joint GLM.

By comparing the joint GAM results with the simple
GAM results, some significant differences can be printed
out:

– Thekd1 first order sensitivity index is overestimated us-
ing the simple GAM (14.0% instead of 3.7% for the joint
GAM). Indeed, the deviance analysis of the joint GAM
dispersion component shows a high contribution ofkd1,
which means that the interaction betweenkd1 and the
uncontrollable variable is probably large. For a standard
metamodel, like the simple GAM, this interaction is not
found out and leads to a wrong estimation of the first
order sensitivity index ofkd1.

– For the simple metamodels, using the relationST(ε) =

1−Q2, the total sensitivity index of the uncontrollable
variable is underestimated: 23.5% (simple GAM) instead
of 27.7% (joint GAM). The classical metamodels tend to
explain some parts of the data which can be adequately
included in the dispersion component of the joint GAM
during the iterative fitting algorithm.

– Contrary to the other metamodels, the joint GAM allows
to prove that onlykd1 andkd2 interact with the uncon-
trollable variable.

As a conclusion, these sensitivity analysis results will be
very useful to the physicist or the modeling engineer during
the model construction and calibration steps. In this specific
application, the sensitivity analysis shows that the geometry
of the second hydrogeological layer has a strong influence
(up to 28%) on the predicted90Sr concentration. Therefore,
an accurate modeling of this geometry, coupled with a bet-
ter knowledge of the most influential variablekd2, are the
key steps to an important reduction of the model prediction
uncertainties.

5 Conclusion

This paper has proposed a solution to compute variance-
based sensitivity indices of stochastic computer model out-
puts. It consists in modeling the mean and the dispersion of
the code outputs by two explanatory models. The classical
way is to separately build these models. In this paper, the use
of the joint modeling is preferred. This theory, proposed by
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Fig. 5 Deviance residuals (mean component) for the Simple GAM, Joint GAM and Joint GLM versus the fitted values (MARTHE application).
Dashed lines correspond to local polynomial smoothers.
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Fig. 6 Proportion∆ (in percent) of observation that lie within theα% theoretical confidence interval in function of the confidence levelα .
MARTHE application.

Pregibon (1984) and Smyth (1989), then extensively devel-
oped by Nelder (1998), is a powerful tool to fit the mean
and dispersion components simultaneously. Zabalza et al.
(1998) already applied this approach to model stochastic
computer code. However, the behavior of some numerical
models can be highly complex and non linear. In the present
paper, some examples show the limit of this parametric joint
model. Being inspired by Rigby and Stasinopoulos (1996)
who use non parametric joint additive models (restricted to
Gaussian cases), we have developed a more general joint
model using GAMs and quasi distributions. Like GLMs,
GAMs are a suited framework because it allows variable
and model selectionsvia quasi-likelihood function, classical
statistical tests on coefficients and graphical displays. Ad-
ditional works using joint GLMs and joint GAMs for com-
puter experiments can be found in Iooss and Ribatet (2009).

The joint GAM has proven its flexibility to fit complex
data: we have obtained the same performance for its mean
and dispersion components as the powerful Gp model. Deal-

ing with computer codes involving many factors and strong
interactions between model factors, it would be convenient
to look more precisely at other joint models, as the joint Gp
model we have shortly described and used. An analytic case
on the Ishigami function shows that these two non paramet-
ric joint models (GAM and Gp) are adapted to complex het-
eroscedastic situations where classical metamodels are in-
adequate. Moreover, it offers a theoretical basis to compute
Sobol sensitivity indices in an efficient way. The analytical
formulas available with the joint GAM are very useful to
complete the sensitivity analysis results and to improve our
model understanding and knowledge.

The performance of the joint model approach was as-
sessed on an industrial application. Compared to other meth-
ods, the modeling of the dispersion component allows to ob-
tain a robust estimation of the total sensitivity index of the
uncontrollable variable, which leads to correct estimations
of the first order indices of the controllable variables. In ad-
dition, it reveals the influential interactions between theun-
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Table 4 Estimated Sobol sensitivity indices (with standard deviations obtained by 100 repetitions) for the MARTHE code. “Method” indicates the
estimation method: MC for the Monte-Carlo procedure, Eq fora deduction from the model equations andQ2 for the deduction of the predictivity
coefficientQ2. “—” indicates that the value is not available.

Indices
Joint GLM Joint GAM Simple GAM

Values sd Method Values sd Method Values sd Method
S(kd1) 0.002 0.6e-2 MC 0.037 1.0e-2 MC 0.140 1.0e-2 MC
S(kd2) 0.522 0.6e-2 MC 0.524 1.0e-2 MC 0.550 1.1e-2 MC
S(per1) 0.018 0.7e-2 MC 0 — Eq 0 — Eq
S(per2) 0.052 0.6e-2 MC 0.078 1.0e-2 MC 0.044 1.0e-2 MC
S(per3) 0 — Eq 0.005 1.0e-2 MC 0.008 1.0e-2 MC
S(kd2,per2) 0 — Eq 0.063 1.0e-2 MC 0.026 1.0e-2 MC
ST(ε) 0.382 0.2e-2 MC 0.277 0.3e-2 MC 0.235 — Q2
S(kd1,ε) ]0,0.382] — Eq ]0,0.277] — Eq — — —
S(kd2,ε) 0 — Eq ]0,0.277] — Eq — — —
S(per1,ε) 0 — Eq 0 — Eq — — —
S(per2,ε) 0 — Eq 0 — Eq — — —
S(per3,ε) ]0,0.382] — Eq 0 — Eq — — —

controllable variable and the other input variables. Obtain-
ing quantitative values for these interaction effects is still
an open issue, but a challenging problem. Finally, the joint
model would also serve in the uncertainty propagation stud-
ies of complex models, to obtain the full distribution of the
model output.

In the whole, all statistical analysis were performed us-
ing the R software environment (R Development Core Team,
2006). In particular, the following functions and packages
were useful: the “glm” function to fit a simple GLM, the
“mgcv” (Multiple Smoothing Parameter Estimation by GCV)
package to fit a simple GAM, and the “sensitivity” pack-
age to compute Sobol indices. We also developed the “Joint-
Modeling” package to fit joint models (including joint GLM
and joint GAM).
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