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Abstract  

The creep behavior of Hi-Nicalon, Hi-Nicalon S and Tyranno SA3 fibers is investigated at 

temperatures up to 1700°C. Tensile tests were carried out on a high capability fiber testing 

apparatus in which the fiber is heated uniformly under vacuum. Analysis of initial 

microstructure and composition of fibers was performed using various techniques. All the 

fibers experienced a steady-state creep. Primary creep was found to be more or less significant 

depending on fiber microstructure. Steady-state creep was shown to result from grain 

boundary sliding. Activation energy and stress exponents were determined. Creep 

mechanisms are discussed on the basis of activation energy and stress exponent data. Finally, 

tertiary creep was observed at very high temperatures. Tertiary creep was related to 

volatilization of SiC. Results are discussed with respect to fiber microstructure. 

 

1- Introduction 

SiC/SiC composites are designed to be used at high temperatures in various systems including 

aerojet engines and stationary gas turbines for electrical power/steam cogeneration on the one 

hand. Furthermore, owing to the stability of SiC under neutron irradiation and to recent 

progress in the fabrication of stoechiometric fibers, it is considered that SiC/SiC composites 



are possible candidates for nuclear applications, such as, for instance, structural components 

facing the plasma in fusion reactor1, 2, or control bars and fuel containers in the Generation IV 

nuclear power plants. 

 

Structural performances of SiC/SiC composites depend on fiber reinforcement, and more 

particularly on sensitivity of mechanical properties of fibers to temperature and environment. 

The present paper focuses on the creep behaviour of SiC-based fibers with a low oxygen 

content under inert atmosphere. These fibers are potential candidates to reinforcement of 

SiC/SiC composites for nuclear applications. 

 

A lot of papers on the creep behaviour of ceramic fibers are available in the literature. Data 

have been produced on SiC-based fiberssee for instance 3-8. Authors used mainly uniaxial tensile 

loading conditions, or a qualitative technique such as BSR (Bending Stress Relaxation). But 

only some of these papers were interested in the creep mechanisms4,6,8. 

 

Testing tiny objects such as small diameter ceramic fibers (diameter may be as small as 10 

µm) at high temperatures for long times is not straightforward. Results and analyses may be 

biased as a result of testing conditions. Testing method thus warrants consideration in order to 

produce valuable results. 

 

During most of the tensile creep tests reported in the literature, the fiber was not at a uniform 

temperature (cold gripping method). Furthermore, test duration rarely exceeds 48 hours, for 

practical reasons associated to the design of experimental set up. 

 



The cold grip based technique presents a few important drawbacks. Fiber specimens are 

generally quite long (length averages 100 mm), and there is a significant temperature gradient. 

Owing to temperature gradient, determination of creep strain from fiber deformation is not 

straightforward9. Heavy and tedious calibration operations are required. Then, the use of long 

specimens is not recommended because of fiber diameter variation. Specimen length must be 

selected with respect to wave length in diameter variation10. 

 

In the hot grip based technique, short specimens are used and the entire fiber can be at a 

uniform temperature. Some authors claim that fiber may degrade due to the cement used for 

gripping fiber ends. This difficulty can be overcome with recent products. Furthermore, 

results obtained using the hot grip based technique appeared to be consistent with other 

available data3. 

 

Thus, in the present paper, some effort was directed toward the testing method, in order to 

overcome the difficulties associated to the cold grip based technique, and to produce valuable 

creep data on the last generation of SiC-based fibers. 

 

2- Fibers and experimental procedure 

2.1- Description of fibers 

 

Hi-Nicalon and Hi-Nicalon S (Nippon Carbon Co) and Tyranno SA3 (Ube Indstry ltd.) SiC-

based fibers were investigated (Table 1). Two different batches of Tyranno SA3 fibers were 

tested (they are referred to as SA3 (1) and SA3 (2)). Sylramic fibers were not considered in 

this study because they contain boron, which makes them sensitive to significant degradation 

under neutron irradiation11. 



 

Quantitative analyses of fibers composition and structure were performed using X-Ray 

Diffraction, Raman Spectroscopy, Transmission Electron Microscopy (TEM), Electron Probe 

Microanalysis (EPMA) and fractography. Specimens for TEM were prepared following the 

method proposed by Berger and Bunsell12. 

 

2.2- Creep tests 

The fiber samples were taken from tows (gauge length 25 mm). Graphite grips were affixed to 

sample ends using carbon based cement C34 (from UCAR Co). 

 

The creep tests were performed on a tensile device (figure 1) designed for testing carbon 

fibers at temperatures up to 3000°C13. Heating is generated by electric current circulating 

through fiber, under secondary vacuum (residual pressure ∼ 10-4 Pa). Under such 

environment, active oxidation is infinitively slow14. Temperature of fiber was measured using 

a bichromatic pyrometer. Temperature profiles showed that temperature is uniform over more 

than 95% gauge length13. Furthermore, it appeared that grips remained at a temperature close 

to room temperature during the tests (< 50°C). Thus, the loading frame compliance was not 

affected during the tests. Fiber deformations can be derived from grip displacement. Loading 

frame compliance was taken to be equal to that estimated at room temperature. Computations 

of temperature distributions for various thermal conductivities showed that the temperature 

gradient from the core to the surface of the fiber is less than 2°C at 1000°C13. 

 

Fiber was first kept stress free at the test temperature for 30 mn. Then the stress was applied. 

This operation took less than 10 seconds. Diameter of each fiber was measured in-situ using a 

laser mounted on the testing apparatus. It is given by the average of several measurements 



along the gauge length. To ensure a good reproducibility of results, only those specimens with 

quite uniform diameters were tested. For these specimens, diameters measured along fiber 

differed from the average by less than 3%. 

 

Fiber deformations were derived from grip displacement. Data were corrected to account for 

deformation of loading frame. The loading frame compliance was estimated using the 

conventional calibration technique based on tensile tests on fibers having various gauge 

lengths15. As indicated above, since the grips remained at a temperature close to room 

temperature during the tests, the loading frame compliance estimated at room temperature was 

pertinent. 

 

Most of the creep tests were interrupted before fiber failure, for analysis of crept fibers. 

Stresses in the range 150-850 MPa were applied, whereas temperatures were in the 1150-

1700°C range. Tests as long as 350 hours, were performed in order to identify the different 

creep stages. 

 

3- Results and discussion 

3.1- Structure and composition of fibers 

 

Table 1 summarizes results of microstructural analyses. All the fibers contain a small amount 

of oxygen (0.2%). Higher oxygen contents were reported for Hi-Nicalon fibers6,16 (0.6-0.9 

w/o). 

 

There is a larger amount of free carbon in the Hi-Nicalon fiber when comparing with Hi-

Nicalon S. Hi-Nicalon S is stoechiometric, but results indicate an excess of carbon. Figures 



2(a) and 2(b) show that element concentration is uniform in both fibers. However, a carbon 

rich phase was detected using EPMA. It was located in the surface, over a thickness < 100 

nm. 

 

Hi-Nicalon fiber microstructure is well documented6, 17, 18. Thus, data from the literature can 

be reported here. Hi-Nicalon fibers consist of fine β–SiC grains, that may be faulted18. Grain 

size averaged 5 nm (table 1). The largest grains were 20 nm (table 1). The carbon phase 

(turbostratic carbon) consists of distorted stacks of 5-10 graphitic planes, 2 to 5 nm long. 

 

Hi-Nicalon S is made up of clusters of SiC grains (figure 3). Grain size averages 20 nm (table 

1). The biggest grains were 50 nm large. Carbon is located between the SiC grains (figure 4). 

Grains boundaries do not appear clearly (figure 4). 

 

Concentration in C and Si was not found uniform in the SA3 fibers (figure 2). There is a 

larger amount of free carbon present in the core. The SA3 (1) fiber contained a larger amount 

of free carbon when compared to more recent SA3 (2) (table 1). Elemental composition in 

SA3 (2) is closer to stoechiometry, suggesting that fibers of this second batch have been 

improved. A carbon rich phase was detected in the surface, over 300 nm in the SA3 (1) fibers 

and 100 nm in the SA3 (2) ones. Aluminum was identified (table 1). According to Ishikawa19, 

Al aggregates at grain boundaries. 

 

Grain size is much larger when comparing with Hi-Nicalon and Hi-Nicalon S fibers. 

Difference in grain size can be noted from micrographs shown on figure 5. The size of  β–SiC 

grains averaged 200 nm (table 1). The biggest grains were 400 nm large. Grains displayed 

stack faults (figure 3). This explains the discrepancy in grain sizes estimated using XRD and 



TEM (table 1). Grain size was bigger from the core to the surface of fibers. As opposed to Hi-

Nicalon S fibers, grain boundaries are clearly marked (figure 4). Carbon shows a turbostratic 

structure. It is located between β–SiC grains (figure 4). 

 

3.2- Creep behaviour 

The typical creep curves that were obtained are shown on figure 6. Steady state creep was 

observed after a more or less long primary creep stage, depending on fiber : after about 140 h 

for Hi-Nicalon fibers at 1200°C, about 72 hours for SA3 (1) fiber at 1200°C, about 8 hours 

for SA3(2) fiber at 1250°C, and about 8 hours for Hi-Nicalon S at 1350°C. The creep results 

reported by most authors were obtained during much shorter tests (< 48 hours). Thus, it may 

be anticipated that their tests were not sufficiently long, so that true secondary creep stage was 

probably not reached. 

 

Figure 7 shows a typical creep curve obtained under incremental temperature steps. It can be 

noted that creep accelerated at temperatures > 1600°C (tertiary creep). Creep curves were 

fitted by the following well accepted equations of deformations in the primary and in the 

secondary stages. Tertiary creep is examined in a subsequent section : 

 

    εe = 
oE

σ       (1) 

εp = σA [1 – exp (-pt)]    (2) 

εs = Bσnt      (3) 

ε = εe + εp + εs      (4) 

 



where subscripts, e, p and s refer respectively to elastic regime, primary and secondary creep.  

σ is the stress on fiber, Eo is initial fiber Young’s modulus, t is time, A, B, n and p are 

constants. 

 

Figure 6 shows that an excellent agreement was obtained for quite all the fibers. Note that Hi-

Nicalon S and SA3 fibers are less sensitive to creep than Hi-Nicalon. 

 

Based on microstructure analysis, the fibers can be considered to be a mixture of wrinkled 

carbon-layer packets and SiC grains. Possible controlling creep mechanism may involve grain 

boundary sliding, carbon diffusion, dewrinkling, deformation and sliding of carbon 

crystallites6. 

 

3.3- Creep mechanisms – Primary creep 

Primary creep can be attributed to viscoelastic deformation of carbon at grain boundaries. 

Viscoelasticity of carbon has been discussed by Kelly20 and it has been observed by Sauder et 

al.21 on various carbon fibers at high temperatures. Because of the very weak interaction 

between layer planes, each basal plane can deform as a separate unit in two dimensions, 

which produces substantial basal plane shear20. Furthermore, magnitude of viscoelastic 

response of carbon fibers under tension depends on orientation of graphitic planes21. It 

increases with the fraction of graphitic planes with a large angle to loading direction (isotropic 

carbon). By contrast, it is limited in the anisotropic fibers, in which most of the graphitic 

planes are oriented parallel to loading direction. In SiC fibers, orientation of graphitic planes 

is influenced by grain boundary distribution. Thus, graphitic planes can take all orientations. 

Furthermore, it was indicated earlier that the carbon present in these SiC fibers consists of 



stacks of a few graphitic planes. As a consequence, primary creep may involve deformation of 

carbon at grain boundaries and grain sliding due to basal plane shear. 

 

It is worth mentioning that primary creep was more significant in those fibers that contained a 

large amount of carbon (Hi-Nicalon). This supports the above carbon deformation driven 

mechanism. 

 

Although Hi-Nicalon and SA3 (1) fibers possessed the same fraction of carbon, Hi-Nicalon 

fiber showed larger sensitivity to creep. This discrepancy can be attributed to grain size, that 

is much smaller in Hi-Nicalon fiber. It can also be related to the structure of carbon which 

displayed a better organization in SA3 (1) fiber (smaller distance between two successive 

layers : d002), as a result of higher processing temperature. Low  d002 implies a larger stiffness 

and smaller deformations. 

 

Hi-Nicalon fiber contains a significant amount of low density SiC. This SiC phase is not 

stable, as a result of short duration of pyrolysis step during fiber processing5. Grain growth 

thus starts at 1200°C in Hi-Nicalon fiber. It causes creep rate decrease. This phenomenon may 

explain the imperfect fit of experimental creep curve by equations (1) –(4) (figure 6 (a)). 

 

3.4- Secondary creep : mechanism 

Stationary creep was investigated essentially on Hi-Nicalon S and Tyranno SA3 fibers, which 

displayed a reasonably short primary creep stage. Extensive investigation of Hi-Nicalon 

would have required long experiments, as indicated above.  

 



Creep rate in the steady state is expressed by the following general relationship : 

)exp(
.

RT
QdD nm

go −= σφε  

     D = Do exp(-
RT
Q )    (5) 

 

Where φ is a material constant, D is diffusivity, Q is the apparent activation energy, R is the 

universal gas constant, T is temperature in Kelvin, dg is the grain size, σ is the applied stress, 

and m and n are exponents. Different values of m and n correspond to different mechanisms. 

Values of n and Q may be obtained experimentally and used to infer a rate-controlling 

mechanism for creep. 

 

The creep rate depends on temperature through an Arrhenius exponential term (equation 5). 

Figure 8 shows typical Arrhenius creep rate plots obtained for the SA3 (2) fiber. Activation 

energy was determined by fitting equation (5) to creep rates determined at various 

temperatures. 

 

The largest apparent activation energy was determined for Hi-Nicalon S fibers (table 2). 

Lower similar values were obtained for both SA3 (1) and SA3 (2) fibers. Knowing that the 

main difference between both SA3 fibers lies in the amount of free carbon, this result 

indicates that secondary creep was not influenced by the amount of carbon. 

 

Determination of stress exponent by fitting equations (5) to creep rates determined at different 

stresses (figure 9), yields stress exponents of 2.5 for all the fibers. It is worth mentioning that 

plots of strain rates determined under various temperatures and applied stresses (figures 8-10), 



and creep parameters reported in table 2 do not exhibit a noticeable discrepancy, which 

demonstrates the pertinence of experimental work. 

 

n =1 has been determined for polycrystalline SiC ceramics. Creep results from diffusional 

processes either at grain boundaries (Coble creep n = 3) or within grains (Nabarro Herring 

creep n = 2). High activation energy corresponds to Nabarro Herring creep. Creep rate is very 

sensitive to grain size (equation 5) : m = 2 or 3. Identical trends have been reported for both 

α– and β– SiC.  

 

Diffusional creep in polycrystalline SiC occurs by diffusion of carbon22 or silicon23 at grain 

boundaries22, 23 or within grains24 or by diffusion of impurities at grain boundaries25. There is 

a very limited amount of data on diffusion of carbon and silicon elements in SiC. There is no 

consensus about diffusion rate. Depending on author, diffusion rate of carbon would be 100 

times faster than that of silicium26, 27, or it would be slower28. Activation energies for 

diffusion of carbon and silicium within grains in β– SiC made via Chemical Vapor Deposition 

have been estimated to be 840 KJ mol-1 29 and 910 KJ mol-1 30 respectively. It is worth 

reminding that creep of polycrystalline SiC cannot be controlled by dislocation motions at 

temperatures < 1700°C 31, 32. For Nicalon SiC fibers tested in CO, n ≈ 1. Activation energy 

was found to be consistent with activation energies of thermally activated viscous flow of 

glasses at high temperatures33. 

 

n exponents between 2 and 3 that have been determined for low oxygen content SiC fibers34-36 

correspond to grain boundary sliding in the absence of glassy phase37. 

 



Creep of the fibers of this study (n ≈  2.5) may be attributed to grain boundary sliding, without 

grain elongation and glassy phase (Rachinger mechanism). In polycrystalline ceramics, 

accommodation results from diffusion and fold formation at triple junctions37. In SiC fibers, it 

probably involves carbon deformation.  

 

Apparent activation energy determined on Hi-Nicalon S (770 KJ mol-1, table 2) is consistent 

with that corresponding to diffusion of carbon or silicon within grains28-30. Diffusion within 

grains can be related to feature of microstructure. As it was mentioned in section 2.3.1, grain 

boundaries were not clearly defined. It may be thought that they cannot be preferred ways for 

diffusion. 

 

Activation energy determined for SA3 fibers (table 2) is close to that corresponding to 

diffusion of Al at grain boundaries in polycrystalline SiC38-40. This suggests the contribution 

of diffusion of Al at grain boundaries. It is also close to half pf that one corresponding to 

diffusion of C or Si within grains for Hi-Nicalon S (table 2). So the contribution of diffusion 

of C or Si at grain boundaries cannot be discarded. 

 

Figure 10 compares creep rates for Hi-Nicalon S and SA3 (2) fibers under 850 MPa. It 

appears unambiguously that creep deformations are larger in SA3 fibers, despite the presence 

of bigger grains. This trend can be attributed to the presence of Al. Aluminium is known to 

favour diffusion at high temperature. This causes an increase in the diffusion coefficient D 

(equation 5). At temperatures above 1500°C, SA3 fiber becomes more creep resistant than Hi-

Nicalon S.  

 

3.5- Tertiary creep stage 



Figures 7 and 11 clearly indicate that, at very high temperatures, the creep rate accelerates 

into a tertiary stage. In order to identify the creep mechanism, tests were interrupted during 

the third stage and cross section of fibers was examined using scanning electron microscopy. 

Figures 11 and 12 show the typical microstructure of fibers that was observed. It consists of 

two distinct parts : the core and an annular region. The microstructure of the core was 

unaffected whereas Auger analysis showed that the annular region was made of pure carbon. 

Furthermore, the diameter of fiber was unchanged. These results suggest that silicon 

volatilized and that this phenomenon advanced from the surface towards the core. Data in the 

literature support this assumption. Thus, figure 13 shows that SiC decomposes at temperatures 

above 1400°C when pressure is identical to that one in the chamber (10-4 Pa). Furthermore, 

authors have shown that gaseous Si (g) is produced preponderantly under these conditions41-

48. Experimental conditions were favourable to silicon volatilization. Thermodynamic 

equilibrium could not be reached and pressure of gaseous Si(g) remained above equilibrium 

value in the chamber : 

 

i) pressure in the chamber (10-4 Pa) is smaller than that of Si (g) at temperatures 

above 1400°C, according to figure 13. As a consequence, gaseous species can be 

eliminated. 

ii) Chamber wall was covered with a deposit after the tests, indicating that gaseous 

products condensed. 

 

The above phenomenon cannot be attributed to active oxidation from residual oxygen. Active 

oxidation would have a more serious effect. Under such vacuum conditions, oxidation 

products (SiO (g) and CO (g)) would be continuously eliminated, so that the fiber would be 

completely destroyed. Authors who observed degradation of SiC fibers at high temperature 



under argon49, attributed this phenomenon to active oxidation. But they did not go into a deep 

investigation to ascertain their interpretation. 

 

The creep rate acceleration would result from a change in the stress state in the SiC fiber, 

caused by the annular degradation of fiber. During Si volatilization, stiff SiC is replaced by a 

porous carbon material that is much more compliant. As a consequence, the load is carried 

preponderantly by the SiC core. As annular degradation proceeds, there is an increase in 

stress, according to the following equation : 

 

     σ (t) =  2

2

))(( teR
R

c

co

−
σ

    (6)  

 

where σo is the applied stress, Rc is the fiber diameter and e(t) is the thickness of annular 

carbon layer.  

 

In a first step, a simple linear time dependence was selected for e(t) : 

 

     e(t) = kt     (7) 

The degradation rate was estimated from the thickness of annular layer determined from 

micrographs of fibers after interrupted creep tests. K = 2.10-12 m.s-1 was estimated for the Hi-

Nicalon S fiber. 

 

Stress relation (6) was introduced into equations (3) and (4). Figure 14 shows the creep curve 

that was predicted for Hi-Nicalon S. A good agreement with experimental results was 

obtained, which supports the analysis. Nevertheless, a slight discrepancy can be noticed, 



which may result from approximations in annular degradation law and in load sharing. 

Contribution of annular carbon layer was neglected. Refinement, if necessary, would 

introduce a more complex annular degradation law and contribution of carbon layer in load 

sharing. 

 

3.6- TEM analysis of crept fibers 

TEM analysis was performed on SA3 (2) fibers tested at 1600°C and Hi-Nicalon S fibers 

tested at 1500°C. Creep tests were interrupted when total deformation of fiber reached 6%. 

The following features were observed : 

 

(i) carbon was highly preponderant in the superficial region (thickness was close to 

500 nm) 

(ii) cavities were not detected at triple junctions. As indicated above it may be thought 

that accommodation is made possible because of carbon anisotropy 

(iii) in Hi-Nicalon S fibers (core), grains were larger when compared with as-received 

fibers (figure 15) 

(iv) in SA3 fibers (core), grains were smaller when compared with as-received fibers 

(figure 15). 

 

Grain growth in Hi-Nicalon S fibers after treatment at 1400°C has been reported in the 

literature50. This phenomenon may be similar to that observed on Hi-Nicalon fibers. It 

suggests that the finishing treatment aimed at the elimination of carbon was not carried out at 

a sufficiently high temperature. Grain shrinkage in SA3 fibers is intriguing. It seems logical to 

look for a connection with Si volatilization. Further investigation is required. 

 



4- Conclusion 

The tensile creep behaviour of SiC fibers with a low oxygen content was investigated up to 

very high temperatures. Tests of long duration were carried out on a high performance testing 

device. The three stages of creep were evidenced. 

 

Primary creep was particularly long in the Hi-Nicalon fibers. It lasted more than 144 hours. 

Primary creep was attributed to viscoelastic deformation of carbon at grain boundaries. 

Primary creep is enhanced by the amount of free carbon. Hi-Nicalon fiber experienced much 

larger deformations than Hi-Nicalon S and SA3 fibers. Furthermore, shorter primary creep 

stage was observed on both latter fibers. 

 

Determination of creep constants including stress exponent (n ≈ 2.5) and apparent activation 

energy suggests the following mechanisms of secondary creep : 

 

- grain boundary sliding without grain elongation and glassy phases (Rachinger type). 

Accommodation was due to compliance of carbon. 

- Diffusion of Al, C or Si at grain boundaries in SA3 fiber  

- Diffusion of carbon or silicium within grain in Hi-Nicalon S fiber. 

 

But diffusion of impurities was not established, due to the paucity of data in the literature on 

diffusion of impurities within SiC polycrystals. 

 

Tertiary creep was shown to be due to an increase in stress as the load bearing fiber area is 

reduced by volatilization of Si. Some microstructural changes were detected by TEM analysis 

such as grain growth in Hi-Nicalon S fibers and grain shrinkage in SA3 fibers. The former can 



be related to some extent to that one observed on Hi-Nicalon fiber, whereas the latter may be 

associated to Si volatilization. 
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Table 1.   Properties of SiC fibers investigated in the present study 
 

 

Suppliers 
 

 

Nippon Carbon Co., Japon Ube industries ltd, Japon 

Type of fiber Hi-Nicalon Hi-Nicalon S Tyranno SA3 (1) Tyranno SA3 (2)

Lot n° 225103 320203 M-0110071 M-0304041 

Diameter (µm) 14 16 13 16 7.5 7.2 

Density (g.cm-3) 2.74 16 3.0 16 3.0 3.1 

Tensile strength (GPa) 2.8 16 2.5 16 2.8 16 2.8 

Tensile modulus (GPa) 290 375 325 380 

Grains size (nm) 
     XRD 
     TEM 

 
5-10 
5-10 

 
20 
10-50 

 
60-70 
50-400 

 
60-70 
50-400 

Chemical composition 
(wt./at.%)   

 
 

Si 62.1/41.3 68.4/48.1 66.6/46.0 (edge) 
60.3/39.5 (core) 

69.1/49 (edge) 
66.1/45.6 (core) 

C 37.7/58.5 31.3/51.5 33/53.6 (edge) 
39.2/60.1 (core) 

30.5/50.7 (edge) 
33.5/54.1 (core) 

O 0.2/0.2 0.3/0.3 0.2/0.2 0.1/0.1 

Al - - 0.3/0.2 0.3/0.2 

C/Si (at. %) 1.41 1.07 1.16 (edge) 
1.52 (core) 

1.03 (edge) 
1.19 (core) 

 

Table 2. Steady state creep parameters  

Fibers Temperature Range (°C) Activation energy  
Q (kJ.mol-1) 

n 

SA3(1) 1150-1500 370 (360-370) 2,5 (2,35-2,6) 

SA3(2) 1150-1500 370 (360-370) 2,5 (2,3-2,6) 

Hi-Nicalon S 1300-1500 770 (750-770) 2,6 (2,4-2,9) 
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Figure 1 : Schematic diagram of the high temperature fibre testing apparatus. 
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Figure 2 :  Si, C, O and Al Atomic concentrations along the diameter of Hi-Nicalon (a), Hi-
Nicalon S (b), Tyranno SA3(1) (c) and Tyranno SA3(2) fibre (d) as measured by 
EPMA
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(a)  SA3(2) (b) Hi-Nicalon S 

SiC111 (2.51Å) 

SiC220 (1.54Å) 

SiC311 (1.31Å) 

Figure 3 :  Microstructure and electron diffraction pattern of (a) Tyranno SA3(2) and (b) Hi-
Nicalon S fibre. 
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Figure 4 :  Lattice fringe images showing the presence of turbostratic Carbon at SiC grain 
boundary for (a) Hi-Nicalon S and (b) Tyranno SA3(2) fibre. 
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Figure 5 :  SEM Micrographs of the cross sections of (a) Hi-Nicalon, (b) Hi-Nicalon S, (c) 
Tyranno SA3(1) and (d) Tyranno SA3(2) fibres. 

(a) Hi-Nicalon (b) Hi-Nicalon  S
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Zoom 
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(a) Hi-Nicalon (b) SA3(1) 

(d) Hi-Nicalon S 

Figure 6 :  Creep behavior of  (a) Hi-Nicalon, (b) Tyranno SA3(1), (c) SA3(2) and (d) Hi-
Nicalon S fibers. 
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Figure 7 :  Creep of SA3(2) fiber under a stress of 150MPa and in the 1350-1700°C 
temperature range. 

Figure 8 :  Steady state creep rate versus reciprocal temperature  for SA3(2) fiber. 
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Figure 9 :  Logarithmic plot of  strain rate  versus  applied stress for SA3 (2) fiber. 
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Figure 10 : Steady state creep rate versus  reciprocal temperature  for SA3(2) and Hi-Nicalon 
S fibers under a stress of 850MPa.
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Figure 11 :  Creep test at 1450°C and under a stress of 500MPa for Hi-Nicalon S fiber, and SEM 
micrographs of cross section after test interruption. 
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(b) Core observation  (c) edge observation 

(a) Global cross section  

Figure 12 :  SEM micrographs of SA3(2) cross section after creep test presented of figure  7. 
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Figure 13 :  Vapor pressure evolution versus reciprocal temperature for various carbides 
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Figure 14 :  Comparison of experiment and prediction of creep behavior at 1450°C and under a stress of 
500MPa for Hi-Nicalon S fiber. 
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 (a) SA3(2)  (b) Hi-Nicalon S 

Figure 15 :  TEM SAD pattern for (a) SA3(2) and (b) Hi-Nicalon S fiber after creep test at high 
temperature  (ε= 6 %)  


