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RÉSUMÉ. La qualité d’un modèle de comportement est généralement évaluée autour de trois 

critères : sa capacité à reproduire des comportements élémentaires ou structurels 

représentatifs (traction, compression, flexion…), l’efficacité de son implémentation  

(algorithme de résolution, convergence) et la simplicité de calibrage des paramètres qu’il 

utilise (ou leur signification physique). Un modèle plastique est présenté dans cette 

contribution. Nécessitant huit coefficients physiquement représentatifs, il se compose de deux 

surfaces seuil adoucissantes, l’une pour la traction (Rankine), l’autre pour la compression 

(Drucker-Prager). Après une brève présentation des équations constitutives, la loi est testée 

avec succès sur des applications élémentaires (traction, compression, essai biaxial) et 

structurelles (poutre en flexion trois points et cylindre armé chargé en température) afin de 

valider l’implémentation. Le modèle représente, par sa relative simplicité (numérique et 

signification physique des paramètres) , un bon compromis pour le comportement du béton, 

face à d’autres approches, plus élaborées mais aussi plus complexes à mettre en œuvre. 

ABSTRACT. The quality of a mechanical law is generally based on the evaluation of three 

parameters : its ability to reproduce elementary or structural characteristic behaviours 

(tension, compression, bending…), the efficiency of the numerical implementation (resolution 

algorithm or convergence) and the physical significance of its parameters. A plastic model is 

presented in this contribution. Based on eight coefficients which are physically 

representative, it is driven by two softening yield surfaces, one for tension (Rankine) and one 

for compression (Drucker-Prager). After a brief description of the constitutive equations, the 

model is tested on elementary and structural applications to validate its numerical 

implementation. It represents a good compromise for classical concrete behaviours, 

compared to other more refined, but also more complex, approaches.   

MOTS-CLÉS : modèle, béton, plasticité. 

KEYWORDS: constitutive model, concrete, plasticity 
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1. Introduction 

Understanding the consequences of a mechanical loading on the behaviour of a 

concrete specimen or of concrete structures is of great concern, especially when it is 

related to safety questions. It is the case for high-power French nuclear power plants 

(1300 and 1450 MWe especially) for which the concrete containment vessel  

represents the third passive barrier, after the fuel cladding and the containment 

vessel of the reactor core. That is why, for the last decade, several important civil 

engineering research and development programs have been launched. These concern 

the elaboration of new constitutive laws, techniques of modelling and resolution 

algorithms. The validity of the models and more generally the methodology for non-

linear calculations must be obtained by comparing their performances with 

experimental results (benchmarking (Ghavamian and Delaplace, 2003) for example). 

The comparisons are generally based on simple tests on small size specimen but also 

on more complex applications to determine the capacity of the calculations to predict 

the structural behaviour of more realistic and/or industrially representative cases. 

The quality of a model is generally estimated from its ability to reproduce 

elementary and structural characteristic behaviours, like tension, compression or 

bending. But, two other parameters have also to be taken into account : the 

efficiency of the numerical implementation (convergence) and the physical 

significance of  the coefficients of the model. It is especially the case for industrial 

applications for which the numerical cost may be heavy (due to a need in fine 

meshes) and the knowledge of the material properties is limited (Young modulus, 

compressive strength…). 

When continuum mechanics is considered, elastic damage models or elastic 

plastic constitutive laws are generally the standard approaches to describe the 

behaviour of concrete. In the first case, the mechanical effect of the progressive 

microcracking and strain softening is represented by a set of internal state variables, 

which acts on the elastic behaviour (decrease of the stiffness) at the macroscopic 

level (see for example (Simo and Ju, 1987a), (Simo and Ju, 1987b) or (Mazars, 

1984)). In plasticity models, softening is directly included in the expression of a 

plastic yield surface by means of a hardening – softening function generally ((Grassl 

et al, 2002), (Menetrey and Willam, 1995), or (Crouch and Tahar, 2000)). In 

particular cases, for which the estimation of the unloading behaviour is of great 

concern (damage – permeability law for example (Picandet et al, 2001)), coupled 

approaches can also be considered to simulate both plasticity effects, with the 

development of irreversible phenomena and damage, with a decrease in the 

unloading slope ((Oller et al, 1990), (Yazdani and Schreyer, 1990) or (Jason et al, 

2006)). 

The models that have been previously mentioned generally require the 

identification of many parameters (from 5 with Mazars’ model (1984) to 20 or even 

more for coupled formulations) whose experimental significance is not totally 

obvious. The idea is thus to propose in this contribution a formulation as simple as 
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possible that would be adapted for standard applications, for which a high level of 

refinement is not necessary (monotonic loading especially) but whose coefficients 

can be clearly calibrated from standard material properties. A plastic model, with 

eight coefficients, is thus presented. It is driven by two softening yield surfaces, one 

for tension (Rankine) and one for compression (Drucker-Prager). Section 2 presents 

the constitutive equations and especially the evolution of the yield surfaces with the 

hardening parameters. The law is then applied on three elementary tests, uniaxial 

tension, compression and biaxial loading (section 3). Finally, the validation ends 

with a reinforced bending beam and a concrete cylinder subjected to a thermal 

loading.  

2. Model description 

The model has been chosen to fulfil two main objectives : to represent the 

behaviour of concrete in tension and in compression correctly and to use mechanical 

parameters that have a physical significance. Based on previous works ((Feenstra 

and de Borst, 1996) for two dimensional problems or (Heinfling, 1998)), the model 

is developed from plasticity theory. It uses two yield surfaces, one in tension 

(Rankine) and one in compression (Drucker-Prager) to take into account the 

dissymmetry of concrete behaviour in uniaxial loading.  

The global mechanical strain  is written as a function of e, p and th which are 

respectively the elastic, plastic and thermal (if needed) strains: 

e p th                [1] 

The elastic strain is related to the total stress by Hooke law : 

eC             [2] 

where C is the elastic tensor. The thermal strain is written as a function of the 

thermal dilation coefficient th: 

0( )th

th dT T I             [3] 

with T and T0 the current and initial temperatures respectively and Id the identity 

tensor. Both yield surfaces (in tension and in compression) are expressed in the 

following form : 

*( , ) ( ) ( )f f               [4] 

where  is the isotropic hardening variable that governs the evolution of the elastic 

domain (hardening law ). For each criterion, the evolution of the plastic strain and 

of the hardening variable follow the standard plasticity theory : 
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          [5] 

In compression, a Drucker-Prager yield surface is considered (Drucker and 

Prager, 1952): 

1 1 2 1 1 1( , ) ( )f J I                [6] 

with I1 and J2 respectively the first stress and the second deviatoric stress invariants. 

 is a function of the biaxial and uniaxial compressive strengths (respectively named 

fb and fc) : 

3(2 )

b c

b c

f f

f f






 

The hardening – softening law 1  is chosen to represent the progressive evolution of 

the stress – strain curve in uniaxial compression :  
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where w, k0 , 1m and 1u  are four parameters. 
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         [8] 

y is the elastic limit in uniaxial compression. E is the Young modulus and m and u 

are respectively the strain corresponding to the compressive strength and the ultimate 

strain respectively. Figure 1 illustrates the hardening-softening law. It follows the 

characteristic concrete behaviour in compression : a hardening part from the elastic 

limit to the peak position, then a decreasing softening evolution from the peak to the 

ultimate strain before a zero residual strength.  
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Figure 1. Hardening – softening law for compression. 

For tension, the yield function is a Rankine surface which can be expressed by : 

2 2 max 2 2( , ) ( )f                [9] 

where max is the maximum of the principal stresses. 

The softening behaviour is driven by the exponential law 2 : 

2

2 2

2

( ) exp( )t

u

f


 


         [10] 

with ft the tensile strength. 2u is a model parameter, function of the fracture energy 

Gf and of a characteristic length h to avoid a dependency of the dissipated fracture 

energy on the mesh (Heinfling, 1998). 

 2

1

. 1 exp( 1)

f

u

t

G

h f
 

 
       [11] 

h is representative of the finite element size and takes the expression ((Rots, 1988) 

for bi-dimensional problems): 

3

  for 2D problems

   for 3D problems

e

e

h A

h V




       [12] 

where Ae and Ve are the surface or the volume of the finite element respectively. 

More complex expressions (especially for non regular meshes) exist (Millard, 1996) 

but will not be considered in this contribution. 

The tensile softening law is represented in figure 2. The behaviour is elastic before 

the tensile strength (no hardening domain) then softening appears until a zero 

residual strength asymptote. 
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Figure 2. Softening function for tensile behaviour. 

Figure 3. Elastic yield surface for biaxial loading (dashed lines correspond to the 

prolongation of Drucker-Prager and Rankine surfaces). 

The model is implemented in the finite element code Cast3M (2006) using a 

standard return mapping algorithm (Ortiz and Simo, 1986). Figure 3 illustrates the 

two elastic yield surfaces for biaxial loading (3  = 0). As expected, for tensile 

dominant loading, the Rankine surface is the first one to be reached, while for 

compressive dominant solicitations, it is the Drucker-Prager function which is the 

first to be activated.  Table 1 summarizes the parameters  that need to be identified. 

They are all based on physical material properties and can be obtained from standard 

material tests, except the biaxial compressive strength and the characteristic length. h 
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is automatically computed by the finite element code, while for the biaxial 

compressive strength which requires a non standard experiment, default values for 

b

c

f

f
 ranging  from 1.1 to 1.2 are generally agreed in the literature (Ulm, 1996 for 

example). 

 

Uniaxial compression Unaixial tension 
Biaxial 

loading 

Elastic 

limit 

(Pa) 

Compressive 

strength 

 (Pa) 

Strain 

at peak 

Ultimate 

strain 

Tensile 

strength 

(Pa) 

Fracture 

energy 

(N/m) 

Biaxial 

compressive 

strength  

(Pa) 

Table 1. Coefficients of the plastic model. The characteristic length h is 

automatically computed by the code from the type of the finite element. 

It is to be noted that only characteristic experimental points are needed, like 

compressive strength or fracture energy, contrary to other models for which the total 

stress – strain curve is necessary to calibrate every parameter (for example (Mazars, 

1984) or (Jason et al, 2006) among others). Hence, one concrete material 

corresponds to a unique set of parameters. It is one of the strong point of the chosen 

constitutive law. 

3. Elementary validation 

The model is going to be validated on three elementary applications : uniaxial 

compression, uniaxial tension and biaxial loading (failure surfaces). The aim is to 

evaluate the ability of the constitutive law to reproduce standard loadings. 

3.1. Uniaxial tension 

 The numerical response of the plastic constitutive law is first compared with 

experiment from (Gopalaratnam and Shah 1985). The model parameters are shown 

in Table 2 ( stands for the Poisson ratio). They are based on a numerical calibration 

to fit the experimental results. Figure 4 gives the axial stress – strain curve. The 

model is able to reproduce the peak position and the evolution of the softening part 

until a zero residual stress. It is thus adapted for uniaxial test simulation and only 

requires the knowledge of basic material properties (in uniaxial tension, only ft and 

Gf  are necessary for the calibration) 
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E 

(GPa) 
 

y 

(MPa) 

fc 

(MPa) 
m u 

ft 

(MPa) 

Gf 

(N/m) 

fb 

(MPa) 

31.25 0.2 20 35 0.002 0.008 3.5 250 40.6 

Table 2.  Model parameters for uniaxial tensile test. 

Figure 4. Uniaxial tensile test. Comparison between simulation and experiment 

from (Gopalaratnam and Shah, 1985). 

3.2. Uniaxial compression 

Cyclic compression is the second elementary test used to highlight the interest of 

the model. Experimental results are taken from (Sinha et al, 1964). Figure 5 

illustrates the numerical response for both axial and volumetric strains. The 

coefficients chosen for this simulation are reported in Table 3. They are different 

from those in section 3.1. because the tested concrete is different too. The model is 

able to reproduce the monotonic behaviour (elasticity, hardening and softening). The 

peak position and the post peak evolution are correctly simulated especially. 

Concerning the unloading, it is totally misevaluated as it is elastic. The loss in 

rigidity is not taken into account. If we consider the volumetric response, the 

evolution from a contractant behaviour to a dilatant one (change in the sign of the 

volumetric strains) is modelled, as observed experimentally (Sfer et al, 2002).  

 

 

 

0,0E+00

1,0E+06

2,0E+06

3,0E+06

4,0E+06

0,E+00 2,E-04 4,E-04 6,E-04 8,E-04

Axial strain

S
tr

e
s

s
 (

P
a

)

model

experiment



A two surface plastic model for concrete behaviour     9 

E 

(GPa) 
 

y 

(MPa) 

fc 

(MPa) 
m u 

ft 

(MPa) 

Gf 

(N/m) 

fb 

(MPa) 

20.74 0.2 20 27 0.0026 0.008 2.8 250 31.3 

Table 3. Parameters of the plastic model for the uniaxial compressive loading. 

Figure 5. Uniaxial compression. Comparison between experiment (from (Sinha et 

al, 1964)) and the plastic model. 

Figure 6. Uniaxial compression. Comparison between experiment (from (Sinha et 

al, 1964)) and the damage model (Mazars, 1984).  
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Figure 7.  Monotonic compression. Comparison between experiment (Kupfer et al, 

1969) and the plastic model for both axial and transversal responses. 

The response is compared with the simulation using the isotropic damage model 

developed in its original form by Mazars (1984) and which is generally chosen for 

its simplicity (figure 6). The monotonic behaviour is also correctly simulated. The 

unloading behaviour is misevaluated too because no irreversible phenomena are 

considered (overestimation of the unloading slopes). The volumetric strains keep 

negative and the change from a contractant behaviour to a dilatant one is not 

reproduced. As a conclusion, with the same level of simplicity, and with numerical 

parameters that are directly calibrated from standard material properties, the plastic 

model enables to capture more information than the isotropic damage model if only 

monotonic evolution is needed. 

Figure 7 shows the simulation of a uniaxial compressive loading for both axial 

and transversal strains, to provide an entire quantitative comparison. Due to the 

introduction of plasticity, the constitutive law is able to reproduce the experimental 

results. It is to be noted that the simulation of the volumetric behaviour may be of 

great interest, first for mechanical problems, but also for transfer considerations for 

which concrete permeability can be related to the change in the volumetric response 

(Sugiyama et al, 1996).  

3.3. Biaxial failure surfaces 

The failure surfaces for biaxial loading (respectively for 1 = 1m for Drucker 

Prager surface and 2 = 0+ for Rankine criterion) are compared with the experimental 

data from (Lee et al, 2004) for two different types of concrete (figure 8). In both 
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cases, 1.2b

c

f

f
  and 0.1t

c

f

f
  for the numerical computations. The assumed yield 

contour closely matches experimental results, as already mentioned by (Feenstra and 

De Borst, 1995) from the experimental results from (Kupfer and Gerstle, 1973). The 

plastic model is thus able to represent the maximum of the stress during biaxial 

loading, simply from the knowledge of the ratio between the uniaxial compressive 

strength and the biaxial compressive and uniaxial tensile strengths respectively. 

Nevertheless, it is to be noted that the choice for a Rankine yield surface is 

responsible for a slight overestimation of the mechanical resistance when tensile – 

compressive biaxial loading are considered. 

 

Figure 8. Biaxial strength envelops for two different types of concrete under biaxial 

stress. Comparison between the plastic model (black line) and the experiment from 

(Lee et al, 2004) (discrete points). 

4. Structural validation 

After elementary applications, for which the distribution of the internal variables, 

stresses and strains are homogeneous, the following step is structural tests. In the 

next part, a reinforced bending beam will be considered before a concrete hollow 

cylinder subjected to a thermal loading. 
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4.1. Three point bending beam 

The first structural application, extracted from benchmarks proposed by EDF 

(Ghavamian and Delaplace, 2003), is a 3D computation of a reinforced concrete 

beam. The geometry and the load system are presented in figure 9. Figure 10 depicts 

the steel distribution. The aim of this test is to evaluate the three dimensional 

performance of the model. Despite the amount of similar cases that can be found in 

the literature, this particular test has been chosen because numerical comparisons 

with models of various complexity (plasticity, isotropic or orthotropic damage …) 

are already available (figure 11).  

Following the requirements of the benchmark, the steel bars are modelled with a 

Von Mises plasticity law (linear hardening) using the imposed parameters E = 200 

GPa (Young modulus),  = 0 (Poisson ratio), e = 400 MPa (yield stress), ET = 3245 

MPa (plastic tangent stiffness). The steel – concrete interface is assumed to be 

perfect. Only one fourth of the beam is meshed.  

 

  

Figure 9. Geometry of three point bending beam. 

Figure 10. Steel distribution in the bending beam. 
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Figure 11.  Benchmark results for the three point bending beam (see (Ghavamian 

and Delaplace, 2003) for further details).   

                                                                                                                                

E 

(GPa) 
 

y 

(MPa) 

fc 

(MPa) 
m u 

ft 

(MPa) 

Gf 

(N/m) 

fb 

(MPa) 

37.2 0.2 20 35 0.002 0.007 3.5 400 40.6 

Table 4. Parameters of the plastic model for the three point bending beam. 

   Numerical difficulties may appear due to loading conditions on the support and 

at mid – span loading point. That is why, following the recommendations provided 

in (Ghavamian and Delaplace, 2003), at the support, a linear elastic behaviour is 

supposed on the entire cross section of the beam over a length covering one element 

along the beam axis. At mid span, a vertical uniform displacement is applied over 

the entire cross section to follow the loading condition. Figure 12 provides the 

numerical load – deflection curve and a comparison with the experiment, using the 

parameters given in table 4 and chosen from (Ghavamian and Delaplace, 2003). The 

results show qualitative similarities. The model exhibits the major characteristics of 

the beam behaviour : elastic response, first cracking with change in stiffness, tensile 

reinforcement yielding associated to a ductile plateau and finally some numerical 

behaviour which may be qualified as the collapse of the structure (decrease of the 
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force at the end of the computation). Similar evolution was observed with the 

isotropic damage model developed by Mazars (1984) (Jason et al, 2004). If the 

results are compared with the benchmark calculations, it can be seen that the plastic 

model provides an appropriate behaviour, with a limited number of parameters. The 

overestimation of the force that can be noticed in figure 12 is also noticed for the 

other constitutive laws. Tailhan et al (2003) explain that if some uncertainties on the 

experimental parameters (position of the reinforcement, yields stresses for concrete 

and steel) are taken into account, a change in the ultimate force of the beam from 

190 kN to 250 kN (in the range of the simulated results) can be obtained. It could be 

one of the reasons of the differences observed between experiment and simulation..  

Figure 13 presents the distribution of the tensile hardening variable 2 at different 

loading steps. The mechanical degradation is first localised along the surface of 

symmetry at mid-span. Then a more homogenised zone appears for high level of 

vertical displacement. If we consider the compressive hardening variable 1, it 

develops at the support point at the end of the computation (not represented here). 

Figure 12. Load – deflection curve for the three point bending beam. 

Figure 13. Tensile hardening variable distribution for three point bending beam for 

two steps of the computation (black zones are the most damaged ones). Only one 

fourth of the beam is represented.  
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Figure 14. Load deflections curves for two different meshes (100 and 25  elements 

in the transversal section).  

To evaluate the mesh influence, figure 14 presents the force – deflection curve 

for two densities (respectively 25 and 100 elements in the transversal section). The 

characteristic length seems to play its role during the first steps of the calculation 

(beginning of the mechanical degradation and tensile yielding). The two responses 

are indeed exactly similar, until the collapse of the beam, with a high level of 

internal variables. At the end of the computation, the internal variable indeed 

localises near the left support (figure 13) with a value higher for the fine mesh than 

for the coarse one. This localisation problem triggers the end of the computation and 

explains the differences (and especially the decrease in the force) observed on the 

force – displacement curve. Nevertheless, the same three evolutions (elasticity, 

cracking and yielding) are represented with both meshes. 

As a conclusion, for three point bending beams, the plastic model is able to 

reproduce the global behaviour of the structure and especially the successive steps in 

the mechanical degradation. For  local description, the internal tensile variable first 

localises then propagates into a more homogenised zone. Once again, from the 

knowledge of standard material properties, and if no refined results is needed (crack 

pattern distribution for example which is not totally reproduced), the law represents 

an appropriate tool.  

4.2 Hollow cylinder subjected to thermal loading 

The last application has been designed at the Atomic Energy Commission (Ranc 

et al, 2003) for the conception of  nuclear waste storage structures. It is a reinforced 
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hollow concrete cylinder with an inner and outer diameter of 1 and 2.2 meters 

respectively and a height of 3 m (figure 15). The structure is heated from the inside 

volume, using hollow aluminium cylinders equipped by resistors and is subjected to 

the loading path depicted in figure 16. The mock-up is laid on a 60 mm thick wood 

plate and its top is recovered with a 200 mm thick insulator layer and a 30 mm thick 

wood layer. The aim is to evaluate the behaviour of the material when high 

temperatures are applied.  

Figure 15. Concrete hollow cylinder. Experimental device and geometry 

Figure 16. Thermal loading 
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For the calculation, a chained thermo mechanical approach has been chosen. The 

temperature distribution is computed first, using a linear thermal simulation. The 

boundary conditions consist in a zero flow on the top and bottom faces of the 

structure (thermally insulated condition). Convection and radiation are considered on 

the external face whereas the inner one is subjected to the imposed temperature 

(figure 17). The calculation is axisymmetric, with only a half structure modelled 

(vertical symmetry). Table 5 provides the material properties chosen for the thermal 

part of the simulation, and have been obtained from experiments (see Ranc et al, 

2003 for more details). Figure 18 proposes a comparison between the computed 

temperatures and the experiment. Experiment and simulation are in a quite good 

agreement, especially on the outside surface but also in the inside of the volume even 

if some differences appear. Nevertheless, the thermal computation gives appropriate 

results. For the mechanical computation, only the thermal loading will be 

considered: it is indeed responsible for a thermal strain, using the expression 

provided in equation 3. 

 

Figure 17. Boundary conditions and loading for the hollow cylinder. 

Thermal conductivity (W.m-1.K-1) 2.3 

Volumetric mass (kg.m-3) 2370 

Mass heat (J.kg-1.K-1) 1000 

Emissivity 0.93 

Convection coefficient (W.m-2.K-1) 5 

Initial temperature (°C) 20 

Table 5. Coefficients for the thermal computation. 
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Figure 18. Evolution of the temperature distribution in time inside the hollow 

concrete cylinder at different radial positions (from 0 mm (inside face) to 600 mm 

(outside face)) and comparison with the experiment. 

 

T 

(°C) 

E 

(GPa) 

y 

(MPa) 

fc 

(MPa) 
m u 

20 38.5 14 57 0.002 0.01 

60 33 12 55 0.00021 0.0106 

110 29.8 11 55 0.00023 0.015 

250 20.4 8 46 0.00027 0.01608 

Table 6. Evolutions of the mechanical parameters with temperature  for  the 

plasticmodel. A linear evolution is supposed between the different temperatures. 

A zero vertical displacement is applied on the bottom line as boundary conditions 

(symmetry condition). Table 6 gives the material properties which are supposed to 

evolve with temperature (the temperature evolution is calibrated from experiments 

carried out in (Ranc et al, 2003)). As no information is provided concerning the 

tensile properties, they are kept constant (ft = 4.8 MPa, Gf = 400 N/m), as well as the 

Poisson ration and the dilation coefficient (=0.2 and th =10-5 °C-1). Steel 

reinforcement, that was not considered during the thermal computation for a seek of 

simplicity, is added for the mechanical part. It is composed with 25 mm diameter 

bars, except for the inner vertical bars with a 16 mm diameter (figure 19). 
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Figure 19. Steel distribution in the reinforced concrete hollow cylinder for the finite 

element model.  

They are supposed elastic with E = 190 GPa,  = 0.3,   th = 10-5 °C-1. 

Temperatures in the steel are defined from the preliminary thermal calculation using 

a projection from the concrete points. 

Figure 20 illustrates the evolution of the radial and orthoradial strains on the 

inner face at mid height. The simulation is compared with some experimental results 

obtained from strain gauges. The model is globally able to reproduce the structural 

behaviour during loading (increase in the temperature). The vertical strains are 

correctly represented especially. For the orthoradial strains, an overestimation of the 

experimental results is observed. It could be explained by some simplifications in the 

simulation (position and / or modelling of the steel reinforcement and tensile 

parameters that are kept constant with temperatures). Moreover, hydrous phenomena 

(dehydration especially) are not taken into account in our simulation and would 

require some thermo – hydro – mechanical simulations that are not in the scope of 

the present study (Dal Pont et Ehrlacher, 2004). Nevertheless,  the global behaviour 

is correctly simulated by the plastic constitutive law. 
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Figure 20. Evolution of the vertical (on the top) and orthoradial strains at mid 

height on the inside face. Comparison between the simulation and the experiment. 

 

Figure 21 presents the tensile internal variable distributions at different loading 

steps. The mechanical degradation appears from the outside of the volume (cold 

face) then propagates to the center. As the structure is reinforced, characteristic 

localisation zones are observed that follow a crack pattern. At the end of the 

computation, a “crossing crack” is observed. 

As a conclusion, the plastic model is able to reproduce qualitatively, for the 

evolution of the crack pattern, and quantitatively for the strains, the thermo – 

mechanical behaviour of the hollow concrete cylinder. Once again, one of the key 

point is the easiness to calibrate the material parameters from standard experimental 

tests and / or some default values. 
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Figure 21. Tensile internal variable distribution at different times. Black zones 

correspond to a heavy mechanical degradation 

5. Conclusions 

An elastic plastic model for concrete has been presented. Based on two yield 

surfaces (one for tension and one for compression), it has been validated on both 

elementary and structural applications. For tension, the standard evolution is 

reproduced (elasticity then softening). For compression, the simulated monotonic 

behaviour is in agreement with experimental observations, both for the axial and 

volumetric measurements. Finally, the numerical strength envelopes in biaxial 

loading matches the experiment. For structural applications, it is shown that the 

proposed formulation is able to give appropriate results (beam or hollow cylinder), 

compared to other more complex formulations (benchmark on the three point 

bending beam)  

Obviously, the constitutive law has its own limit. Some effects are not taken into 

account. Incorrect unloading is simulated and the choice for the plastic yield surface 

in compression is not adapted to represent the experimental evolutions for high 

confinement (decrease in the stiffness). Moreover, the plastic internal variables are 

not so relevant in particular cases (coupling between damage and permeability for 
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example). Nevertheless, in most encountered situations, the model is fully sufficient 

to provide a global view of the structural behaviour. 

Except its relative simplicity, one of the key point of the formulation is the 

physical significance of the parameters. They can all be determined from standard 

tests (tension, compression)  or more complex experiment (biaxial compression) for 

which default values are available. Moreover, they do not require the full stress – 

strain curve, as only characteristic points are needed (tensile strength, compressive 

strength). In an industrial context, where data are not always easily available, it 

represents a good compromise compared to other models that are also chosen for 

their simplicity but which do not seem so relevant to calibrate.  

From this concept, keeping in mind the interest of “easy-to-calibrate” parameters, 

it could be interesting to improve the formulation, by modifying the yield surfaces or 

coupling the formulation with some damage law. 
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